tutorial yuj magnetism

Upload: manuel-pinzon

Post on 02-Mar-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Tutorial YuJ Magnetism

    1/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Introduction to Magnetism and Magnetic Materials

    Jaejun Yu

    School of Physics, Seoul National University

    [email protected]

    c2005 Jaejun Yu

    KIAS-SNU Physics Winter Camp

    5-18 January 2005

    mailto:[email protected]:[email protected]
  • 7/26/2019 Tutorial YuJ Magnetism

    2/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Abstract

    In this lecture,1

    I will give a brief introduction on a quantum mechanical view on mag-netism in real materials, especially, consisting of transition metal elements and their com-

    pounds, and the physical principles for the applications of magnetic materials as magnetic

    sensors and memory devices. Further, I will discuss the connection between magnetism

    and superconductivity in highTc superconductors as an example.

    1This lecture is support byKIASandSNU-CTP.

    http://www.kias.re.kr/http://ctp.snu.ac.kr/http://ctp.snu.ac.kr/http://ctp.snu.ac.kr/http://www.kias.re.kr/
  • 7/26/2019 Tutorial YuJ Magnetism

    3/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Contents

    1 What is all about condensed matter physics? 51.1 Macroscopic vs. microscopic objects . . . . . . . . . . . . . . . . . . . . . . . . 61.2 Most condensed matter systems are quantum mechanical by nature! . . . . . . 111.3 How do we approach the condensed matter system in order to understand the

    physics of ablack box? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4 Particle zoo in the condensed matter systems . . . . . . . . . . . . . . . . . . . 151.5 Energy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    2 Magnetism in Real Materials 192.1 Magnetic Storages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.2 Magnetic Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    3 A quantum mechanical view of magnets:

    Pauli exclusion principle and Coulomb interactions 34

    3.1 Sources of Magnetic Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    3.2 Magnetic Moment of an Atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.3 Magnetic Moments in Solids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.4 A Model for the Exchange Interactions in Solids . . . . . . . . . . . . . . . . . . 593.5 Transition Metal Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683.6 Magnetic Impurity in a Metal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

  • 7/26/2019 Tutorial YuJ Magnetism

    4/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4 Effective Hamiltonian and Phenomenological Theory 78

    4.1 Heisenberg Model: Mean Field Solution . . . . . . . . . . . . . . . . . . . . . . 78

    4.2 Order Parameters: Description of Phase Transition . . . . . . . . . . . . . . . . 804.3 Bragg-Williams Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814.4 Ginzburg-Landau Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854.5 Second-Order Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 864.6 correlation length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    5 Giant magnetoresistance (GMR) and magnetic sensors 90

    6 Magnetism and superconducitivity:

    HighTc superconductivity 107

    7 References 110

  • 7/26/2019 Tutorial YuJ Magnetism

    5/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1. What is all about condensed matter physics?

    ... How do we understand the physical properties of single particle systems in a classicalor quantum sense? In other words,what do we measure or observe?

    O

    x

    p

    ?

    ... In classical dynamics, the state of a single particle is determined by the observables {x(t),p(t)}. It canbe extended to the system with many particles where the state of the system is described by the set of

    observables {xi(t),pi(t)|i= 1, 2,...,N}. However, whenN 1025, it is practically impossible to tracethe orbits of all, even the part of, the particles. Here it is the point where the statistical physics comes into

    playing a role. Instead of following each individual particles, we measure a quantity by an (ensemble or

    time) average of the given quantities adopted in classical dynamics. In addition, now we have to deal withnew observables such as entropy, temperature, ....

    The same thing applies for the case of quantum systems. The only difference is the dynamics state of the

    quantum system is determined by a state vector |(x, t) for a single particle and |(x1,x2, ...,xN, t).

  • 7/26/2019 Tutorial YuJ Magnetism

    6/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1.1. Macroscopic vs. microscopic objects

    Observablesfor the macro object consisting of more than 1020

    particles:

    specific heatcv entropy, temperature bulk modulus or compressibility pressureP polarization P, magnetization M electro-magnetic field E, B reflectivity, color, conductivity, ... etc.

