twisted amides: not your typical amide bond

81
Twisted Amides: Not Your Typical Amide Bond Sarah E. Marshall Michigan State University September 10, 2008

Upload: others

Post on 12-Sep-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Twisted Amides: Not Your Typical Amide Bond

Twisted Amides: Not Your Typical Amide Bond

Sarah E. MarshallMichigan State UniversitySeptember 10, 2008

Page 2: Twisted Amides: Not Your Typical Amide Bond

Two important questions:

What makes an amide bond so stable?

• If amide bonds are so stable, then how do peptidases cleave them?

Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6106-6109.

Hydrolysis of Amide Bonds

If carboxypeptidase B is added to the solution at 23˚C, the t1/2 = 2.91 ms for the hydrolysis of acetylglycilglycine

H3C NH

HN OH

O

O

O

H3C NH

H2N OH

O

O

OOHt1/2 = 500 years

pH = 6.8, 25˚C

Page 3: Twisted Amides: Not Your Typical Amide Bond

Ishida, H. Z. Naturforsh. 2000, 55a, 769-771. D.R. Lide, Editor, CRC Handbook of Chemistry and Physics (3rd electronic ed.), CRC Press, Boca Raton, FL (2000).

Stability of Amide Bonds

Comparison of Bond Lengths

R2NR3

O

R1 R2NR3

O

R1

H3CH2C NH2

1.470 ÅH3C

O

NH2

1.380 Å

O

CH3H3C

1.213 Å1.220 Å

O

R1

R2

R3NnN π∗COC O C

R1

R2

R3N

Page 4: Twisted Amides: Not Your Typical Amide Bond

Eliel E.L. and Wilen, S.H. In Stereochemistry of Carbon Compounds, Wiley-Interscience, New York, 2000.Kirby, A.J.; Komarov, I.R.; Feeder, N. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Twist-angle distribution of tertiary amides in the Cambridge

Crystallographic Database (CCDB) on 20th September

2000. Data for 9098 groups from 5641 accurate structures.

Twist angle (τ):

Planarity of Amide Bonds

(ωC4-C3-N-C2 + ωO-C3-N-C1)2

τ =

1CN

2C

3CO

4C 2C

1C

3C

O

4C

Page 5: Twisted Amides: Not Your Typical Amide Bond

Fundamentals of Twisted Amides

Cos, J.D.; Pilcher, G. Thermohemistry of Organic and Organometallic Compounds; Academic Press: New York, 1970.The Amide Linkage Selected Structural Aspects in Chemistry Biochemistry, and Materials Science (Eds.: Greenberg, A.; Breneman, C.M.; Liebman, J.F), Wiley Interscience, 2000, 215-217.

∆G = 19.1 to 21.5 kcal/mol for E/Z isomerization (180˚ twisting)

120˚ Bond Angles,Planar

τ = +/- 90˚R3N

R2

O

R1R3N

R2

O

R1 N R3R2

O

R1

Intramolecular Steric Repulsion

Intramolecular Steric Restriction

Intermolecular Interaction

R1 N R3

R2

O

N R3R2

O

R1N

O

p

q

r

Page 6: Twisted Amides: Not Your Typical Amide Bond

Bredtʼs Rule-in a bicyclic system, it is not possible to have a double bond at the bridgehead carbon unless the alkene

is part of a large ring

1* 2* 3*Represent forbidden isomers of norbornene

Fundamental Principle of Twisted Amides - Bredtʼs Rule

J. Bredt, H. Thouet and J. Schnitz Liebigs Ann. 1924, 437, 1.

Page 7: Twisted Amides: Not Your Typical Amide Bond

It is possible to generate a twisted amide by

placing a nitrogen at the bridgehead of a bicyclic

system.

These molecules are known as anti-Bredt

molecules.

Fundamental Principle of Twisted Amides - Bredtʼs Rule

N

NH

O

O

NH

O

N

N

O

O

N

O

H

Page 8: Twisted Amides: Not Your Typical Amide Bond

Hybridization of Nitrogen in Twisted Amides

NO

N

O

sp3

sp3sp2

sp2

NO

N

O

Page 9: Twisted Amides: Not Your Typical Amide Bond

Examples of Twisted Amides

Sheehan, K.R. and Henery-Logan, K.R. J. Am. Chem. Soc. 1959, 81, 3089-3094.Kirby, A.J.; Komarov, I.R.; Feeder, N. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.Somayaji, V.; Brown, R.S. J. Org. Chem. 1986, 51, 2676.Blackburn, G.M.; Skaife, C.J.; Kay, I.T. J. Chem. Res. 1980, 3650-3669.Bashore, C.G.; Samardjiev, I.J.; Bordern, J.; Coe, J.W. J. Am Chem. Soc. 2003 125, 3268-3272.

Penicillin 2-Quinuclidone 1-Aza-2-Adamantanone

NMeMe O N O

N

MeMeMe

O

N

S

OCO2H

NO

HNR

O

N OBenzo-1-Aza-Adamantane 2,2-dimethylquinuclidin-7-one Benzoquinuclidin-2-one

Page 10: Twisted Amides: Not Your Typical Amide Bond

What is penicillin?

