ulaby equations

Upload: pdavid345

Post on 10-Jan-2016

140 views

Category:

Documents


10 download

DESCRIPTION

equations from circuits ulaby 2nd edition good pdf annotated

TRANSCRIPT

  • Circuitsby Fawwaz T. Ulaby and Michel M. Maharbiz

    Equations

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Chapter 1: Circuit Terminology

    Chapter 2: Resisitive Circuits

    Chapter 3: Analysis Techniques

    Chapter 4: Operational Amplifiers

    Chapter 5: RC and RL First-Order Circuits

    Chapter 6: Circuit Analysis by Laplace Transform

    Chapter 7: ac Analysis

    Chapter 8: ac Power

    Chapter 9: Frequency Response of Circuits and Filters

    Chapter 10: Three-Phase Circuits

    Chapter 11: Magnetically Coupled Circuits

    Chapter 12: Fourier Analysis Techniques

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • I =VR

    (1.2)

    i=dqdt

    (A) (1.3)

    q(t) = t

    i dt (C) (1.6)

    p= i (W) (1.9)

    n

    k=1

    pk = 0 (1.10)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • R=`

    A=

    `

    A() (2.2)

    = iR (2.3)

    p= i = i2R=2

    R(W) (2.4)

    G=1R

    (S) (2.5)

    p= i = G2 (W) (2.7)

    N

    n=1

    in = 0 (KCL) (2.8)

    N

    n=1

    n = 0 (KVL) (2.11)

    Req =N

    i=1

    Ri (resistors in series) (2.22a)

    i =(

    RiReq

    )s (2.22b)

    1Req

    =N

    i=1

    1Ri

    (resistors in parallel) (2.31)

    Geq =N

    i=1

    Gi (conductances in parallel) (2.34)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • R1 = R2 (2.38a)

    is =sR1

    (2.38b)

    R1 =RbRc

    Ra+Rb+Rc(2.42a)

    R2 =RaRc

    Ra+Rb+Rc(2.42b)

    R3 =RaRb

    Ra+Rb+Rc(2.42c)

    Ra =R1R2+R2R3+R1R3

    R1(2.43a)

    Rb =R1R2+R2R3+R1R3

    R2(2.43b)

    Rc =R1R2+R2R3+R1R3

    R3(2.43c)

    R1 = R2 = R3 =Ra3

    (if Ra = Rb = Rc) (2.44a)

    Ra = Rb = Rc = 3R1 (if R1 = R2 = R3) (2.44b)

    Rx =(R2R1

    )R3 (balanced condition) (2.47)

    Vout ' V04(RR

    )(2.48)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • GV = It (3.26)

    RI = Vt (3.27)

    iN =ThRTh

    (3.37a)

    RN = RTh (3.37b)

    RL Rs (maximum current transfer) (3.39)

    RL Rs (maximum voltage transfer) (3.40)

    RL = Rs (maximum power transfer) (3.42)

    pmax =2s RL

    (RL+RL)2=

    2s4RL

    (3.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • ip = in = 0 (ideal op-amp model) (4.16)

    p = n (ideal op-amp model) (4.17)

    G=os

    =(RfRs

    )(4.24)

    o = G11+G22 (4.31)

    o =(RfR

    )[1+2] (equal gain) (4.32)

    o =(1+2) (inverted adder) (4.33)

    o =(RfR1

    )1+

    (RfR2

    )2+ +

    (RfRn

    )n (4.34)

    o =[(

    R4R3+R4

    )(R1+R2R1

    )]2

    (R2R1

    )1 (4.40)

    o =(R2R1

    )(21) (equal gain) (4.44)

    o =(

    1+2RR2

    )(21) (4.56)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • u(t) =

    {0 for t < 01 for t > 0

    (5.2)

    r(tT ) ={

    0 for t T(tT ) for t T (5.4)

    r(t) = t

    u(t) dt = t u(t) (5.6)

    rect(tT

    )