  • 7/26/2019 Tutorial YuJ Magnetism

    7/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    For an example, what physical property of the cube (or disk) makes this happen, i.e., acube float over a magnet against gravitation?

    (Hint: This is the phenomenon called magnetic levitation, which is mainly at-tributed to the Meisner effect of superconductors.)

  • 7/26/2019 Tutorial YuJ Magnetism

    8/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Observablesfor the micro or nano object of order 102 particles:

    conductanceG / electron tunneling current I force F magnetic Flux charge density distribution, electron cloud (bonding), ... etc.

  • 7/26/2019 Tutorial YuJ Magnetism

    9/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    an AFM image an STM image a LEED image

    What do we really see in these images?What physical quantities do they represent?

    An example of the SEM System:

  • 7/26/2019 Tutorial YuJ Magnetism

    10/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    MRI Image: What do we really see in this image?What physical quantity does it represent?

    (This is an image of our brain probed by using the technique of the nuclear magnetic

    resonance.)

  • 7/26/2019 Tutorial YuJ Magnetism

    11/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1.2. Most condensed matter systems are quantum mechanical by nature!

    p d

    Unfortunately, however, there is no quantum mechanical solution available except forfree (i.e., non-interacting) particle systems.

    An example of exactly solvable models:

    H = (a+a+1

    2)

    a+a|n =n|na|O = 0

  • 7/26/2019 Tutorial YuJ Magnetism

    12/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1.3. How do we approach the condensed matter system in order to understand

    the physics of ablack box?

    Experimental Methods:By disturbing the black box by phtons, phonons, electrons, and/or neutrons, try to get ahint on elementary excitations in the system.

    Theoretical Methods:By guessing possible elementary excitations and working out the QM equation of mo-tions, see if we can predict the physics of the system. If wrong, correct the model forthe elementary excitations for the better description.

    How to disturb the black box?

  • 7/26/2019 Tutorial YuJ Magnetism

    13/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Question: Measuring the dc resistance is a way of disturbing the system? What reallyhappens inside the black box when we apply a bias voltage?

    Current-Voltage curve of a YBCO highTc superconductor

  • 7/26/2019 Tutorial YuJ Magnetism

    14/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Question: What happens when we shine a light on the matter?

    Light scattering experiment: (Photoemission / IR spectroscopy)

  • 7/26/2019 Tutorial YuJ Magnetism

    15/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1.4. Particle zoo in the condensed matter systems

    elementary excitations in solids

    quasi-particles: electrons, holes, polarons, excitons, Cooper pairs, ... collective excitations: phonons, magnons, zero-sound, plasmons, ...

  • 7/26/2019 Tutorial YuJ Magnetism

    16/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    1.5. Energy scale

    The condensed matter system is merely a collection of atoms, where each atomconsists of electrons and a nucleus (me mN).From theuncertainty principlexp ,

    p=

    2meE

    3mkBT

    Thus, practically, the size of atom the size of electrons.

    atomic unit: = e2 =me = 1

    x aB = 2

    me2 = 0.529177A (Bohr radius)

    EB = 12

    e2

    aB= me

    4

    22 = 13.6058eV= 1Ry

    In atomic unit,aB = 1,EB = 1/2,c = 1/ 137,kB 3.2 106K1B = 2.13 106T1 , ...

    (= e2/c: fine structure constant)

  • 7/26/2019 Tutorial YuJ Magnetism

    17/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    energy of an electron in a box of sizeL:

    x L p L

    Eo = p2

    2m 1

    2L2

    speed of electrons in a box:ve

    1

    L

    c

    L electrons in solid Fermions:Pauli exclusion principle Degenerate Electrons:lowest possible excitationsnear the Fermi energy

  • 7/26/2019 Tutorial YuJ Magnetism

    18/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Energy Scale

    Coulomb interaction: eV Magnetic ordering temperature Tc: 0.1 meV 50 meV Dipole-dipole interaction: 0.1 meV

  • 7/26/2019 Tutorial YuJ Magnetism

    19/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    2. Magnetism in Real Materials

    Magnets

  • 7/26/2019 Tutorial YuJ Magnetism

    20/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Solenoid vs. Bar Magnet

  • 7/26/2019 Tutorial YuJ Magnetism

    21/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Origin of Magnetic Moments

    Magnetic permeability and origin of magnetic moments?