Antibiotic effective against bacterial infections,usually gram-positive bacteria

Discovered by Sir Alexander Fleming in 1928

Harold Raistrick tried to isolate penicillin but found it to be quite unstable

In 1939, Robert Florey, Ernst Chain, and Sir William Dunn turned to penicillin research as a laboratory curiosity

In the early 1940ʼs, penicillin production started in the U.S.

In June of 1942, there was only enough penicillin in the United States to treat 10 patients

http://www.biology.ed.ac.uk/research/groups/jdeacon/microbes/penicill.htmThe Chemistry of Penicillin (Eds.: H.T. Clark, J.R. Johnson, R. Robinson), Princeton University Press, Princeton, 1949, 440.The Amide Linkage Selected Structural Aspects in Chemistry Biochemistry, and Materials Science (Eds.: Greenberg, A.; Breneman, C.M.; Liebman, J.F), Wiley Interscience, 2000, 157-162.

Penicillin-A Turning Point in the History of Twisted Amides

Page 11: Twisted Amides: Not Your Typical Amide Bond

Side Products and Proposed Structures for Penicillin

The Chemistry of Penicillin (Eds.: H.T. Clark, J.R. Johnson, R. Robinson), Princeton University Press, Princeton, 1949, 1-5.

N

O NH

S

O

R

CO2H

CH3CH3

N

S

O

CH3

CH3

CO2H

HNR

O

ThiazolidineoxazoloneRobert Robinson

β-Lactam StructureRobert Woodward

Penicillamine Penillic AcidPenicilloic Acid

NH

S

O

CH3CH3

CO2H

NHR

O

OHN

S CH3CH3

CO2H

HO O

HN

R

HSH3C

CH3 O

OHNH2

O

OHNH

O

O

H

N-(2-oxoethyl)-2-phenylacetamide 2-phenylacetic acid

Page 12: Twisted Amides: Not Your Typical Amide Bond

Crystal Structure of PenicillinThe crystal structure of penicillin was obtained in 1945 by Dorothy Hodgekin.

CP, p 7.

Page 13: Twisted Amides: Not Your Typical Amide Bond

Degradation of Penicillin to Penicilloic Acid

Penicilloic Acid

The Chemistry of Penicillin (Eds.: H.T. Clark, J.R. Johnson, R. Robinson), Princeton University Press, Princeton, 1949, 445.

N

S

OCO2H

HNR

O

H2O

NH

S

OCO2H

HNR

O

OH

NH

S

HO CO2H

HNR

OO

NH

S

CO2H

NHR

OO

OH

Page 14: Twisted Amides: Not Your Typical Amide Bond

Degradation of Penicillin to Penillic Acid

N

S

CO2H

O

O

NH

RN

S

CO2H

HOO

HN

R

NH

S

CO2H

O

NH

O

RN

S

CO2H

O

O

NH

R H

-H

Penillic Acid

The Chemistry of Penicillin (Eds.: H.T. Clark, J.R. Johnson, R. Robinson), Princeton University Press, Princeton, 1949, 445.

N

S

OCO2H

HNR

OH2O

N

S

OCO2H

HNR

OH

O

HN

NH

S

CO2HO

R

Page 15: Twisted Amides: Not Your Typical Amide Bond

Hydrolysis and Administration of Penicillin

Benedict, R.G.; Schmidt, W.H.; Coghill, R.D.; Oleson, A.P. J. Bacteriol., 1945, 49, 85-95.Golden, M.J.; Neumeier, F.M. Science, 1946, 104, 102-104.

t1/2=240 hrs

pH=7, 24˚CN

S

OCO2H

HNR

ONo Antibiotic Reactivity

Facts about administration of penicillin:Must be stored in the refrigeratorUsually given as an intravenous or intramuscular injectionOral administration of penicillin is acceptable if it is given with antacids or buffers

Page 16: Twisted Amides: Not Your Typical Amide Bond

Mode of Action of Penicillin

The Amide Linkage Selected Structural Aspects in Chemistry Biochemistry, and Materials Science (Eds.: Greenberg, A.; Breneman, C.M.; Liebman, J.F), Wiley Interscience, 2000, 340-341.

Peptidoglycan is a polymer which forms a mesh-like layer on the plasma membrane of eubacteria.

Penicillin binding proteins or transpeptidases form the oligopeptide bonds which cross link the peptidoglycans.

Penicillin inhibits cell wall synthesis by preventing the cross linking of the sugar polymers, which leads to lysing of the cell.

N-acetyl muramic acid (MurNAc)

N-acetylglucosamine (GlcNAc)

Peptide cross-links

Page 17: Twisted Amides: Not Your Typical Amide Bond

Mechanism of Cross-linked Peptidoglycan Formation

Erlanger, B.F.; Goode, L. Nature, 1967, 213, 183-184.