    =

    0 for t < (T /2)1 for (T /2) t (T + /2)0 for t > (T + /2)

    (5.8)

    C =q

    (F) (any capacitor) (5.20)

    C =Ad

    (parallel-plate capacitor) (5.21)

    C =2pi`

    ln(b/a)(coaxial capacitor) (5.22)

    (t) = (t0)+1C

    tt0i dt (5.24)

    (t) =1C

    t0i dt

    (capacitor uncharged before t = 0)

    (5.25)

    w(t) =12C 2(t) (J) (5.28)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • 1Ceq

    =N

    i=1

    1Ci

    =1C1

    +1C2

    + + 1CN

    (capacitors in series)

    (5.35)

    Ceq =N

    i=1

    Ci (capacitors in parallel) (5.40)

    C11 =C22 (5.46)

    L=N2S`

    (solenoid) (5.51)

    i(t) = i(t0)+1L

    tt0 dt (5.55)

    Leq =N

    i=1

    Li = L1+L2+ +LN

    (inductors in series) (5.62)

    1Leq

    =N

    i=1

    1Li=

    1L1

    +1L2

    + + 1LN

    (inductors in parallel) (5.65)

    ddt

    +a = 0 (source-free) (5.69)

    (t) = (0) et/ (natural response) (5.77)

    = RC (s) (5.78)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • i(t) =VsR

    et/ u(t) (for t 0)(natural response) (5.82)

    ddt

    +a = b (5.87)

    (t) = ()+ [(0)()]et/ (for t 0)(switch action at t = 0) (5.95)

    (t) = ()+ [(T0)()]e(tT0)/(for t T0) (5.97)

    (switch action at t = T0)

    i(t) = i(0) et/ (for t 0)(natural response) (5.102)

    =1a=

    LR

    (5.103)

    i(t) = i()+ [i(0) i()]et/ (for t 0)(switch action at t = 0) (5.106)

    i(t) = i()+ [i(T0) i()]e(tT0)/(for t T0)

    (switch action at t = T0)

    (5.107)

    out(t) = 1RC tt0i(t ) dt +out(t0) (5.128)

    out(t) = 1RC t

    0i(t ) dt (if out(0) = 0) (5.129)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • out =RC didt (5.130)

    tfall =CnD+C

    pD

    g(5.155)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • damping coefficient =R2L

    (Np/s) (6.1a)

    resonant frequency 0 =1LC

    (rad/s) (6.1b)

    (series RLC)

    iL+a2iL+b2iL = c2 (6.12)

    =1

    2RC(parallel RLC) (6.14)

    (tT ) = 0 for t 6= T

    (tT ) dt = 1(6.15a)

    (6.15b)

    u(tT ) = t

    (T ) dddt

    [u(tT )] = (tT )

    (6.19a)

    (6.19b)

    x(t) (tT ) dt = x(T )

    (sampling property)

    (6.23)

    e j = cos + j sin (6.27)

    x= |z|cos y= |z|sin|z|=

    x2+ y2 = tan1(y/x) (6.30)

    z = (x+ jy) = x jy= |z|e j = |z| (6.31)

    |z|=

    zz (6.32)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • F(s) =LLL[ f (t)] =

    0f (t) est dt (6.40)

    (t) 1 (6.46)

    [cos(t)] u(t)s

    s2+2(6.47)

    f (at)1a

    F( sa

    )a> 0

    (time-scaling property)

    (6.49)

    f (tT ) u(tT ) eT s F(s)T 0

    (time-shift property)

    (6.53)

    f =d fdt

    s F(s) f (0)(time-differentiation property)

    (6.58)

    f =d2 fdt2

    s2 F(s) s f (0) f (0)(second-derivative property) (6.61)

    t0

    f (t ) dt 1s

    F(s)

    (time-integration property)

    (6.62)

    F(s) =A1

    s+ p1+

    A2s+ p2

    + + Ans+ pn

    =n

    i=1

    Ais+ pi

    (6.83)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • A1 = (s+ pi) F(s)s=pi

    i= 1,2, . . . ,n(6.84)