  • 7/26/2019 Tutorial YuJ Magnetism

    22/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Magnetic Diagram

  • 7/26/2019 Tutorial YuJ Magnetism

    23/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Magnetic Image of Our Brain

    MRI (Magnetic Resonance Imaging) using the NMR technique

    Mapping of Proton Spin Resonance Frequencies

  • 7/26/2019 Tutorial YuJ Magnetism

    24/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Levitating magnetic bar on a superconducting bed

    Magnetic shielding by the superconducting current

  • 7/26/2019 Tutorial YuJ Magnetism

    25/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    2.1. Magnetic Storages

    Magnetic thin films

  • 7/26/2019 Tutorial YuJ Magnetism

    26/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    27/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    28/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    2.2. Magnetic Sensors

  • 7/26/2019 Tutorial YuJ Magnetism

    29/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    30/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    31/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    32/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    33/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    MFM (Magnetic Force Microscopy) Image of Nanomagnet Array(C. A. Ross, MIT)

  • 7/26/2019 Tutorial YuJ Magnetism

    34/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3. A quantum mechanical view of magnets:

    Pauli exclusion principle and Coulomb interactions

    3.1. Sources of Magnetic Moments

    Magnetic moment:M =gBJproportional to the angular momentum J = L + S

    Spin moment S

    Orbital moment L

  • 7/26/2019 Tutorial YuJ Magnetism

    35/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Localized State

    Since the rotational symmetry is preserved, it has the quantum eigenstates |jm:

    J2|jm =j(j+ 1)|jm

    whereJ = L + S

    If the spherical symmetry is broken, e.g., inside a lattice, the orbital moment can bequenched due to the lack of rotational symmetry, i.e.,

    L = 0

  • 7/26/2019 Tutorial YuJ Magnetism

    36/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Delocalized State

    A free electron state such as|k may not be an eigenstate of the angular momentumoperator L.

    Only |sms may contribute to the magnetic moment.

    k

    Exception:Diamagnetic shielding current in a superconducting state.

  • 7/26/2019 Tutorial YuJ Magnetism

    37/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Perfect Diamagnetism: Superconductivity

    SC

    Inside the superconductor:B = 0

    Supercurrent induced by the current of Cooper pair electrons:

    Js(r) = A(r)

  • 7/26/2019 Tutorial YuJ Magnetism

    38/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    A Localized State Coupled to Delocalized States?

    An impurity atom in a metal

    k kd

    Formation of a Local Moment Broken Symmetry State!Anderson Impurity Model

  • 7/26/2019 Tutorial YuJ Magnetism

    39/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3.2. Magnetic Moment of an Atom

    s

    p

    d

    m=0 m=1 m=2m=-1m=-2

  • 7/26/2019 Tutorial YuJ Magnetism

    40/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Hunds Rule

    1. Maximum totalS= max Sz withSz =

    i msiObeying the Pauli exclusion principle

    2. Maximum totalL = max Lz withLz =

    i mliMinimizing the Coulomb interaction energy

    3. Spin-orbit interaction:

    J=

    |L+ S| if less than half-filled|L S| if more than half-filled

  • 7/26/2019 Tutorial YuJ Magnetism

    41/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Exchange Energy

    Pauli exclusion principle: anti-symmetric two-particle wavefunction

    |(r1; r2) = 12

    [a(r1)b(r2) b(r1)a(r2)] | |

    Coulomb interactionVC(r1 r2) =

    e2

    |r1 r2|

    EC2 =

  • 7/26/2019 Tutorial YuJ Magnetism

    42/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Exchange Density

    (r)a* (r)

    b

    (r)a

    (r)b

    Gaining more (negative) exchange energy by aligning spins:

    Hunds 1st rule

  • 7/26/2019 Tutorial YuJ Magnetism

    43/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Overlap and Exchange Integrals of the atomicp-orbitals

  • 7/26/2019 Tutorial YuJ Magnetism

    44/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Minimization of Coulomb Energy TermUab

    by letting(r)be separated: Hunds 2nd ruleYlm(, ) = (1)mYlm(, )