O

B

ONH2

H3CO

OH

O

B H

ONH

H3CO

OH

O

B

ONH2

H3CO

OH

NH2H3C

OOH

O

B

O

O

NH2H3C

O

B

O

O

HNH3C

O

O

HNH3C

O

B

Transpeptidase Peptidoglycan A

Peptidoglycan B

Cross-linked Peptidoglycan

O

B

ONH2

H3CO

OH

Page 18: Twisted Amides: Not Your Typical Amide Bond

Structural Resemblance of D-alanyl-D-alanine to Penicillin

NHPeptidoglycan

O

HN

O HCO2HHH3C

CH3

NHR

ON

O

S

H

CH3CH3

CO2H

Erlanger, B.F.; Goode, L. Nature, 1967, 213, 183-184.

Page 19: Twisted Amides: Not Your Typical Amide Bond

Mode of Action of Penicillin

NH

S

OCO2H

NHR

OO

B

HNS

O

HO2C

NHR

O

O

B

Transpeptidase

HNS

O

HO2C

NHR

OO

B

Erlanger, B.F.; Goode, L. Nature, 1967, 213, 183-184.

Page 20: Twisted Amides: Not Your Typical Amide Bond

Sheehan, K.R. and Henery-Logan, K.R. J. Am. Chem. Soc. 1959, 81, 3089-3094.

The First Synthesis of Penicillin

N

O

OO

OO

AcONaHS

NH2•HCl

O

OHN

O

OO

O

HNS

HO2C

EtOH (aq) 24%

1. N2H4

2. aq. HCl82%

NH2•HCl

O

O

HNS

HO2C

Et3N, 70%

OPhO

ClHN

O

O

HNS

HO2C

O

OPh

Page 21: Twisted Amides: Not Your Typical Amide Bond

Sheehan, K.R. and Henery-Logan, K.R. J. Am. Chem. Soc. 1959, 81, 3089-3094.

The First Synthesis of Penicillin

Penicillin

HN

O

O

HNS

HO2C

O

OPh

2. C5H5NAcetone/H2OQuantitative

1. KOH (1 eq.)1. aq. HCl

2. DCC10-12%

HN

HO

O

HNS

HO2C

O

OPh

HNO

NSHO2C

O

OPh

Page 22: Twisted Amides: Not Your Typical Amide Bond

Conclusions - Penicillin

N

S

OCO2H

HNR

O

Penicillin

The crystal structure revealed the fused β-lactam ring structure

The increased reactivity of β-lactams, and twisted amides in general, was recognized in deriving the structure of penicillin

Page 23: Twisted Amides: Not Your Typical Amide Bond

Kirbyʼs Most Twisted Amide

1-aza-2-adamantanone

Kirby, A.J.; Komarov, I.R.; Feeder, N. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

H3CH3C

CH3

N O

=

Page 24: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Kirbyʼs Most Twisted Amide

(ωC4-C3-N-C2 + ωO-C3-N-C1)2

τ =

1CN

2C

3CO

4C 2C

1C

3C

O

4C

90.52.5Twist Angle τ (in ˚)

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 25: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Kirbyʼs Most Twisted Amide

The sum of the bond angles at the carbonyl carbon are used as a control

Sum of bond angles at the carbonyl carbon (in ˚)

359.9359.9

O

NN R3O

R3R1

R2R2R1

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 26: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Kirbyʼs Most Twisted Amide

Sum of bond angles at N (in ˚) 325.7358.9

The sum of the bond angles at nitrogen refers to its degree of pyramidalization

R4

R1

R3R2

R1R2R3

109.5˚120˚

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 27: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Kirbyʼs Most Twisted Amide

The sum of the bond angles at the carbonyl carbon are used as a control

Sum of bond angles at the carbonyl carbon (in ˚)

359.9359.9

O

NN R3O

R3R1

R2R2R1

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 28: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Kirbyʼs Most Twisted Amide

Bond Length C-N (in Å) 1.4751.325

Bond Length C-O(in Å) 1.1961.233

O

NN R3O

R3R1

R2R2R1

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 29: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of Twisted Amides

Sum of bond angles at N (in ˚)

Twist Angle τ (in ˚)

325.7358.9

Sum of bond angles at C=O (in ˚) 359.9359.9

90.52.5

Bond Length C-N (in Å) 1.4751.325

Bond Length C-O(in Å) 1.1961.233

A B

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

H3CH3C

CH3

N ON OCH3

Page 30: Twisted Amides: Not Your Typical Amide Bond

IR Stretching Frequency of the Carbonyl in Kirbyʼs Most Twisted Amide

O O O

R EW R R R ED

*R = alkyl, EW = electron withdrawing, ED = electron donating

Higher υ υ ~ 1715 cm-1 Lower υ

N

CH3H3CH3C

ON OCH3 O

1732 cm-11653 cm-1 1720 cm-1

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

Page 31: Twisted Amides: Not Your Typical Amide Bond

13C NMR Chemical Shifts of Kirbyʼs Most Twisted Amide

Local diamagnetic shielding - this shielding is contributed to the isotropic circulation of electrons around the nucleus

