ultralight dark matter and gravitational wave...

30
Ultralight Dark Matter and Gravitational Wave Detection Peter Graham Stanford

Upload: others

Post on 22-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Ultralight Dark Matter and Gravitational Wave Detection

Peter Graham

Stanford

Page 2: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Dark Matter Direct Detection

new, precision detectors required Detect coherent effects of entire field

(like gravitational wave detector)

Frequency range accessible!

opticalyr�1

DM mass:10-22 eV

dwarf galaxy sizeQCD axion WIMP 1019 GeV

black holes

eV<latexit sha1_base64="l4tAJYzj+QlNSnErTe8atqo8ZfM=">AAAB8HicbVA9SwNBEN2LXzF+RS1tFoNgFe5EUKwCNpYRTKIkR9jbTJIlu3vH7pwYjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzokQKi77/7RVWVtfWN4qbpa3tnd298v5B08ap4dDgsYzNfcQsSKGhgQIl3CcGmIoktKLR9dRvPYKxItZ3OE4gVGygRV9whk566CA8YQbNSbdc8av+DHSZBDmpkBz1bvmr04t5qkAjl8zaduAnGGbMoOASJqVOaiFhfMQG0HZUMwU2zGYHT+iJU3q0HxtXGulM/T2RMWXtWEWuUzEc2kVvKv7ntVPsX4aZ0EmKoPl8UT+VFGM6/Z72hAGOcuwI40a4WykfMsM4uoxKLoRg8eVl0jyrBn41uD2v1K7yOIrkiByTUxKQC1IjN6ROGoQTRZ7JK3nzjPfivXsf89aCl88ckj/wPn8AMiWQoA==</latexit><latexit sha1_base64="l4tAJYzj+QlNSnErTe8atqo8ZfM=">AAAB8HicbVA9SwNBEN2LXzF+RS1tFoNgFe5EUKwCNpYRTKIkR9jbTJIlu3vH7pwYjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzokQKi77/7RVWVtfWN4qbpa3tnd298v5B08ap4dDgsYzNfcQsSKGhgQIl3CcGmIoktKLR9dRvPYKxItZ3OE4gVGygRV9whk566CA8YQbNSbdc8av+DHSZBDmpkBz1bvmr04t5qkAjl8zaduAnGGbMoOASJqVOaiFhfMQG0HZUMwU2zGYHT+iJU3q0HxtXGulM/T2RMWXtWEWuUzEc2kVvKv7ntVPsX4aZ0EmKoPl8UT+VFGM6/Z72hAGOcuwI40a4WykfMsM4uoxKLoRg8eVl0jyrBn41uD2v1K7yOIrkiByTUxKQC1IjN6ROGoQTRZ7JK3nzjPfivXsf89aCl88ckj/wPn8AMiWQoA==</latexit><latexit sha1_base64="l4tAJYzj+QlNSnErTe8atqo8ZfM=">AAAB8HicbVA9SwNBEN2LXzF+RS1tFoNgFe5EUKwCNpYRTKIkR9jbTJIlu3vH7pwYjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzokQKi77/7RVWVtfWN4qbpa3tnd298v5B08ap4dDgsYzNfcQsSKGhgQIl3CcGmIoktKLR9dRvPYKxItZ3OE4gVGygRV9whk566CA8YQbNSbdc8av+DHSZBDmpkBz1bvmr04t5qkAjl8zaduAnGGbMoOASJqVOaiFhfMQG0HZUMwU2zGYHT+iJU3q0HxtXGulM/T2RMWXtWEWuUzEc2kVvKv7ntVPsX4aZ0EmKoPl8UT+VFGM6/Z72hAGOcuwI40a4WykfMsM4uoxKLoRg8eVl0jyrBn41uD2v1K7yOIrkiByTUxKQC1IjN6ROGoQTRZ7JK3nzjPfivXsf89aCl88ckj/wPn8AMiWQoA==</latexit><latexit sha1_base64="l4tAJYzj+QlNSnErTe8atqo8ZfM=">AAAB8HicbVA9SwNBEN2LXzF+RS1tFoNgFe5EUKwCNpYRTKIkR9jbTJIlu3vH7pwYjvwKGwtFbP05dv4bN8kVmvhg4PHeDDPzokQKi77/7RVWVtfWN4qbpa3tnd298v5B08ap4dDgsYzNfcQsSKGhgQIl3CcGmIoktKLR9dRvPYKxItZ3OE4gVGygRV9whk566CA8YQbNSbdc8av+DHSZBDmpkBz1bvmr04t5qkAjl8zaduAnGGbMoOASJqVOaiFhfMQG0HZUMwU2zGYHT+iJU3q0HxtXGulM/T2RMWXtWEWuUzEc2kVvKv7ntVPsX4aZ0EmKoPl8UT+VFGM6/Z72hAGOcuwI40a4WykfMsM4uoxKLoRg8eVl0jyrBn41uD2v1K7yOIrkiByTUxKQC1IjN6ROGoQTRZ7JK3nzjPfivXsf89aCl88ckj/wPn8AMiWQoA==</latexit>

