uhf magnet development at mit

11
UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145) Y Iwasa (MIT) [email protected] 1/11 UHF NMR/MRI Workshop Bethesda, MD November 12-13, 2015 UHF Magnet Development at MIT Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge MA Acknowledgement NIGMS-NIBIB-(NCRR) and Juan Bascuñàn, Seungyong Hahn (FSU/NHMFL), Timing Qu, Mingzhi Guan Robert Griffin, Gerhard Wagner (HMS), Mei Hong

Upload: hakhue

Post on 31-Dec-2016

218 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 1/11

UHF NMR/MRI Workshop Bethesda, MD

November 12-13, 2015

UHF Magnet Development at MIT

Yukikazu Iwasa

Francis Bitter Magnet Laboratory Plasma Science and Fusion Center

Massachusetts Institute of Technology, Cambridge MA

AcknowledgementNIGMS-NIBIB-(NCRR)

andJuan Bascuñàn, Seungyong Hahn (FSU/NHMFL), Timing Qu, Mingzhi Guan

Robert Griffin, Gerhard Wagner (HMS), Mei Hong

Page 2: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 2

UHF NMR (54 mm)/MRI (90 mm) Magnets

Bo [T] @ 4.2 K

Field Range < 20 > 20 è100Superconductor LTS LTS/HTS èHTS

HTS (REBCO; Bi2223; Bi2212; here not MgB2)

• > 20 T (@4.2 K) magnets, HTS absolutely enabling§ Performance, not cost, primary criterion

• < 20 T (@4.2 K) magnets, HTS replacing § Cost, not performance, primary criterion§ very challenging for HTS

§ HTS essential

Page 3: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) <[email protected]>

NMR Magnets: March Towards 1.3-GHz

1950 60 70 80 90 2000 10 20

30

B [T]

25

20

15

10

5

0

Year

: Superconducting—LTS [MHz]

: COPPER [MHz]

LTS/HTS NMR Magnet Program [GHz]

Updated from Kobe Steel data (1998)

1.02G(NIMS)

1000 (Bruker)

1.2G (Bruker)

15

1.3G (MIT)

0.35G (Phase 1)(MIT)

0.7G (Phase 2)(MIT)

(MIT)

(MIT)

& Beyond

Page 4: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

ϕ54 RT bore

Supp

orts

2170

1636

8121040

MIT 1.3-GHz NMR Magnet (1.3G)

1.   H800: Non-Insulated (NI) REBCO pancake coils2. Inside-notch double-pancake coils

3. Persistent-mode HTS shims:Z1, Z2, X, (Y)

5. Operation @4.2 K

§ ì field homogeneity of “short” magnet

Re-condenser

H800

HTSShims:Z1, Z2X,Y

Bi2223SCFShakingMagnet

Cryocooler (3.5 [email protected] K)

4. Bi2223 SCF shaking magnet

• 1.3G Composed of: 500-MHz LTS NMR magnet (L500) 800-MHz REBCO insert (H800)

• Noteworthy features of 1.3G L500

Y Iwasa (MIT) [email protected] 4

§ LHe re-condensation

Page 5: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 5

H800(Top = 4.2 K; Iop = 251 A)

• 3-nested-coil formation • Each coil an assembly of NI pancake coils, wound with REBCO tape,

6-mm wide, 75-μm thick (10-μm thick copper, each side) overallCoil 1: 26 DP (6 inside-notch); 369 MHz (8.66 T); 90-mm bore Coil 2: 32 DP (8 inside-notch); 242 MHz (5.68 T)Coil 3: 36 DP (8 inside-notch); 189 MHz (4.44 T);

216 mm o.d. L500 cold bore: 237 mm

• H800 contribution: 61% of 30.5 T

Page 6: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 6

Overband• Overbanding an essential technique for highly stressed (i.e., UHF) coils

7-mmOverband

5-mm

3-mm

Mingzhi Guan, Seungyong Hahn, Juan Bascuñán, Timing Qu, Xingzhe Wang, Peifeng Gao, and Yukikazu Iwasa, “A parametric study on overband radial build for a REBCO 800-MHz Insert of a 1.3-GHz LTS/HTS NMR magnet.” presented at MT24.