200 ppm

165 ppm

218 ppm

13C NMR of C=O

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

N

CH3H3CH3C

O

N OCH3

N OCH3

O

N

CH3H3CH3C

O

O

Page 32: Twisted Amides: Not Your Typical Amide Bond

Ionization Potential of Kirbyʼs Most Twisted Amide

Ionization Potential - the amount of energy required to remove an electron from an isolated molecule or ion

8.30 eV n(N)9.36 eV n(O) 7.57 eV

NN

CH3H3CH3C

ON OCH3

* 1 eV = 1.602 x 10-19 J

Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

Page 33: Twisted Amides: Not Your Typical Amide Bond

IR υC=O (cm-1) 17321653

δ 13C C=O (ppm) 200165

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

First IP (eV) 8.30n (N)9.36 n (O)

Spectral Characteristics of Kirbyʼs Most Twisted Amide

A B

N

CH3H3CH3C

ON OCH3

Page 34: Twisted Amides: Not Your Typical Amide Bond

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Unique Reactivity of Kirbyʼs Most Twisted Amide

Most Reactive

X = Cl, Br

Least Reactive

HO(CH2)3OH

benzene, TsOHreflux, 48 h 55.9%

H3CH3C

CH3

N OO

O

R X

O

R O

O

R OR'O

RO

R OH

O

R NH2

O

R R

O

R H> > > > >

H3CH3C

CH3

N O

Page 35: Twisted Amides: Not Your Typical Amide Bond

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Unique Reactivity of Kirbyʼs Most Twisted Amide

Most Reactive

X = Cl, Br

Least Reactive

H3CH3C

CH3

NPh3P=CH2

Et2Oreflux, 8 h64.3%

H3CH3C

CH3

N O

O

R X

O

R O

O

R OR'O

RO

R OH

O

R NH2

O

R R

O

R H> > > > >

Page 36: Twisted Amides: Not Your Typical Amide Bond

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Unique Reactivity of Kirbyʼs Most Twisted Amide

Most Reactive

X = Cl, Br

Least Reactive

CH2Cl2 quantitative

H3CH3C

CH3

N OCH3BF4

(CH3)3O BF4

O

R X

O

R O

O

R OR'O

RO

R OH

O

R NH2

O

R R

O

R H> > > > >

H3CH3C

CH3

N O

Page 37: Twisted Amides: Not Your Typical Amide Bond

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Unique Reactivity of Kirbyʼs Most Twisted Amide

Most Reactive

X = Cl, Br

Least Reactive

TsOH in dry

CD3CN H3CH3C

CH3

HN OTsO

H3CH3C

CH3

N O

O

R X

O

R O

O

R OR'O

RO

R OH

O

R NH2

O

R R

O

R H> > > > >

Page 38: Twisted Amides: Not Your Typical Amide Bond

pKa of Kirbyʼs Most Twisted Amide

*Calculated using Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (c. 1994-2008 ACD/Labs)Kirby, A.J.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Kirby, A.J.; Komarov, I.V.; Kowski, K.; Radeacher, P. J. Am. Chem. Soc., 1998, 120, 7101.Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 8658-8668.

5.23 10.38

O

NH2HH O

NH2H

pKa= 0.12

H3CH3C

CH3

N O H

H3CH3C

CH3

N OH

pKa= 4.8

H

-2.92 (+/- 0.20)*

NHNCH3H

HNCF3

pKa Values for Various Amines

Page 39: Twisted Amides: Not Your Typical Amide Bond

Kirby, A.J.; Komarov, I.R.; Feeder, N. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Synthesis of Kirbyʼs Most Twisted Amide

H2O, acetone30 min, 86.3%

KMnO4

H3C

H3C

CH3

CO2HNAc

1.5 M HCl

reflux 24 hr 84.6% H3C

H3C

CH3

CO2

NH2 Sublimation

80˚C, 0.01 mmHg100%

H3C

H3C

CH3

N O

H3C

H3C

CH3

HO2CCO2H

CO2H

2) SOCl2, then MeOHH3C

H3C

CH3

CO2MeNHO

O LiAlH4 in Et2O,

H3C

H3C

CH3

NH OH

reflux, 24 hr 81.6 % since SM

2) CrO3•2PyCH2Cl2, 30 min74.3%

H3C

H3C

CH3

CHONAc

1) NH3, DMAP (cat.)reflux, 24 hr

1) Ac2O, MeOH 8 hr, 82%

Page 40: Twisted Amides: Not Your Typical Amide Bond

H3C

H3C

CH3

N O H2O

H3C

H3C

CH3

CO2NH2 H+

H3C

H3C

CH3

HN OH

OH

<30s

21 3

42 3

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Am. Chem. Soc. 1998, 120, 7101-7102.

Hydrolysis of Kirbyʼs Most Twisted Amide

H3C

H3C

CH3

CO2NH2

H3C

H3C

CH3

HN OH

OH

H3C

H3C

CH3

N OOH

H

+ H

- H

Page 41: Twisted Amides: Not Your Typical Amide Bond

Methyl Effects on Hydrolysis Rates

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Am. Chem. Soc. 1998, 120, 7101-7102.