at long deBroglie wavelength a “coherent” field

signal is line at frequency = DM mass

and width 10-6

Page 3: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

DM Radio

Kent Irwin Saptarshi Chaudhuri

Jeremy Mardon Surjeet Rajendran

Yue Zhao

with

PRD 92 (2015) arXiv:1411.7382

Page 4: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

DM Radio ExperimentWidely tunable, lumped element EM resonator • low dissipation/low noise resonator Q ~ 106

• high precision magnetometry/amplifiers (SQUIDs)

Pathfinder: 4 K 300 cm3 under construction, initial results ~ 2018

start with hidden photon detection, later add B field for axion detection

see also Lindley Winslow’s talk

Stanford:ArranPhipps,DaleLi,SaptarshiChaudhuri,PeterGraham,JeremyMardon,Hsiao-MeiCho,StephenKuenstner,CarlDawson,RichardMule,MaxSilva-Feaver,ZachSteffen,BettyYoung,SarahChurch,KentIrwinBerkeley:SurjeetRajendranCollaboratorsonDMRadioextensions:TonyTyson,UCDavis,LymanPage,Princeton

2

10.8

0.6

0.4

NoisePSD

(μΦ

0/rt(Hz))

―Data• Fit

SQUIDnoisefloor

Page 5: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Optimizing Electromagnetic Axion Detectors

-0.002 -0.001 0.000 0.001 0.002

10

1000

105

107

109

f - f0f0

S ESQ(f)

SQUID energy spectrum

SQUID noisethermal noise

analysis bandwidth

DMsignal

• make highest resonator Q possible, even above 106

• “out of band”: take analysis bandwidth (step size) much broader than resonator and dark matter bandwidth

optimal experiment:

Chaudhuri, Irwin, PWG, Mardon arXiv:1803.01627

must also include quantum noise

can enhance sensitivity by orders of magnitude

single resonator essentially reaches ultimate Bode-Fano limit

Page 6: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

DM Radio Sensitivities

axion sensitivity

hidden photon sensitivity

Page 7: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Ultralight DM Direct Detection

DM mass:10-22 eV

10�8

Hz 1012

Hz108Hz10

4Hz10

�4Hz 1 Hz

10�18 eV 10�14 eV 10�10 eV 10�6 eV 10�2 eV

E&MDM Radio

Page 8: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Cosmic Axion Spin Precession Experiment (CASPEr)

PRX 4 (2014) arXiv:1306.6089 PRD 88 (2013) arXiv:1306.6088 PRD 84 (2011) arXiv:1101.2691

Dmitry Budker Micah Ledbetter

Surjeet Rajendran Alex Sushkov

with

Targeted Grants in Mathematics and Physical Sciences

Request for Applications

The Simons Foundation’s Mathematics and Physical Sciences (MPS) division invites applications for its new Targeted Grants in MPS program.