  • 7/26/2019 Tutorial YuJ Magnetism

    45/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Configuration of 3d Transition Metal Ions

    L S

    0

    1

    2

    3

    0 2 4 6 8 10

    dn

  • 7/26/2019 Tutorial YuJ Magnetism

    46/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Spin-Orbit Coupling

    determined by the sign of the coupling constantL S

    where

    dV(r)dr

    L S

    SL

    high spin low spin

  • 7/26/2019 Tutorial YuJ Magnetism

    47/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3.3. Magnetic Moments in Solids

  • 7/26/2019 Tutorial YuJ Magnetism

    48/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Cubic Lattice Symmetry: Broken Spherical Symmetry

    Crystal Field Splitting:

    l=2

    eg

    t2g

    |eg = {|x2 y2, |z2 r2/3}|t2g = {|xy, |yz, |zx}

  • 7/26/2019 Tutorial YuJ Magnetism

    49/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Kinetic Energy vs. Coulomb Energy

    Uncertainty Principle:p

    x

    Kinetic Energy:EK=

    p2

    2m

    2

    2m

    1

    (x)2

    Coulomb Exchange Energy:EC Ae

    2

    x

    where A 0.1, an order of magnitude smaller than the direct Coulomb interactionenergy.

    Whenx 1, the Coulomb energy dominates over the kinetic energy. Wigner solid:frozen localized electrons

  • 7/26/2019 Tutorial YuJ Magnetism

    50/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Wigner Crystal: Metal-Insulator Transition

    x

    x

    x

    x

    Result of the competition between kinetic and Coulomb energy!

    Here we dropped the interaction term between electrons and background positive charge.What is it?

  • 7/26/2019 Tutorial YuJ Magnetism

    51/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Delocalized State:Molecular / Band State

    hA hB

    o

    A B

    t=

    o

    A VAB B

    Ho= hA+ hB+ VAB

    Ho= o t

    t o

  • 7/26/2019 Tutorial YuJ Magnetism

    52/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Single-particle eigenstates and eigenvalues:

    | = 12 (|A |B) =o t

    o

    o

    o+t

    o- t

    2t

    Corresponding two-particle state:

    2 = 12

    [|+, |+, |+, |+, ]

    Spin-singlet ground statewith single-particle molecular states |

  • 7/26/2019 Tutorial YuJ Magnetism

    53/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Energy Curve for a Hydrogen Molecule

  • 7/26/2019 Tutorial YuJ Magnetism

    54/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Consider two hydrogen atoms separated by a distance d. What are the ground states ofthis system in the limits ofd 0 and d ? What is the dominating factor in each limit?Try to make a qualitative argument in describing the physics.What about a lattice of hydrogen atoms with a lattice constant d? Discuss the possible phys-ical properties of the lattice with varying d from to 0.

  • 7/26/2019 Tutorial YuJ Magnetism

    55/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Three-Sites Molecular States

    o+t

    o- t

    2to

  • 7/26/2019 Tutorial YuJ Magnetism

    56/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    N-Sites States: Tight-Binding Energy Band

    o+t

    o- t

    2to

    These delocalized molecular state is stablewhen the Coulomb interaction energy U issmallerthan the kinetic energy gain W= 2t.

    U= 2|VC(1, 2)|2

    dr1dr2VC(r1 r2)A(r1)A(r2)

    : on-site Coulomb interaction energy

  • 7/26/2019 Tutorial YuJ Magnetism

    57/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Pauli Paramagnetism

    the change of the Density-of-states due to the Zeeman coupling:

    D() =dN()

    d

  • 7/26/2019 Tutorial YuJ Magnetism

    58/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Pauli Paramagnetic Susceptibility

    N=

    EFBB

    1

    2D(E+ BB)dE

    EF0

    1

    2D(E)dE=

    1

    2BBD(EF)

    N =

    EFBB

    1

    2D(E BB)dE

    EF0

    1

    2D(E)dE= 1

    2BBD(EF)

    M=B

    (N

    N) =2

    BD(E

    F)B =

    3N 2B

    2kBTFB =

    s=

    3N 2B

    2kBTF

    Substracting the Landau diamagnetic contribution L = N2

    B

    2kBTF, we have the Pauli Para-

    magnetic Susceptibility:

    P = N 2BkBTF

  • 7/26/2019 Tutorial YuJ Magnetism

    59/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3.4. A Model for the Exchange Interactions in Solids

    WhenU

    W, the localized states of

    |o

    becomes stable relative to the band (molecular)

    state |2:|o = 1

    2[|, s1|, s2 |, s2|, s1]

    which is a combination of the localized orbitals |A,B instead of the molecular states |.Here the starting Hamiltonian Ho include the interaction term of U:

    Ho=hA+ hB+ U

    and the hopping termVAB should be considered as a perturbation.

  • 7/26/2019 Tutorial YuJ Magnetism

    60/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Many-Particle Excited States

    Two-particle excited states:

    |o(s1, s2) = |A, s1|B, s2|A(, ) = |A, |A, |B(, ) = |B, |B,

    Ho|o = 2o|oHo|A = (2o+ U)|AHo|B = (2o+ U)|B

  • 7/26/2019 Tutorial YuJ Magnetism

    61/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    hA hB

    o

    A B

    o

    o+U2

  • 7/26/2019 Tutorial YuJ Magnetism

    62/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Only remaining degrees of freedom of the ground state |o are

    spins!|p(s1, s2) = |s1, s2Energy Correction via the Perturbation Theory with H1=VAB First-order correction:

    s1, s2|H1|s1, s2 = 0

    Pauli exclusion prohibits the double occupancy at the same site:

    |A, |A, = 0

    That is,|A, s1|A, s1 = 0

  • 7/26/2019 Tutorial YuJ Magnetism

    63/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Second-order correction:

    , |H

    1

    |A

    =

    , |H

    1

    |B

    =t

    , |H1|A = , |H1|B = 0

    E(2), = n

    |, |H1|n|2En Eo = 0

    E(2)

    , = n

    |,

    |H1

    |n

    |2

    En Eo = 2t2

    U = JAF

  • 7/26/2019 Tutorial YuJ Magnetism

    64/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Anti-Ferromagnetic Superexchange Interactions

    Heff = +JAFA B

  • 7/26/2019 Tutorial YuJ Magnetism

    65/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Ferromagnetic Exchange Interactions

    What happens if additional degenerate (or almost degenerate) states exist at each atomwhileU W?

    hA hB

    o A Bo

    1 B

    A

    oo

    1 11

  • 7/26/2019 Tutorial YuJ Magnetism

    66/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Now additional excited states become available:

    |A(

    ,

    )

    =|Ao,

    |A1,

    and

    o(, )|H1|A(, ) = 0

    Ho|A(, ) = (o+ 1+ U J)|A(, ) =EA(, )|A(, )If the exchange energy is larger than the difference |o 1|, i.e.,

    J > |o 1|

    we haveEA(, )< EA(, )

    Therefore,

    E(2), =

    n |, |H1|n|2

    En Eo

    2t2

    U J < E

    (2), =

    2t2

    U

  • 7/26/2019 Tutorial YuJ Magnetism

    67/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Ferromagnetic Exchange Interaction

    Heff = |JF M|A B

  • 7/26/2019 Tutorial YuJ Magnetism

    68/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3.5. Transition Metal Oxides

    x

    Cu

    O

    Cu

    The largerx, the smallert, i.e.,W = more localized!

  • 7/26/2019 Tutorial YuJ Magnetism

    69/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    FM Metal and AF Insulator

    n=N

    e

    2N0 1/2 1

    T

    FM FM

    AF

    Band-filling controlled byband degeneracyor bydoping

  • 7/26/2019 Tutorial YuJ Magnetism

    70/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Question: Why should the half-filled state be an insulator? What can one imagine tohappen when an additional electron or hole is introduced in a half-filled system?

  • 7/26/2019 Tutorial YuJ Magnetism

    71/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Why Transition Metals (TM) and TM Compounds

    r

    rR(r)

    0

    3d4p

    4s

    both 3dand 4felectron wavefunctions areextremely localized:no node in radial wavefunctions

  • 7/26/2019 Tutorial YuJ Magnetism

    72/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Question:

    Let us consider the transition-metal fluoride MnF2, which is observed to be antiferromag-

    netic at low temperatures. In this system, the fluorine F becomes F

    being fully ionized sothat the manganese Mn becomes Mn2+.