H3C

H3C

CH3

NOH

H3C

H3C

CH3

CO2NH2 OH

O

CH3H3C

H3C

NH

OH

H

H

CH3

CO2NH2 OH

O

CH3H

H

NH

H

H

CH3

NOH

OH

Page 42: Twisted Amides: Not Your Typical Amide Bond

Methyl Effects on Hydrolysis Rates

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Am. Chem. Soc. 1998, 120, 7101-7102.

H3C

H3C

CH3

NOH

H3C

H3C

CH3

CO2NH2 OH

O

CH3H3C

H3C

NH

OH

Page 43: Twisted Amides: Not Your Typical Amide Bond

Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6106-6109.Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.

Hydrolysis of Kirbyʼs Twisted Amide

Hydrolysis of peptide bonds:

Hydrolysis of peptide bonds using carboxypeptidase B:

Hydrolysis of 1-aza-2-adamantanone:

H3C NH

HN OH

O

O

O

H3C NH

H2N OH

O

O

OOHt1/2 = 2.91 ms

pH = 8, 23˚Ck = 238 s-1

H3C NH

HN OH

O

O

O

H3C NH

H2N OH

O

O

OOHt1/2 = 500 years

pH = 6.8, 25˚Ck = 4.4 x 10-11

H3CH3C

CH3

N O

H3CH3C

CH3

CO2NH2

t1/2 = 2.48 ms

pH = 7, 60˚Ck = 280 s-1

Page 44: Twisted Amides: Not Your Typical Amide Bond

Conclusions - Kirbyʼs Most Twisted Amide

1-aza-2-adamantanone

Structural and spectroscopic properties are uniqueReactivity resembles an amino ketone

The nitrogen in the twisted amide is more basic than the oxygenThe buttressing methyl effects make the amide artificially stabilized

Hydrolysis rates of the twisted amide resemble the hydrolysis rates of enzymatic peptide bond cleavage

H3CH3C

CH3

N O

Page 45: Twisted Amides: Not Your Typical Amide Bond

2-quinuclidone

The Legendary Twisted Amide - 2-Quinuclidone

1938 - Lukeš designs 2-quinuclidone

1941 - Robert Woodward gives the synthesis of 2-quinuclidone to Harry Wasserman

1957 - Yakhontov publishes the first synthesis of 2-quinuclidone

1965 - Pracejus attempts to use Yakhontovʼs method to synthesize 2-quinuclidone and fails to isolate the product, calling the first synthesis into question

Late 1990s - Stoltz first learns of 2-quinuclidone

2006 - Tani and Stoltz publish the first synthesis of 2-quinuclidone as its tetrafluoroborate salt

Wasserman, H.W. Nature. 2006, 441, 699.

NO

Page 46: Twisted Amides: Not Your Typical Amide Bond

Yakhontov, L.N.; Rubsitov, M.V. J. Gen Chem. USSR, 1957, 27, 83-87.

The First Published Synthesis of 2-Quinuclidone

30 min, 50-55˚C

SOCl2

N

O OH

N

O Cl•HClCH2N2

Et2O48 hr, r.t

N

O CH2N2 Ag2O, EtOH

1.5 hr, 65˚C37% over 3 steps

NH

O

OEt

NH•HCl

O

OH

HCl (aq)93.7%

N

O

OEt

Pt, H2

EtOH24 hr100%

NH

O

Cl

NO

SOCl260˚C, 4 hr

K2CO3

CHCl3

Page 47: Twisted Amides: Not Your Typical Amide Bond

Pracejusʼs Findings

NH•HCl

O

OH

NH

O

Cl

NO

SOCl260˚C, 4 hr

K2CO3

CHCl3

Unable to isolate the pure product

Pracejus, H.; Kehlen, M.; Kehlen, H.; Matschiner, H. Tetrahedron, 1965, 21, 2257-2270.

NO

H3C

CH3

H H

NO

H3C

CH3

H CH3

NO

H3C

CH3

H3C H

NO

H3C

CH3

H3C CH3

Page 48: Twisted Amides: Not Your Typical Amide Bond

Pracejusʼs Findings

Not IsolatedPracejus, H.; Kehlen, M.; Kehlen, H.; Matschiner, H. Tetrahedron, 1965, 21, 2257-2270.

HN HNR3

R3

R3

R3O2C

CO2

R2

HR1

R1R2

NO

H3C

CH3

H H

NO

H3C

CH3

H CH3

NO

H3C

CH3

H3C H

NO

H3C

CH3

H3C CH3

NO

H

H

H H

Page 49: Twisted Amides: Not Your Typical Amide Bond

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

Synthesis of 2-Quinuclidonium Tetrafluoroborate

NO

NOHN2

O

N3

Schmidt-Aubé

Reaction

Page 50: Twisted Amides: Not Your Typical Amide Bond

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

Synthesis of 2-Quinuclidonium Tetrafluoroborate

HO

OH

TsCl, Et3N

CH2Cl2, 20˚C74%

HO

OTsDMF, 70˚C92%

NaN3HO

N3

O m-CPBA, NaHCO3

CH2Cl2, 20˚C79%

O

O

LiAlH4

Et2O, 20˚C98%

Page 51: Twisted Amides: Not Your Typical Amide Bond

Mechanism of the Schmidt-Aubé Reaction Used in the Synthesis of 2-Quinuclidonium Tetrafluoroborate