    B j ={

    1(m j)!

    dm j

    dsm j[(s+ p)m F(s)]

    }s=p

    j = 1,2, . . . ,m (6.92)

    LLL1[(n1)!(s+a)n

    ]= tn1eat u(t) (6.94)

    = Ri V = RI (6.107)

    = Ldidt

    V = sLIL i(0) (6.110)

    i=Cddt

    I = sCVC (0) (6.111)

    ZR = R, ZL = sL and ZC =1

    sC(6.112)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • = 2pi f (rad/s) (7.3)

    T =1f

    (s) (7.4)

    didt

    jI (7.21)

    i dt

    Ij

    (7.23)

    Z =VI

    () (7.29)

    ZR =VRIR

    = R (7.30)

    ZL =VLIL

    = jL (7.35)

    ZC =VCIC

    =1

    jC(7.38)

    Zeq =N

    i=1

    Zi (impedances in series) (7.64)

    Yeq =N

    i=1

    Yi (admittances in parallel) (7.66)

    Z1 =ZbZc

    Za+Zb+Zc(7.69a)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Z2 =ZaZc

    Za+Zb+Zc(7.69b)

    Z3 =ZaZb

    Za+Zb+Zc(7.69c)

    Za =Z1Z2+Z2Z3+Z1Z3

    Z1(7.70a)

    Zb =Z1Z2+Z2Z3+Z1Z3

    Z2(7.70b)

    Zc =Z1Z2+Z2Z3+Z1Z3

    Z3(7.70c)

    Z1 = Z2 = Z3 =Za3, if Za = Zb = Zc (7.71a)

    Za = Zb = Zc = 3Z1 if Z1 = Z2 = Z3 (7.71b)

    21

    =N2N1

    = n (7.120)

    i2i1=

    N1N2

    (7.121)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Xav =1T

    T0

    x(t) dt (8.5)

    cos2 x=12+

    12

    cos2x

    1T

    T0

    cos2(

    2pintT

    +1)

    dt =12

    and

    1T

    T0

    sin2(

    2pintT

    +2)

    dt =12

    (8.10)

    Ieff =

    1T

    T0

    i2(t) dt (8.13)

    Xrms = Xeff =

    1T

    T0

    x2(t) dt (8.14)

    1T

    T0

    cos(nt+) dt = 0 (n= 1,2, . . .) (8.22)

    Pav =VmIm

    2cos( i) (W) (8.23)

    Pav =VrmsIrms cos( i) (W) (8.24)

    Pav =VrmsIrms =V 2rmsR

    (purely resistive load)

    (8.25)

    Pav =VrmsIrms cos90 = 0

    (purely reactive load)

    (8.26)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • S =12

    VI (VA) (8.29)

    S = VrmsIrms (VA) (8.32)

    Q=VrmsIrms sin( i) (VAR) (8.34)

    Pav =Re[S] (average absorbed power) (8.36a)

    Q= Im[S] (peak exchanged power) (8.36b)

    Pav =Re[S] =12|I|2R= I2rmsR (W) (8.39a)

    Q= Im[S] =12|I|2X = I2rmsX (VAR) (8.39b)

    n

    i=1

    Pavi = 0 andn

    i=1

    Qi = 0 (8.40)

    S= |S|=P2av+Q2 =VrmsIrms (8.43)

    pf=PavS

    = cos( i) (8.44)

    pf= cosz (8.49)

    pf=

    {cosZL for the RL circuit alonecosnew for the compensated circuit

    (8.53)

    XL =Xs (8.63)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • RL = Rs (8.64)

    ZL = Zs (maximum power transfer) (8.65)

    Pav(max) =18|Vs|2RL

    (8.66)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • M(c) =M0

    2= 0.707M0 (9.5)

    0 =1LC

    (RLC circuit) (9.11)

    R = KmR,

    L = KmL,

    C =CKm

    ,

    and

    =

    (magnitude scaling only)

    (9.23)

