uav - lecture 10 zdobyslaw goraj

41
1 UAV - lecture 10 Zdobyslaw Goraj Selection of wing section, part 1 Warsaw, 14 May, 2020

Upload: others

Post on 31-Jan-2022

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: UAV - lecture 10 Zdobyslaw Goraj

1

UAV - lecture 10 – Zdobyslaw Goraj

Selection of wing section, part 1

Warsaw, 14 May, 2020

Page 2: UAV - lecture 10 Zdobyslaw Goraj

2

HERON-TP

Page 3: UAV - lecture 10 Zdobyslaw Goraj

3

Malat’s Customers in Afghanistan

Page 4: UAV - lecture 10 Zdobyslaw Goraj

4

Selection of wing section • mission-tailored, customized wings –

wing section catalogue as NACA, Wortmanna, Eplera, GAWa

(and derivatives of LS type) are not very useful due to ranges of Re,

CL, Ma;

• interdisciplinary approach must be applied, taking into account many

disciplines as aerodynamics, wing structure (spar location and its

layout), fuel tank arrangement, aeroelasticity, servos locations etc. It is

closely related to so-called MDO (Multi – Disciplinary Optimisation);

• in design and analysis of to-day wing sections the programme MSES

by Mark Drela (MIT) is widely used. This software is based on Euler

equation combined with viscid Boundary Layer equation. In the

internet there is also available the XFOIL software – being an simpler

(linear) version of MSES.

Page 5: UAV - lecture 10 Zdobyslaw Goraj

5

Flight

endurance:

Endurance – general formula:

1

0ln1

W

W

D

L

cE

t

;

where:

pr

t

Vcc

;

whilst: c – specific fuel consumption of piston engine;

ct – – specific fuel consumption of turbine engine;

pr – propeller efficiency.

For aircraft with piston engine we have:

2/1

0

2/1

1

2/3

2

WWC

CS

cE

D

Lpr

For aircraft with turbine engine we have:

1

0ln1

W

W

D

L

cE

t

Endurance coefficient

efficiency

s

m

s

m

m

s

mkg

m

kgmunit

2

1:

mm

s

sC

sCunit t

11;

1:

Page 6: UAV - lecture 10 Zdobyslaw Goraj

6

HA-flight – region of development interests

high speed

airfoilshigh altitude

flight

historical

trend

low speed airfoilsRe

M

106 107

0.8

0.6

0.4

0.2

0.0

high speed

airfoilshigh altitude

flight

historical

trend

low speed airfoilsRe

M

106 107

0.8

0.6

0.4

0.2

0.0

manned unmanned

Page 7: UAV - lecture 10 Zdobyslaw Goraj

7

Wing sections for surveillance aircraft

of high CL and high CD (piston-prop)

)18.0(2

0 tcoefficienOswaldewhere

eA

CCC L

DD

Page 8: UAV - lecture 10 Zdobyslaw Goraj

8

Wing sections for

surveillance aircraft

of high CL and high

CD (turbo-prop)

AR – aspect ratio

e – Oswalda coefficient

200 cts CD0 = 0.0200

Page 9: UAV - lecture 10 Zdobyslaw Goraj

9

Two elements (slatted) airfoils: SA

Max.lift (F=0o)= 2.4

Stall characteristics: Mild stall

NLF technology: upper surface – 60% laminar

lower surface – 80% laminar

Page 10: UAV - lecture 10 Zdobyslaw Goraj

10

Influence of Re on airfoil characteristics (1/2)

Page 11: UAV - lecture 10 Zdobyslaw Goraj

11

Influence of Re on airfoil characteristics (2/2)

Page 12: UAV - lecture 10 Zdobyslaw Goraj

12

Endurance factor for different airfoils –

Wind Tunnel results

HQ – variable camber airfoil, for modern sailplane

wings featuring a plain trailing edge flap,

developed at DLR

Page 13: UAV - lecture 10 Zdobyslaw Goraj

13

Influence of bags on airfoil characteristics

Page 14: UAV - lecture 10 Zdobyslaw Goraj

14

Influence of flap deflection of airfoil characteristics

Page 15: UAV - lecture 10 Zdobyslaw Goraj

15

HERON with wing section SA-21

Page 16: UAV - lecture 10 Zdobyslaw Goraj

16

HERON – wing flaps (1/2)

Page 17: UAV - lecture 10 Zdobyslaw Goraj

17

HERON – wing flaps (2/2)

Page 18: UAV - lecture 10 Zdobyslaw Goraj

18

FIREBIRD with wing section SA-19

Page 19: UAV - lecture 10 Zdobyslaw Goraj

19

Wing section SA-19 – flaps configuration

suited to the mission segment

Page 20: UAV - lecture 10 Zdobyslaw Goraj

20

Two-element wing sections suited to high

altitude flights: HASA-LT i HASA-HT (1/2)