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

O

NNNH

O

NNN

H

N

HO

N N

NHO

N2

NOH

N2

H+ Transfer

H+ Transfer

NHO

NH

O

N

HO

N N

Page 52: Twisted Amides: Not Your Typical Amide Bond

Synthesis of 2-Quinuclidonium Tetrafluoroborate

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

HO

N3

DMP

CH2Cl2, 20˚C93%

O

N3

TFA

60˚C3 hr

NH

NH

O O

MeOH

NH

CO2Me (Boc)2ONaHCO3

N

CO2Me

Boc

56%

N

CO2Me

Boc34%

CHCl3•H2ONH

CO2Me

TfO TfO

Page 53: Twisted Amides: Not Your Typical Amide Bond

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

Optimization of Schmidt-Aubé Reaction

NH

NH

O O

MeOH

NH

CO2Me (Boc)2ONaHCO3

N

CO2Me

Boc56%

N

CO2Me

Boc34%

CHCl3•H2ONH

CO2Me

TfO TfO

O

N3

HBF4

Et2O, 20˚CNH

NH

O O

76% Yield 24% Yield

Recrystallization from CH3CN-Et2O38% Yield N

HOBF4

BF4 BF4

O

N3

TFA

60˚C3 hr

Page 54: Twisted Amides: Not Your Typical Amide Bond

Attempts to Generate the Free-Base of 2-Quinuclidonium Tetrafluoroborate

Attempts to observe the free base of 2-quinuclidonium tetrafluoroborate salt resulted in the formation of polymeric

materialTani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

n

N O

OH

H

NO

NH

OBF4

NH

OBF4

Page 55: Twisted Amides: Not Your Typical Amide Bond

Structural Characteristics of 2-Quinuclidonium Tetrafluoroborate

Sum of bond angles at N (in ˚)

Twist Angle τ (in ˚)

325.7358.9

Sum of bond angles at C=O (in ˚) 359.9359.9

90.52.5

Bond Length C-N (in Å) 1.4751.325

Bond Length C-O(in Å) 1.1961.233

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

A B C

90.9

328.4

360.0

1.526

1.192

N

CH3H3CH3C

ON OCH3

NH

OBF4

Page 56: Twisted Amides: Not Your Typical Amide Bond

17321653

δ 13C C=O (ppm) 200165 175.9

1822

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Ali, M.H.; Syn. Commun. 2006, 36, 1761-1767.

Spectral Characteristics of 2-Quinuclidonium Tetrafluoroborate

A B C

IR υC=O (cm-1)

N

CH3H3CH3C

ON OCH3

NH

OBF4

Page 57: Twisted Amides: Not Your Typical Amide Bond

Hydrolysis of 2-Quinuclidonium Tetrafluoroborate

Kirby, J.A.; Komarov, I.V.; Feeder, Neil. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

H3CH3C

CH3

N O

H3CH3C

CH3

CO2NH2

t1/2 = 2.48 ms

pH = 7, 60˚Ck = 280 s-1

NH

OBF4

t1/2 <15 s

pH = 7, rtNH2

CO2H

HBF4

Page 58: Twisted Amides: Not Your Typical Amide Bond

Conclusions - 2-Quinuclidonium Tetrafluoroborate Salt

The carbonyl of 2-quinuclidonium tetrafluoroborate salt has a partial triple bond character

2-quinuclidone as the free-base may be too reactive to be isolated as pure compound

More precise hydrolysis rates should be determined

Tani, K. and Stoltz, B.M. Nature, 2006, 441, 731-734.

NH

OBF4

NH

OBF4 δ

δNO

Page 59: Twisted Amides: Not Your Typical Amide Bond

Theoretical Study for Basicity of Twisted Amides

Violates Bredtʼs RuleIsolable Compound

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.

2.2.2 System3.3.1 System

N NOO

Page 60: Twisted Amides: Not Your Typical Amide Bond

Sum of bond angles at N (in ˚)

Twist Angle τ (in ˚)

327.1340.1

Sum of bond angles at C=O (in ˚)

360.0359.8

90.012.1

Bond Length C-N (in Å)

1.4331.386

Bond Length C-O (in Å)

1.1831.196

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.Kirby, A.J.; Komarov, I.V.; Kowski, K. Rademacher, P. J. Chem. Soc., Perin Trans. 2, 1999, 1313.

Theoretical Study for Basicity of Twisted Amides

*All values were calculated using HF/6-31G* calculations

CB

358.9

359.9

2.5

1.325

1.233

N OCH3

A

N NOO

Page 61: Twisted Amides: Not Your Typical Amide Bond

NO

NO

Total Energies (au) Calculated for Optimized Structures

NO

NO

Resonance Energy (RE)

RE = -11.8 kcal/mol

=

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.