5 mm

7 mm

Coil 1: Hoop Stress vs. Radial Position

Winding Overband

Page 7: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 7

Current Plans & Final Push

• Complete H800• Generate 30.5 T, of a non-NMR field quality• Continue developing two new shimming techniques

§ HTS shims

§ Shaking-field

L500/H80030.5 T

Current Plans (9/1/15-8/31/18)

Final Push (9/1/18-12/31/20)

• Transform a 30.5-T magnet to a high-resolution 1.3-GHz NMR magnet (1.3G)• Install 1.3G to the MIT-Harvard Magnetic Resonance Center, FBML

Page 8: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 8

REBCO (MIT Choice) for H800 & UHF HTS NMR Magnets

• Magnet protection, from permanent damage

REBCO Tape vs. Bi2223 Tape & Bi2212 Multifilament wire

• Inherent strength: equally important as high critical-current density, Jc

Disadvantage

§ Purity: Bi2212* >> REBCO & Bi2223

§ REBCO > Bi2223 & Bi2212

• Overall winding current density (Joverall):§ REBCO* >> Bi2223 & Bi2212

Advantages

§ REBCO* easier than Bi2223 & Bi2212

*  Thanks to H800 NI coils

*  Thanks to H800 NI coils

• Inherent field impurity*  Thanks to multifilaments vs. tape§ New shimming techniques deployed to H800 pancake coils

⎧ Joverall è î magnet cost

Page 9: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 9

UHF NMR Magnets Beyond 1.3 GHz

>1.3G Magnets for NMR

• 15N TROSY benefits from >1.3-GHz magnets*Solution NMR

Magic-Angle-Spinning Solid State NMR• Highest field possible**

* Koh Taeuchi, Haribabu Arthanari, Ichio Shimada, and Gerhard Wagner, “Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein,” in press JBNMR (2015).

** Lishan Yao, Alexander Grishaev, Gabriel Cornilescu, and Ad Bax, ``The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crysstal NMR spectroscopy, J. Am. Chem. Soc.~132, 10866(10pp) (2010)

Page 10: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected] 10

NMR Magnets: March Beyond 1.3-GHz

($1M) ($4M) ($22M)

(~$0.6M) (~$0.7M) (~$2M) (~$6M)

* L500 designs by Masatoshi Yoshikawa (JASTEC)

1.3G (30.5T) 1.5G (35.2T) 2.0G (46.9T) 2.5G (58.6T_(% by HTS) L500*/H800 (61) L500/H1000 (67) L500/H1500 (75) L500/H2000 (80)

LTS Cold bore [mm] 237 237 394 720Mass [kg] 1200 790 3,450 18,630Iop [A] 246 262 260 259Top [K] 4.2 (* L500, all-Nb3Sn, up to 6)E @Iop [MJ] 4.6 5 19 107

HTS: REBCO 6-mm wide; Cold bore: 91 mm; Iop = 300 A (except 1.3G: 251 A); Top = 4.2 K # Coils / Total DP 3 / 94 4 /140 6 / 258 8 / 579Conductor length [km] 12 14 38 152

E [MJ] @Iop 1.1 6.4 53Overband / Coil [mm] 7 / 5 / 3 5 / 3 / 2 / 1 15/15/16/11/6/3.5 24/23/29/28/27/25/22/15

Page 11: UHF Magnet Development at MIT

UHF Magnet Development at MIT UHF NMR/MRI Workshop, Bethesda (11/12/20145)

Y Iwasa (MIT) [email protected]

CONCLUSIONS

Thank you!

11

• MIT completing (2000) a 1.3G (500/800) high-resolution NMR magnet§ HTS share: 61% of 30.5 T

• For UHF NMR magnets, currently REBCO, among HTS, most suitable

• 1.3G the only major UHF NMR program now funded in the U.S., i.e., by NIH § NbTi mainly developed by large HEP projects è LHC§ Nb3Sn by large fusion projects è ITERFor HTS, needed most now: more UHF NMR magnet building projects,

§ NI winding technique most viable § More heavy lifting for HTS insert, perhaps 100% at 100 T (4.26 GHz)

With HTS, the sky’s the limit!

supported not only by NIH but also by NSF and DOE