    (a) Based on the Hunds rule, discuss the possible spin and orbital configuration of Mn2+

    ions. (Note that Mn2+ has a 3d5 configuration.)

    (b) Considering that the Mn ions of MnF2form a bcc lattice, guess the magnetic configurationof the ground state of MnF2.

    (c) What difference would it make if we replace F ions by O2 ions, that is, the ground stateof MnO2? (Hint: Consider the crystal field effect in a cubic lattice.)

    Now consider the long-range magnetic order in metals. We know that Cu is a good para-magnetic metal while Fe is a ferromagnetic metal. Explain the difference and similarity of thetwo systems. Why Fe is not anti-ferromagnetic instead of being ferromagnetic? (Note that Fehas a configuration of 3d64s2 and Cu has 3d104s1.)

  • 7/26/2019 Tutorial YuJ Magnetism

    73/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    3.6. Magnetic Impurity in a Metal

    low temperature: singlet ground state

    before

    after

    high temperature,spin-flip scattering

  • 7/26/2019 Tutorial YuJ Magnetism

    74/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Kondo Effect

    Spin-flip scattering between the free electrons of a metal and the local moment of amagnetic impurity = the Kondo effect.

    Highly correlated ground state where the conduction electrons form a spin-polarizedcloud around the magnetic impurity.

    Below Kondo temperature, = a narrow resonance at the Fermi energy: Kondoresonance.

  • 7/26/2019 Tutorial YuJ Magnetism

    75/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Friedel Sum Rule

    Ntot= 1lm

    lm,kF = 2l

    (2l+ 1)l,kF

    (r)k,l

    (R)=0

    Impurity

    k,l

  • 7/26/2019 Tutorial YuJ Magnetism

    76/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Scattering Phase Shift and Change of Density-of-State

    nk

    nk n+1kn-1kn-2k

    R

    d

    ()

    o ()

    F

    *d

    0

    0

    (b)

    (a)

  • 7/26/2019 Tutorial YuJ Magnetism

    77/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Kondo Resonance

    d

    ()

    F

    d d0

    TK

    +U

  • 7/26/2019 Tutorial YuJ Magnetism

    78/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4. Effective Hamiltonian and Phenomenological Theory

    4.1. Heisenberg Model: Mean Field SolutionH =

    ij

    JijSi Sj+ gBH i

    Si

    Introducing an effective field Heff,

    H = ij

    JijSi Sj+ gBH i

    Si= gBi

    Si Heff

    where the effective mean field

    Heff= H 1gB

    j

    JijSj

    and the average magnetization

    Si = VN

    M

    gB

    Heff= H + M

    = V

    N

    Jo(gB)2

    M= NV

    F

    H =Mo(

    HeffT

    )

  • 7/26/2019 Tutorial YuJ Magnetism

    79/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    For the case of H= 0,one can fine the magnetizationMby solving the equation:

    M(T) = Mo(MT

    )

    o(T) =

    MoH

    H=0

    =Mo(0)

    T

    where the Curies constant is determined to beCo = Mo(0).

    For the case ofH

    = 0,

    =M

    H =

    MoHeff

    HeffH

    =o(1 + )

    = o

    1 o = CoT Tc

    where the critical temperature Tc becomes

    Tc=NV

    (gB)2

    3kBS(S+ 1)= S(S+ 1)

    3kBJo

  • 7/26/2019 Tutorial YuJ Magnetism

    80/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4.2. Order Parameters: Description of Phase Transition

    T > Tc T < Tc Symmetry

    Supercondutor s(r) = 0 s(r) = 0 U(1)Magnets Ms(r) = 0 Ms(r) = 0 O(3)Ferroelectrics Ps(r) = 0 Ps(r) = 0 O(3)Liquid/Gas-Solid (G) = 0for G = 0 (G) = 0for G = 0 TROrder-disorder = 0 = 0 Z2

    = nAA nBA

  • 7/26/2019 Tutorial YuJ Magnetism

    81/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4.3. Bragg-Williams Theory

    Consider the Ising model with the spin =

    | or

    | . The order parameter m =

    is the

    average of the spin:m= (N N)/N

    EntropyS:S= ln CNN = ln C

    NN(1+m)/2

    S

    N =s(m) = ln 2 1

    2(1 + m) ln(1 + m) 1

    2(1 m)ln(1 m)

    Average EnergyE:E= J

    ij

    m2 = 12

    JNzm2

    wherezis the number of nearest neighbor sites.