Rationale: The program is intended to support high-risk projects of exceptional promise and scienti$c importance on a case-by-case basis. How to Apply: Applicants may submit a Letter of Intent (LOI) through proposalCENTRAL (https://proposalcentral.altum.com/default.asp) beginning August 1, 2015. The deadline is rolling and an applicant can submit at any time.

Please coordinate submission of the proposal with the appropriate o5cials in accordance with institution policies. Please refer to the Application Instructions for

further information on and requirements for submitting an application.

For projects with Principal Investigator (PIs) at di�erent institutions, the LOI should be

signed submitted by the PI designated as the main PI and his/her institution.

LOI Requirements Include:

Research plan (two-page limit, plus up to one page for references and $gures):

Signed by the main PI on letterhead, which includes a brief summary of the support requested, including the names of the other PI(s) involved, if applicable, the scienti$c goals, background relevant to the application, and a brief budget justi$cation.

A tentative yearly budget (two-page limit) indicating total amount and major expense categories with proposed start and end dates.

Applicants will be noti$ed within two months of the LOI submission.

Please note that the volume of interest in this program is such that the foundation is not

able to provide advance guidance on potential proposals. We use the LOI stage to

assess suitability and novelty. The foundation recommends submitting an LOI if an

applicant believes his/her research meets the criteria outlined in the RFA.

Full Proposal:

A review of the LOI may lead to a request for a full proposal. Full proposals must be

Page 9: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Cosmic Axion Spin Precession Experiment (CASPEr)a(t)

<latexit sha1_base64="GWBL30D1vpedrjI7xVBAbAbAlds=">AAAB6nicbVBNS8NAEJ34WetX1aOXYBHqpaQiWG8FLx4rGFtoQ9lsN+3S3U3YnQgl9C948aDi1V/kzX/jps1BWx8MPN6bYWZemAhu0PO+nbX1jc2t7dJOeXdv/+CwcnT8aOJUU+bTWMS6GxLDBFfMR46CdRPNiAwF64ST29zvPDFteKwecJqwQJKR4hGnBHOJ1PBiUKl6dW8Od5U0ClKFAu1B5as/jGkqmUIqiDG9hpdgkBGNnAo2K/dTwxJCJ2TEepYqIpkJsvmtM/fcKkM3irUthe5c/T2REWnMVIa2UxIcm2UvF//zeilGzSDjKkmRKbpYFKXCxdjNH3eHXDOKYmoJoZrbW106JppQtPGUbQiN5ZdXiX9Zv6l791fVVrNIowSncAY1aMA1tOAO2uADhTE8wyu8OdJ5cd6dj0XrmlPMnMAfOJ8/yPqNkQ==</latexit><latexit sha1_base64="GWBL30D1vpedrjI7xVBAbAbAlds=">AAAB6nicbVBNS8NAEJ34WetX1aOXYBHqpaQiWG8FLx4rGFtoQ9lsN+3S3U3YnQgl9C948aDi1V/kzX/jps1BWx8MPN6bYWZemAhu0PO+nbX1jc2t7dJOeXdv/+CwcnT8aOJUU+bTWMS6GxLDBFfMR46CdRPNiAwF64ST29zvPDFteKwecJqwQJKR4hGnBHOJ1PBiUKl6dW8Od5U0ClKFAu1B5as/jGkqmUIqiDG9hpdgkBGNnAo2K/dTwxJCJ2TEepYqIpkJsvmtM/fcKkM3irUthe5c/T2REWnMVIa2UxIcm2UvF//zeilGzSDjKkmRKbpYFKXCxdjNH3eHXDOKYmoJoZrbW106JppQtPGUbQiN5ZdXiX9Zv6l791fVVrNIowSncAY1aMA1tOAO2uADhTE8wyu8OdJ5cd6dj0XrmlPMnMAfOJ8/yPqNkQ==</latexit><latexit sha1_base64="GWBL30D1vpedrjI7xVBAbAbAlds=">AAAB6nicbVBNS8NAEJ34WetX1aOXYBHqpaQiWG8FLx4rGFtoQ9lsN+3S3U3YnQgl9C948aDi1V/kzX/jps1BWx8MPN6bYWZemAhu0PO+nbX1jc2t7dJOeXdv/+CwcnT8aOJUU+bTWMS6GxLDBFfMR46CdRPNiAwF64ST29zvPDFteKwecJqwQJKR4hGnBHOJ1PBiUKl6dW8Od5U0ClKFAu1B5as/jGkqmUIqiDG9hpdgkBGNnAo2K/dTwxJCJ2TEepYqIpkJsvmtM/fcKkM3irUthe5c/T2REWnMVIa2UxIcm2UvF//zeilGzSDjKkmRKbpYFKXCxdjNH3eHXDOKYmoJoZrbW106JppQtPGUbQiN5ZdXiX9Zv6l791fVVrNIowSncAY1aMA1tOAO2uADhTE8wyu8OdJ5cd6dj0XrmlPMnMAfOJ8/yPqNkQ==</latexit>