439.836323 366.117251 423.841924 350.141642

*All values were calculated using HF/6-31G* calculations

*1 au = 627.5 kcal/mol

Resonance Energy of the 3.3.1 System

Page 62: Twisted Amides: Not Your Typical Amide Bond

Total Energies (au) Calculated for Optimized Structures

Resonance Energy (RE) =

RE = -0.9 kcal/mol

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.

*All values were calculated using HF/6-31G* calculations

400.782023 327.078799 384.805384 311.103598

Resonance Energy of the 2.2.2 System

*1 au = 627.5 kcal/mol

NO

NO

NO

NO

Page 63: Twisted Amides: Not Your Typical Amide Bond

0.342227

Relative Energy Differences (au) Calculated for Optimized Structures

0.000000 0.0000000.363951 0.3805890.359971

238.8228.4 214.7226.5

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.

Proton Affinity Values (kcal/mol)

Proton Affinity Values

*All values were calculated using HF/6-31G* calculations

Proton Affinity: the measure of a moleculeʼs gas phase basicity

*1 au = 627.5 kcal/mol

NH

O

NO H

NH

O

NO

H

NO

NO

NH

O

NO H

NH

O

NO

H

Page 64: Twisted Amides: Not Your Typical Amide Bond

Various Proton Affinity Values

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.Hunter, E.P.; Lias, S.G. J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656.  DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., J. Am. Chem. Soc., 1989, 111, 1968. 

227.6

238.8 kcal/mol228.4 kcal/mol 214.7 kcal/mol226.5 kcal/mol

194.0 234.7

Proton Affinity Values (in kcal/mol)

196.5

NH

O

NO H

NH

O

NO

H

218.0

O

NH2HH3C N

H2CH3

HOH

NH3

HN CH3

H3C

CH3

H3C

Page 65: Twisted Amides: Not Your Typical Amide Bond

Relative Energies of N vs. O protonated Amides

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.Kim, K.S.; et al. J. Org Chem. 1997, 62, 4068-4071.

H

O

NH3 H

O

NH2

H

-24.1 kcal/mol-1.9 kcal/mol

NH

O

NO H

NH

O

NO

H

Relative Energies of Protonated Planar Amides calculated using the 6-31G+** Basis Set (in kcal/mol)

0.016.0

238.8 kcal/mol228.4 kcal/mol 214.7 kcal/mol226.5 kcal/mol

Page 66: Twisted Amides: Not Your Typical Amide Bond

Conclusions - N vs. O Protonation in Twisted Amides

Greenberg, A.; Moore, D.T.; DuBois, T.D. J. Am. Chem. Soc. 1996, 118, 8658-8668.

NO

NO

RE = -0.9 kcal/mol

NR1

R2

O

R3

RE = -20 kcal/molNR1

R2

O

R3 NR1

R2

OH

R3

HN

R1 R2

O

R3H

NOH

NOH

NO

NO

NOH

RE = -11.8 kcal/molN

OH

H

H

H

H

H

Page 67: Twisted Amides: Not Your Typical Amide Bond

Applications of Twisted Amides

N

O

RLiAlH4

H

O

R

O

NH

HN

R1

R2

O

peptidaseNH

HN

R1

R2

O

OHN

R1 HO

N R2

OHN

R1 OH2N

R2

OH= Polypeptide

O

Page 68: Twisted Amides: Not Your Typical Amide Bond

Synthesis of Aldehydes

O

R2DIBAL-H

R2R1O H

O

-78˚C

O

R4Reducing Agent

R4R3OR3 = H or alkyl

HOOxidizing Agent

H

O

R4

R1 = alkyl

Page 69: Twisted Amides: Not Your Typical Amide Bond

Hydrolysis of 2-Quinuclidonium Tetrafluoroborate

R1 NR2

O

R3 R1 NR2

O

R3

R1NR2

O

R3LiAlH4 R1

NR2

R3

O

R5LiAlH4

R5R4OR4 = H or alkyl

HO

Most Reactive

X = Cl, Br

O

R X

O

R O

O

R OR'O

RO

R OH

O

R NH2

O

R R

O

R H> > > > >

Least Reactive

Page 70: Twisted Amides: Not Your Typical Amide Bond

Hydrolysis of 2-Quinuclidonium Tetrafluoroborate

Mechanism:

Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1961, 83, 4549-4552..

N

O

R3LiAlH4

N R3R1

R2R1

R2

N

O

R3R1

R2

HN

O

R3R1

R2H

AlH3

N R3R1

R2

HN R3R1

R2

Mechanism:

N

O

RLiAlH4

H

O

R

N

O

RH

N

O

RH

H2ON

O

RHH

O

H RNH

AlH3

Page 71: Twisted Amides: Not Your Typical Amide Bond

How do peptidases cleave peptide bonds?

There are several biological processes that involve the cleavage of peptide bonds

Actual cleavage may go through a twisted amide transition state

Various publications have shown mixed results

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

H3C NH

HN OH

O

O

O

H3C NH

H2N OH

O

O

OOHt1/2 = 500 years

pH = 6.8, 25˚Ck = 4.4 x 10-11

O

NH

S

N'-Protein C'-Protein

H

O

SN'-Protein C'-Protein

NH2

t1/2 = 11.2 min

Page 72: Twisted Amides: Not Your Typical Amide Bond

How do peptidases cleave peptide bonds?