    Bragg-Williams free energyf(T,m):

    f(T,m) = (E TS)/N= 12Jzm2 +

    1

    2T[(1 + m) ln(1 +m) + (1 m)ln(1 m)] Tln 2

  • 7/26/2019 Tutorial YuJ Magnetism

    82/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    The equation of state under an external field h:f

    m= zJm +1

    2Tln[(1 + m)/(1 m)] =h

    zJm + Ttanh1

    m= h

    m= tanh[(h + Tcm)/T]

    Note thatheff=h + Tcm.

  • 7/26/2019 Tutorial YuJ Magnetism

    83/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Mean field solutions for h = 0: nearT 0:

    m= tanh(Tcm/T) 1 2e2zJ/T

  • 7/26/2019 Tutorial YuJ Magnetism

    84/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    nearT Tc :

    m (Tc/T)m 1

    3(Tc/T)

    3

    m

    3

    (Tc/T)m 1

    3m

    3

    m= [3(Tc T)/T]1/2

  • 7/26/2019 Tutorial YuJ Magnetism

    85/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4.4. Ginzburg-Landau Functional

    Free energy nearTc

    s(m) = ln 2 12m2 1

    12m4 + ...

    f(m) = 1

    2(T Tc)m2 + 1

    12m4 Tln 2 + ...

    whereTc = zJ

    Assuming(r)as a local order parameter,

    F =

    drf(T, (r)) +

    dr

    1

    2c |(r)|2

    wherefcan be expanded by

    f(T, ) =1

    2r2 w3 + u4 + ...

    wherer = a(T Tc)Symmetry properties of the free energy functionalF!

  • 7/26/2019 Tutorial YuJ Magnetism

    86/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4.5. Second-Order Phase Transition

    f(T, ) =1

    2

    r2 + u4

    The equation of state:r + 4u3 =h

    Forh = 0,=

    0 if T > Tc(r/4u)1/2 if T < Tc

  • 7/26/2019 Tutorial YuJ Magnetism

    87/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    (Tc T)

    where= 1/2.

    Susceptibility[r+ 12u2]

    h= 1

    =

    h=

    1/r ifT > Tc1/(2|r|) ifT < Tc

    |T Tc|

    with= 1.

    Free energy densityff=

    0 ifT > Tcr2/(16u) ifT < Tc

    Specific heatcvcv = T

    2

    fT2 =

    0 ifT > TcT a2/(8u) ifT < Tc

  • 7/26/2019 Tutorial YuJ Magnetism

    88/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    89/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    4.6. correlation length

    1

    (r

    ,r

    ) =

    2F

    (r)(r)= (r+ 12u

    2

    c2

    )(r

    r

    )

    (q) = 1

    r+ 12u2 + cq2

    (q) =

    1 + (q)2 =

    1

    c

    2

    1 + (q)2

    where

    = c1/2[r+ 12u2]1/2 =

    (c/r)1/2

    ifT > Tcc1/2/(2r)1/2 ifT < Tc

    and the correlation length |T Tc| with= 1/2.

    0=

    c

    r(T= 0)

    1/2=

    c

    aTc

    1/2

  • 7/26/2019 Tutorial YuJ Magnetism

    90/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    5. Giant magnetoresistance (GMR) and magnetic sensors

    What is Magnetoresistance?