LOW TRANSONIC (HASA-LT)

propeller-driven aircraft

HIGH TRANSONIC (HASA-HT)

jet-powered aircraft

M = 0.30 - 0.50

high values of endurance factor

Clmax 2.0 - 2.5

M2Clmax = 0.4 - 0.5

maximum

lift

ceil ing

parameter

M = 0.50 - 0.70

high lift-to-drag ratio

Clmax 1.5

M2Clmax = 0.5 - 0.6

Page 21: UAV - lecture 10 Zdobyslaw Goraj

21

Two-element wing sections suited to high

altitude flights: HASA-LT i HASA-HT (2/2) High Altitude Slotted Airfoil

Page 22: UAV - lecture 10 Zdobyslaw Goraj

22

Liebeck’s & SA-14 wing sections (1/2)

Page 23: UAV - lecture 10 Zdobyslaw Goraj

23

Liebeck’s & SA-14 wing sections (2/2)

Page 24: UAV - lecture 10 Zdobyslaw Goraj

24

Aerodynamic

characteristics at

off-design point –

going down with the

Cl one can decrease

the Cd

Przy zmniejszeniu Cl możemy

też zmniejszyć Cd

Page 25: UAV - lecture 10 Zdobyslaw Goraj

25

Influence of Mach

number on endurance

coefficient

CL

Page 26: UAV - lecture 10 Zdobyslaw Goraj

26

High altitude

transonic airfoils

Page 27: UAV - lecture 10 Zdobyslaw Goraj

27

Influence of

Reynolds number

on drag polars for

high altitude

transonic airfoils

Page 28: UAV - lecture 10 Zdobyslaw Goraj

28

Influence of

Reynolds number

on aerodynamic

efficiency for high

altitude transonic

airfoils

Page 29: UAV - lecture 10 Zdobyslaw Goraj

29

Influence of Mach

number on ceiling

parameter for high

altitude transonic

airfoils

Page 30: UAV - lecture 10 Zdobyslaw Goraj

30

Hinge moments for

high altitude

transonic airfoils

Page 31: UAV - lecture 10 Zdobyslaw Goraj

31

Two-segment wing section & associated

pressure distribution

Page 32: UAV - lecture 10 Zdobyslaw Goraj

32

Influence of surface roughness & bugs

(insects) on aerodynamic characteristics

Page 33: UAV - lecture 10 Zdobyslaw Goraj

33

How wing thickness does change along

wing span on example of HERON

Page 34: UAV - lecture 10 Zdobyslaw Goraj

34

Wing section configuration best suited to the

mission segment

Page 35: UAV - lecture 10 Zdobyslaw Goraj

35

Extra space for fuel FT (Fuel Tank – Extended)

Page 36: UAV - lecture 10 Zdobyslaw Goraj

36

Wing section FT/EX – pressure distribution

& lift coefficient (Fuel Tank – Extended)

Page 37: UAV - lecture 10 Zdobyslaw Goraj

37

Endurance coefficient dependant on parasite

drag due to external containers

Page 38: UAV - lecture 10 Zdobyslaw Goraj

38

Altitude Factor:

M2 CL

pTR

pa

s

,

where: R = cp - cv – perfect gas constant (= 287 J/(kg K)); = 1,4 (raio

of specific heats)

From equilibrium of lift and weight one has:

LL CqS

QorazCSqQ

and hence

2

2222

2

2 2

2

1

2

1

aS

QCMorazaCMaC

a

V

S

QLLL

and

LLL CMpp

CMaCMS

Q 2222

2

1

2

1

2

1

or

LL CMSTRCMSpQ 22 )(2

1

2

1

From the above equation one can see that the higher

altitude (and lower pressure) the higher „altitude factor”

M2 CL

Page 39: UAV - lecture 10 Zdobyslaw Goraj

39

How one can improve the altitude factor: M2 CL

Altitude factor can be increased either due to:

1. Altitude increase (p will decrease and T*

decrease also)

2. Wing loading (Q/S) increase

Page 40: UAV - lecture 10 Zdobyslaw Goraj

40

Flight at high altitudes (1/2) Smaller S means higher W/S

at the same altitude

The bigger drag of external containers, the higher lift coefficient CL (at loiter)

S

Q

pCM L

122

Page 41: UAV - lecture 10 Zdobyslaw Goraj

41

Flight at high altitudes (2/2)

Smaller weight; V=constant;

Flight altitude increases

Smaller weight; smaller speed;

Flight altitude = constant Smaller Re; V=constant;

Flight altitude increases

Smaller Re; smaller speed;

Flight altitude = constant S

Q

pCM L

122