Brown, H. C.; Tsukamoto, A. J. Am. Chem. Soc. 1961, 83, 4549-4552.Kirby, A.J.; Komarov, I.R.; Feeder, N. J. Chem. Soc., Perkin Trans. 2, 2001, 522-529.Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118, 6106-6109.

H3C NH

HN OH

O

O

O

H3C NH

H2N OH

O

O

OOHt1/2 = 2.91 ms

pH = 8, 23˚Ck = 238 s-1

H3CH3C

CH3

N O

H3CH3C

CH3

CO2NH2

t1/2 = 2.48 ms

pH = 7, 60˚Ck = 280 s-1

t1/2=240 hrs

pH=7, 24˚CN

S

OCO2H

HNR

ONo Antibiotic Reactivity

Hydrolysis of 2-aza-adamantanone:

Hydrolysis of Penicillin:

Hydrolysis of peptide bonds using carboxypeptidase B:

Page 73: Twisted Amides: Not Your Typical Amide Bond

Mycobacterium xenopi DNA gyrase A

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

Page 74: Twisted Amides: Not Your Typical Amide Bond

Mycobacterium xenopi DNA gyrase A

N

HN

NH2

O

O

ON

H

SHR

HN

Protein

ProteinH

3.6

3.9

3.63.0

Asn74

His75

Thr72

Cys1

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

Page 75: Twisted Amides: Not Your Typical Amide Bond

General NMR ShiftsGeneral Effects of H-bonding on Amide N-H Chemical Shifts in H1 NMR:

O

R1 NR2H

O

R3

R4 O

R1 NR2H

O

R3

R4

General Effects of H-bonding on the Nitrogen Coupling Constants in 15N NMR:

Downfield shift of amide proton

Upfield shift of amide proton

O

R1 NR2H

O

R3

R4

Decreases the value of the

coupling constant

O

R1 NR2H

H O R3

Increases the value of the coupling

constant

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

Page 76: Twisted Amides: Not Your Typical Amide Bond

Evidence of a Twisted Transition State

ON

H

SHR

HN

Protein

Protein

Cys1H1 NMR Shift= 6.61 ppm

Cysteine amide hydrogen shifts in proteins are ~ 8.35 ppm

General effects of H-bonding on Chemical Shifts in 1H NMR:Short H-bonds result in downfield shifts of amide protonsLong H-bond lengths results in upfield shifts of amide protons

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

Page 77: Twisted Amides: Not Your Typical Amide Bond

Evidence of a Polarized Transition State

ON

H

SHR

HN

Protein

Protein

Cys11JNCʼ is 12.3 +/- 0.3 Hz

1JNCʼ for proteins are in the range of 13-17 Hz

General effects of H-bonding on Coupling Constants in 15N NMR:H-bonding to amide carbonyl increases the value of the coupling constantH-bonding to amide hydrogen decreases the value of the coupling constant

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

Page 78: Twisted Amides: Not Your Typical Amide Bond

Applying the NMR Data to a Proposed Transition State

Romanelli, A.; Shekhtman, A.; Cowburn, D.; Muir, T.W. Proc. Natl. Acad. Sci. 2004, 101, 6397-6402.

N

HN

NH2

O

O

ON

H

SHR

HN

Protein

ProteinH

3.6

3.9

3.63.0

Asn74

His75

Thr72

Cys1

N

HN

NH2

O

O

ON

H

SHR

HN

Protein

Protein

H

3.6

3.9

3.0

Asn74

His75

Thr72

Cys1

Page 79: Twisted Amides: Not Your Typical Amide Bond

The synthesis of three twisted amides have been highlighted, as well as their structural and spectroscopic characteristics.

The nitrogen and carbonyl of twisted amides react as separate functional groups, having similar reactivity to an amino-ketone.

Utilizing the behavior of twisted amides can lead to synthetic applications which may include the development of new methodologies.

Twisted amides may have a bright future in biological research since twisted amide transition states have been observed in the cleavage of peptide bonds.

Twisted Amides - Conclusions

Page 80: Twisted Amides: Not Your Typical Amide Bond

“These significantly different properties of twisted amides compared to planar ones suggest that the

highly twisted amides behave not like amides but like amino-ketones; therefore, it would be no exaggeration

to say that the twisted amide is a new functional group.”

The Amide Linkage Selected Structural Aspects in Chemistry Biochemistry, and Materials Science (Eds.: Greenberg, A.; Breneman, C.M.; Liebman, J.F), Wiley Interscience, 2000, 243.

Page 81: Twisted Amides: Not Your Typical Amide Bond

Prof. Babak BorhanProf. Ned JacksonAman K., Arvind, Atefeh, Calvin, Carmin, Camille, Chrysoula, Dan, Marina, Mercy, Roozbeh, Sing, Stewart, Toyin, Wenjing, Xiaoyong, XiaofeiKarrie Manes

Acknowledgements