search for oscillating nuclear EDM (not derivative suppressed)

Applied EM fields cause NMR-style resonance

SQUID measures resulting transverse magnetizationSQUID pickup

Only known way to reach QCD axion at lowest masses ~ kHz - MHz

and axion “wind” (spin precession)

under construction at Mainz and BU

Sensitivity comes from: • NMR technology • high precision magnetometry

first results out very soon!

Page 10: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Ultralight DM Direct Detection

DM mass:10-22 eV

10�8

Hz 1012

Hz108Hz10

4Hz10

�4Hz 1 Hz

10�18 eV 10�14 eV 10�10 eV 10�6 eV 10�2 eV

E&MDM Radio

NMRCASPEr

Page 11: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Ultralight DM Effects

axion DM field gradient torques electron and nucleon spins

oscillates with axion frequency

proportional to axion momentum (“wind”)

a

x

H 3 ra · ~�N(@µa) ̄�µ�5 ➜spin coupling:

a

x

DM field gradient can exert a force

oscillatory and violates equivalence principle

aH†Hscalar coupling: e.g. change electron mass

same effects allow searches for hidden photons

Page 12: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Force/Torque from Ultralight Dark Matter

These are the particles adelberger was already assuming exist anyway, we’re just saying they could also be DM

New Direct Detection Experiments:

New oscillatory force/torque from dark matter

ultralight DM and gravitational wave detection similar!

85Rb-87Rb

Atomic Interferometers (Clocks)

In construction Kasevich/Hogan groups

split + recombine atom wavefunction measure atom spin and acceleration

Pulsar Timing Arraysmeasure relative acceleration

of earth and pulsar

Be

Al

Torsion Balances

Eot-Wash analysis underway

scalar balance for force spin-polarized for torque

See Mina Arvanitaki’s talk

arXiv:1709.07852 arXiv:1512.06165

Page 13: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Ultralight DM Direct Detection

DM mass:10-22 eV

10�8

Hz 1012

Hz108Hz10

4Hz10

�4Hz 1 Hz

10�18 eV 10�14 eV 10�10 eV 10�6 eV 10�2 eV

E&MDM Radio

NMRCASPEr

atom interferometry

torsion balances

atomic magnetometers

Eot-Wash

Romalis and Trahms groups

MAGIS

these + many more new experiments (and ideas) will hopefully cover entire mass range for ultralight DM!

Page 14: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Gravitational Wave Detection with Atom Interferometry

PRD 97 (2018) arXiv:1710.03269 PRD 94 (2016) arXiv:1606.01860 PRL 110 (2013) arXiv:1206.0818 GRG 43 (2011) arXiv:1009.2702 PLB 678 (2009) arXiv:0712.1250 PRD 78 (2008) arXiv:0806.2125

Page 15: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Gravitational Spectrum

Every new EM band opened has revealed unexpected discoveries,

New detectors?