    In the free electron system, the conductivity is often described by the Drude model:

    =ne2

    m

    UnlessH(magnetic field) is too large, the mean scattering timedoes not depend on H:

    (H)

    H = 0 + o(H2)

  • 7/26/2019 Tutorial YuJ Magnetism

    91/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    H

    l=vF

  • 7/26/2019 Tutorial YuJ Magnetism

    92/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Magnetic Multilayer Structure

    Spin-dependent Density-of-State atF: Ds(F)

    = s= e2

    mns(H)

    ns(H) Ds(F)

  • 7/26/2019 Tutorial YuJ Magnetism

    93/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    E

    EF

    E

  • 7/26/2019 Tutorial YuJ Magnetism

    94/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Change ofDs()with an external magnetic field H

    E

    EF

    E

    s increases by the application ofH, i.e.,/H >0

  • 7/26/2019 Tutorial YuJ Magnetism

    95/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Giant magnetoresistance effect (GMR)

    Giant magnetoresistance effect (GMR) in a junction between two magnetic electrodes Electrons undergo quantum tunneling through a thin insulating layer Conductances across the junction

    s = 4e2

    hN

    DLs(F)DRs(F)

  • 7/26/2019 Tutorial YuJ Magnetism

    96/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Tunneling Magnetoresistance (TMR)

    0 H

    ( )H

    o

    1

  • 7/26/2019 Tutorial YuJ Magnetism

    97/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    TMR in Layered Manganites: La1+xSr2xMn2O7(x=0.4)

  • 7/26/2019 Tutorial YuJ Magnetism

    98/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Effective Model Hamiltonians for Doped Manganites

    Double Exchange Model with Superexchange Interactions

    H= L

    ij,

    tijc

    +icj + h.c.

    JH

    Li,ab

    Si abc+iacib+ JAFLi,j

    Si Sj,

    JH

  • 7/26/2019 Tutorial YuJ Magnetism

    99/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Formation of Ferromagnetic Domain:Kinetic Energy Gain by the Double Exchange Mechanism

  • 7/26/2019 Tutorial YuJ Magnetism

    100/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Application of a GMR Device

  • 7/26/2019 Tutorial YuJ Magnetism

    101/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Exchange Coupling in Magnetic Multilayers

    The magnetic coupling of two magnetic layers depends on the thickness of the inter-vening non-magnetic spacer layer.

    Oscillatory exchange coupling: observable quantum interference effects. Confinement of electrons in a quantum well formed in the nonmagnetic layer by the

    spin-dependent potentials of the magnetic layers.

  • 7/26/2019 Tutorial YuJ Magnetism

    102/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    (Mathon et al.)

    MRAM (magnetic random access memory)

  • 7/26/2019 Tutorial YuJ Magnetism

    103/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    AF FM FM

    Insulator

    A

  • 7/26/2019 Tutorial YuJ Magnetism

    104/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    105/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    106/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

  • 7/26/2019 Tutorial YuJ Magnetism

    107/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    6. Magnetism and superconducitivity:

    HighTc superconductivity

    What happens when the half-filled AF insulator is being doped?

  • 7/26/2019 Tutorial YuJ Magnetism

    108/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Phase Diagram of HighTc Superconductors:Doped Cu-oxides Systems

    T

    x0

    0.3

    SCAF

    pseudo-gap

  • 7/26/2019 Tutorial YuJ Magnetism

    109/110

    2005 KIAS-SNU Physics Winter Camp: Lectures on Magnetism Jaejun Yu,

    Anti-Ferromagnetic Spin Correlation vs. BCS State

    Spin-order Ground State of an Anti-Ferromagnet:

    |AF =i

    c+(2i)c+(2i+1)|O

    BCS State of a Superconductor:

    |BCS = k

    (uk+ vkc+kc

    +k)|O

    t-JModel for the HighTc Superconductivity:

    Heff= ij

    c+icj + Jij

    si sj

  • 7/26/2019 Tutorial YuJ Magnetism

    110/110

    7. References

    Basic Quantum Mechanics:

    1. S. Gasiorowicz, Quantum Physics, (John Wiley & Sons, 1996).

    2. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, (Hermann, 1977).

    Magnetism:1. R. M. White, Quantum Theory of Magnetism, (Springer, 1983)

    2. D. C. Mattis, The Theory of Magnetism, (Spinger, 1981) Correlated Electron Systems:

    1. P. Fulde, Electron Correlations in Molecules and Solids, (Springer, 1995).

    2. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys.70, 1039 (1998).