    R = R,

    L =LKf,

    C =CKf,

    and

    = Kf

    (frequency scaling only)

    (9.25)

    R = KmR,

    L =KmKf

    L,

    C =1

    KmKfC,

    and

    = Kf

    (magnitude and frequency scaling)

    (9.26)

    G= XY G [dB] = X [dB]+Y [dB] (9.31)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • G=XY

    G [dB] = X [dB]Y [dB] (9.32)

    0 =1LC

    (9.48)

    c1 =R2L

    +

    (R2L

    )2+

    1LC

    (9.50a)

    c2 =R2L

    +

    (R2L

    )2+

    1LC

    (9.50b)

    B= c2c1 =RL

    (9.51)

    0 =c1c2 (9.52)

    Q= 2pi(WstorWdiss

    )=0

    (9.53)

    Q=0LR

    (bandpass filter) (9.61)

    Q=0B

    (bandpass filter) (9.62)

    c1 =1RC

    (RC filter) (9.72)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Y-Source Configuration

    V1 =VYs0

    V2 =VYs120

    V3 =VYs240(10.1)

    -Source Configuration

    V12 = V1V2=VYs0VYs120

    =

    3VYs30 =Vs30

    V23 = V2V3 =Vs90V31 = V3V1 =Vs150

    with Vs =

    3VYs

    (10.3)

    VN = 0 (balanced network) (10.8)

    Z = 3ZY (10.12)

    PT = 3VYLIYL cosYQT = 3VYLIYL sinY

    (balanced network)

    (10.18a)

    (10.18)

    ST = PT+ jQT =

    3VLILY

    (balanced Y-load)

    (10.20)

    PT(t) = 3VYLIYL cosY (10.27)

    PT = P1+P2(any 3-phase load)

    (10.41)

    QT = 3V 2LZ

    sin (10.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • QT =

    3 (P2P1) (balanced load) (10.45)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • 2 =M21 di1dt (11.6)

    1 = L1di1dt

    +Mdi2dt

    and

    2 = L2di2dt

    +Mdi1dt

    (11.8a)

    (11.8b)

    1 = L1di1dtM di2

    dtand

    2 = L2di2dtM di1

    dt

    (11.9a)

    (11.9b)

    k =ML1L2

    (11.21)

    M(max) =L1L2 (11.22)

    (perfectly coupled transformer with k = 1)

    ZR =2M2

    R2+ jL2+ZL(11.25)

    [V1V2

    ]=[jL1 jMjM jL2

    ][I1I2

    ](transformer)

    (11.27c)

    [V1V2

    ]=[j(Lx+Lz) jLz

    jLz j(Ly+Lz)

    ][I1I2

    ](T-equivalent circuit) (11.28)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Lx = L1MLy = L2M

    and

    Lz =M

    (transformer dots on same ends)

    (11.29a)

    (11.29b)

    (11.29c)

    Lx = L1+M

    Ly = L2+M

    and

    Lz =M(transformer dots on opposite ends)

    (11.30a)

    (11.30b)

    (11.30c)

    La =L1L2M2L1M

    Lb =L1L2M2L2M

    and

    Lc =L1L2M2

    M(transformer with dots on same ends)

    (11.31a)

    (11.31b)

    (11.31c)

    M(max) =L1L2

    (ideal transformer)

    (11.34)

    L2L1

    =N22N21

    = n2 (11.35)

    V2V1

    = n (ideal transformerwith dots on same side) (11.36)

    I2I1=

    1n

    (ideal transformerdots on same ends) (11.39)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • V2V1

    =N2N

    =N2

    N1+N2and

    I2I1=

    V1V2

    =N1+N2

    N2(step-down autotransformer)

    (11.42)

    V2V1

    =NN2

    =N1+N2

    N2and

    I2I1=

    V1V2

    =N2

    N1+N2(step-up autotransformer)

    (11.43)

    VLsVLp

    =ILpILs

    = n (Y-Y and -) (11.44)