the gravitational-wave signal extraction by broadening thebandwidth of the arm cavities [51,52]. The interferometeris illuminated with a 1064-nm wavelength Nd:YAG laser,stabilized in amplitude, frequency, and beam geometry[53,54]. The gravitational-wave signal is extracted at theoutput port using a homodyne readout [55].These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, therebyminimizing the impact of photon shot noise (the principalnoise at high frequencies). High strain sensitivity alsorequires that the test masses have low displacement noise,which is achieved by isolating them from seismic noise (lowfrequencies) and designing them to have low thermal noise(intermediate frequencies). Each test mass is suspended asthe final stage of a quadruple-pendulum system [56],supported by an active seismic isolation platform [57].These systems collectively provide more than 10 ordersof magnitude of isolation from ground motion for frequen-cies above 10 Hz. Thermal noise is minimized by usinglow-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrateswith low-loss dielectric optical coatings [58,59], and aresuspended with fused silica fibers from the stage above [60].To minimize additional noise sources, all components

other than the laser source are mounted on vibrationisolation stages in ultrahigh vacuum. To reduce opticalphase fluctuations caused by Rayleigh scattering, thepressure in the 1.2-m diameter tubes containing the arm-cavity beams is maintained below 1 μPa.Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the opticalcomponents [62]. The detector output is calibrated in strainby measuring its response to test mass motion induced byphoton pressure from a modulated calibration laser beam[63]. The calibration is established to an uncertainty (1σ) ofless than 10% in amplitude and 10 degrees in phase, and iscontinuously monitored with calibration laser excitations atselected frequencies. Two alternative methods are used tovalidate the absolute calibration, one referenced to the mainlaser wavelength and the other to a radio-frequency oscillator

(a)

(b)

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to thedetector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shorteningthe other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetectorrecords these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant formost other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location andorientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector nearthe time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strainamplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources atlower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspensionfibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.

PRL 116, 061102 (2016) P HY S I CA L R EV I EW LE T T ER S week ending12 FEBRUARY 2016

061102-4

Advanced LIGO can only detect GW’s > 10 Hz ➜ How look at lower spectrum?

Gravitational waves open a new window to the universe

Page 16: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Atomic Clock|atom� = |1�

beamsplitter (laser pulse) 1⇤

2(|1�+ |2�)

1

2�E}

1⇤2

�|1�+ ei(�E)t|2�

⇥wait time t

beamsplitter

12

⇤�1� ei(�E)t

⇥|1⇥+

�1 + ei(�E)t

⇥|2⇥

N1 N2} }

output ports

can measure times t � 1�E � 10�10 s

Page 17: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

LIGO

mirrors

laser

second arm

Gravitational Wave DetectionGravitation Wave Detector

inertial test masses

baseline

good clock

Atom Interferometry

atoms

laser

atoms

atom interferometers

Page 18: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

A Different Kind of Atom Interferometer

as a clock, measure light travel time ➜ remove laser noise with single baseline

as an accelerometer ➜ atoms excellent inertial test masses

PWG, Hogan, Kasevich, Rajendran PRL 110 (2013)

run atom interferometer as hybrid clock/accelerometer

e.g. no seismic noise, no thermal noise, no gas collision noise, don’t charge

Page 19: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

MAGIS-100 Proposal at FermilabProposal: 100 meter detector at Fermilab

• MINOS, MINERνA and NOνA experiments use the NuMI beam

• 100 meter access shaft

• Atom DM detector (small scale project)

Proposal: 100 meter detector at Fermilab

• MINOS, MINERνA and NOνA experiments use the NuMI beam

• 100 meter access shaft

• Atom DM detector (small scale project)

• 100 m atom interferometer drop tower

• Detect dark matter (see Mina Arvanitaki’s talk)

• Equivalence Principle test

• Demonstrator for future gravitational wave detectors (~ km-scale terrestrial and satellite detectors)

Page 20: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Atom Interferometry for Gravitational WavesFuture detectors (terrestrial + satellite) could access mid-frequency band:

for example this band allows: • observe new sources • localize and predict BH and NS binary mergers for EM telescopes to observe • good measurement of BH spins

Advanced LIGO

LISA

GW 150914GW 151226NS-

NS200

MpcWD-WD

20 Mpc

0.001 0.010 0.100 1 10 100 1000

10-23

10-22

10-21

10-20

10-19

10-18

Frequency [Hz]