    ST =

    3VLIL (Y and ) (11.45)

    VLsVLp

    =ILpILs

    =n3

    (Y-)

    and

    VLsVLp

    =ILpILs

    =

    3 n (-Y)

    (11.46)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • f (t) = a0+

    n=1

    (an cosn0t+bn sinn0t)

    (sine/cosine representation) (12.15)

    a0 =1T

    T0

    f (t) dt

    an =2T

    T0

    f (t) cosn0t dt

    bn =2T

    T0

    f (t) sinn0t dt

    (12.17a)

    (12.17b)

    (12.17c)

    An =a2n+b2n

    and

    n =

    tan1

    (bnan

    )an > 0

    pi tan1(bnan

    )an < 0

    (12.26)

    Ann = an jbn (12.27)

    f (t) = a0+

    n=1

    An cos(n0t+n)

    (amplitude/phase representation)

    (12.28)

    Even Symmetry: f (t) = f (t)

    a0 =2T

    T/20

    f (t) dt,

    an =4T

    T/20

    f (t) cos(n0t) dt, (12.31)

    bn = 0,

    An = |an|, and n ={

    0 if an > 0180 if an < 0

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • Odd Symmetry: f (t) = f (t)a0 = 0, an = 0,

    bn =4T

    T/20

    f (t) sin(n0t) dt, (12.32)

    An = |bn| and n ={90 if bn > 090 if bn < 0

    Solution Procedure:Fourier Series Analysis Procedure

    Step 1: Express s(t) in terms of an amplitude/phase Fourier series as

    s(t) = a0+

    n=1

    An cos(n0t+n) (12.33)

    with Ann = an jbn.

    Step 2: Establish the generic transfer function ofthe circuit at frequency as

    H() = Vout when s = 1cost. (12.34)

    Step 3: Write down the time-domain solution as

    out(t) = a0 H( = 0)

    +

    n=1

    AnRe{H( = n0) e j(n0t+n)}.(12.35)

    Pav =VdcIdc+12

    n=1

    VnIn cos(nin) (12.43)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • cn =an jbn

    2and

    cn =an+ jbn

    2= cn

    (12.47)

    f (t) =

    n=

    cne jn0t

    (exponential representation)

    (12.48)

    cn =1T

    T/2T/2

    f (t) e jn0t dt (12.50)

    sinc(x) =sinxx

    (12.54)

    f (t) =

    n=

    cne jn0t (12.58a)

    cn =1T

    T/2T/2

    f (t) e jn0t dt (12.58b)

    F() =F [ f (t)] =

    f (t) e jt dt (12.62a)

    f (t) =F1[F()] =1

    2pi

    F() e jt d (12.62b)

    K1 f1(t)+K2 f2(t) K1 F1()+K2 F2()

    (linearity property) (12.65)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • (t t0) e jt0and

    (t) 1

    (12.67a)

    (12.67b)

    e j0t 2pi (0)and

    1 2pi ()

    (12.68a)

    (12.68b)

    e j0t f (t) F(0)(frequency-shift property)

    (12.69)

    f (t t0) e jt0 F()(time-shift property)

    (12.70)

    cos0t pi[ (0)+ (+0)] (12.71)

    sin0t jpi[ (+0) (0)] (12.72)

    Aeat u(t)A

    a+ j, for a> 0 (12.73)

    sgn(t) = u(t)u(t) (12.74)

    u(t) pi ()+1j

    (12.79)

    f (t) j F() (12.81)

    cos0t f (t)12[F(0)+F(+0)] (12.82)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

  • F() = F()(reversal property)

    (12.85)

    f 2(t) dt =1

    2pi

    |F()|2 d

    (Parsevals theorem)

    (12.86)

    Fawwaz T. Ulaby and Michel M. Maharbiz, Circuits c 2013 National Technology Press

    Chapter 1Chapter 2Chapter 3Chapter 4Chapter 5Chapter 6Chapter 7Chapter 8Chapter 9Chapter 10Chapter 11Chapter 12