Strain

[1/Hz] MAGIS-4k

MAGIS-Space

GGN

Page 21: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Angular Localizationphase advance across orbit (between

detectors) dominates angular resolution

GW�✓ ⇠ SNR · L�

➜ highest frequencies where source lasts 6 months are best

L

Advanced LIGO

LISA

GW 150914GW 151226NS-

NS200

MpcWD-WD

20 Mpc

0.001 0.010 0.100 1 10 100 1000

10-23

10-22

10-21

10-20

10-19

10-18

Frequency [Hz]

Strain[1/Hz]

Atoms could access mid-frequency band ➜ ideal for angular localization

atom interferometry

PWG + Sunghoon Jung PRD 97 (2018)

Page 22: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Initial Black Hole Spins

Gravitomagnetic BH binary spin-spin effects fall rapidly with distance, seen only in highest frequencies before merger

Advanced LIGO

LISA

GW 150914GW 151226NS-

NS200

MpcWD-WD

20 Mpc

0.001 0.010 0.100 1 10 100 1000

10-23

10-22

10-21

10-20

10-19

10-18

Frequency [Hz]

Strain[1/Hz]

atom interferometry

LIGO can’t measure well, needs lower frequencies ➜ atoms (terrestrial or satellite) could measure? gives info on formation history, etc. of BH’s

Preliminary

Page 23: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Recent Experimental ResultsStanford Test Facility

➜ 50 pK

Macroscopic splitting of atomic wavefunction:54 cm

(Kasevich and Hogan groups)

demonstrate necessary technologies:

atom cooling

Kovachy et. al, Nature (2015)

Page 24: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Some Thoughts

• EM resonators

• laser interferometry

• atom interferometry/clocks

• molecules

• NMR

• high-precision magnetometry (SQUIDs, atomic systems)

• torsion pendulums

• optically-levitated dielectric spheres

• …

Combination of several experiments will cover QCD axion dark matter fully

Light dark matter (axions) and gravitational wave detection similar:

detect coherent effects of entire field, not single particles

Many more possibilities we haven’t thought of yet…

Many new experimental techniques!

Page 25: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors
Page 26: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Backup Slides

Page 27: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Moore’s law in atomic physicsAtomic Clock Sensitivity

current technology already allows many new searches, and will improve by orders of magnitude

Page 28: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

Possibilities for Light Dark MatterEffective field theory ➜ only a few possible couplings to us

either scalar or vector, four types of experiments:

light DM

with D.E.Kaplan, J.Mardon, S.Rajendran, & W.A.Terrano arXiv:1512.06165

current axion searches e.g. ADMX

Can cover all these possibilities

e.g. aids axion detection

E&M - drive currentsaF F̃

QCD - change nuclear properties

scalar - new force/SM properties

spin - cause precession

aGG̃

(@µa) ̄�µ�5

aH†H

Page 29: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

ADMX

QCD Axion

SN 1987A

Static EDM

ALP DM

10!14 10!12 10!10 10!8 10!6 10!4 10!2 100

10!20

10!15

10!10

10!5

102 104 106 108 1010 1012 1014

mass !eV"

gd!GeV

!2"

frequency !Hz"

dN = � i

2gd a N̄⇥µ��5NFµ�

Axion Limits on a

faG �G

Page 30: Ultralight Dark Matter and Gravitational Wave Detectiononline.itp.ucsb.edu/online/hepfront-c18/graham/pdf/... · 2018-04-14 · Dark Matter Direct Detection new, precision detectors

ADMX

QCD Axion

SN 1987A

Static EDM

ALP DM

10!14 10!12 10!10 10!8 10!6 10!4 10!2 100

10!20

10!15

10!10

10!5

102 104 106 108 1010 1012 1014

mass !eV"

gd!GeV

!2"

frequency !Hz"

dN = � i

2gd a N̄⇥µ��5NFµ�

CASPEr Sensitivity

phase 2phase 1

magnetization noise