tutorial: superconductivity: the coherence in thermal transport · 2020-01-21 · phase-manipulate...

36
Tutorial: Superconductivity: The coherence in thermal transport Francesco Giazotto NEST , Istituto Nanoscienze - CNR & Scuola Normale Superiore Pisa, Italy SPICE Workshops 2018 Quantum Thermodynamics and Transport May 08 - 11, 2018 Mainz (Germany )

Upload: others

Post on 13-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Tutorial: Superconductivity:

The coherence in thermal transport

Francesco Giazotto

NEST, Istituto Nanoscienze-CNR &

Scuola Normale Superiore Pisa, Italy

SPICE Workshops 2018

Quantum Thermodynamics and Transport

May 08-11, 2018 Mainz (Germany)

Page 2: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 2

Outline

1. Motivation & mission

2. Overview

3. Basic concept of thermal transport in

Josephson-based quantum circuits

4. Double & single-slit heat interferometers

5. Balanced thermal modulators

6. Josephson thermal -junctions

7. Phase-tunable Josephson thermal routers

Page 3: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 3

Motivations & mission

Set the experimental ground for a

challenging young branch of science: the

coherent caloritronics, i.e., the

complementary of coherent electronics

Phase-manipulate & master heat transfer

in a solid-state environment

Provide original & novel approaches to

realize thermal devices (heat transistors,

splitters, diodes, refrigerators, exotic

quantum circuits)

Address & understand fundamental

energy- and heat-related phenomena at

nanoscale (coherent dynamics, heat

interference, time-dependent effects,

quantum thermodynamics, decoherence)

Main goal: develop quantum technology for managing heat in nanoscale circuits

Page 4: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 4

Thermoelectric effects in Josephson junctions

SNS-like Josephson junction

10-8 V/K thermopower

dc & ac thermoelectric response

Presence of a magnetic field

Aronov and Galperin, JETP Lett. 19, 165 (1974);

Kartsovnik, Ryazanov, and Schmidt, JETP Lett. 33, 356 (1981);

Ryazanov and Schmidt, Solid State Commun. 40 1055, (1981);

Clarke and Freake, Phys. Rev. Lett. 29, 588 (1982).

Panaitov, Ryazanov, Ustinov, and Schmidt, Phys. Lett. 100A, 301 (1984);

Schmidt, JETP Lett. 33, 98 (1981);

Ryazanov and Schmidt, Solid State Commun. 42, 733 (1982);

Huebener, Supercond. Sci. Technol. 8, 189 (1995).

Page 5: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Physical basis of coherent caloritronics

Thot Tcold

Jleft Jright

Josephson effect

Tuning

electron-photon interaction

Proximity effect

A. Fornieri and FG, Nat. Nanotechnol. 12 (2017)

11/05/2018 Quantum Thermodynamics and Transport 5

Page 6: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Josephson tunnel circuits

11/05/2018 Quantum Thermodynamics and Transport 6

Josephson heat interferometers

b – Double-slit Josephson interferometer

c – Single-slit Josephson diffractor

A. Fornieri and FG, Nat. Nanotechnol. 12 (2017)

Page 7: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Superconducting proximity structures

11/05/2018 Quantum Thermodynamics and Transport 7

a– Phase-dependent electron-phonon coupling, entropy, specific heat

c – Phase-tunable proximity thermal valve

A. Fornieri and FG, Nat. Nanotechnol. 12 (2017)

Page 8: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Photonic heat transistors

11/05/2018 Quantum Thermodynamics and Transport 8

M. Meschke, et al., Nature 444, 187 (2006);

A. Fornieri and FG, Nat. Nanotechnol. 12 (2017);

A. Ronzani, et al., arXiv:1801.09312.

a – First demonstration of phase-dependent photonic heat conduction

c – Design for a non-galvanic photonic thermal transistor

Page 9: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Experimental setups

11/05/2018 Quantum Thermodynamics and Transport 9

b – DC & RF electron thermometry through SINIS tunnel junctions

c – Electron thermometry through temperature dependence of the critical current,or through quasiparticle current

FG, T. T. Heikkila, A. Luukanen, A. M. Savin,

and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

S. Gasparinetti, et al., Phys. Rev. Appl. 3, 014007 (2015);

K. L. Viisanen and J. P. Pekola, Phys. Rev. B 97, 115422 (2018);

O.-P. Saira, et al., Phys. Rev. Applied 6, 024005 (2016);

J. Govenius, et al., Phys. Rev. Lett. 117, 030802 ()2016.

Page 10: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Electric transport in superconducting tunnel junctions (NIS)

11/05/2018 Quantum Thermodynamics and Transport 10

a – I/V characteristics of a NIS junction

b – Voltage response of the junction vs T at given Ibias: sensitive electron thermometry

FG, T. T. Heikkila, A. Luukanen, A. M. Savin,

and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

S. Gasparinetti, et al., Phys. Rev. Appl. 3, 014007 (2015);

K. L. Viisanen and J. P. Pekola, Phys. Rev. B 97, 115422 (2018);

O.-P. Saira, et al., Phys. Rev. Applied 6, 024005 (2016);

J. Govenius, et al., Phys. Rev. Lett. 117, 030802 ()2016.

Page 11: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Electric transport in superconducting tunnel junctions (SIS)

11/05/2018 Quantum Thermodynamics and Transport 11

a – I/V quasiparticle characteristics of a SIS junction: more complicated thermometry

b – Temperature dependence of the Josephson current: non-dissipative thermometry

FG, T. T. Heikkila, A. Luukanen, A. M. Savin,

and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

S. Gasparinetti, et al., Phys. Rev. Appl. 3, 014007 (2015);

K. L. Viisanen and J. P. Pekola, Phys. Rev. B 97, 115422 (2018);

O.-P. Saira, et al., Phys. Rev. Applied 6, 024005 (2016);

J. Govenius, et al., Phys. Rev. Lett. 117, 030802 ()2016.

Page 12: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Quasiequilibrium regime in mesoscopic circuits

11/05/2018 Quantum Thermodynamics and Transport 12

FG, T. T. Heikkila, A. Luukanen, A. M. Savin,

and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006);

A. Fornieri and FG, Nat. Nanotechnol. 12 (2017);

A. V. Timofeev, et al., Phys. Rev. Lett. 102, 017003 (2009)

a – Scheme of N or S film on a substrate

b – Electron-phonon coupling in N and S

clean metal

disordered metal

superconductor

Page 13: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Nanofabrication techniques

11/05/2018 Quantum Thermodynamics and Transport 13

Angle evaporation and in-situ oxidation

Typical shadow-mask evaporated structures

Page 14: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

Principle of phase-dependent heat current control

11/05/2018 Quantum Thermodynamics and Transport 14

Exploitation of quantum phase to control heat current flow

Maki and Griffin, PRL 15, 921 (1965);

Zhao et al., PRL 91, 077003 (2003);

Zhao et al., PRB 69, 134503 (2004)

Heat current is predicted to be phase dependent and stationary

Temperature-biased Josephson tunnel junctionTcold

S1

Thot

S2I

Page 15: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 15

Heat current in a temperature-biased JJ

𝑄𝑡𝑜𝑡 = 𝑄𝑞𝑝 𝑇1, 𝑇2 − 𝑄𝑖𝑛𝑡 𝑇1, 𝑇2 cos𝜑

𝑄𝑖𝑛𝑡 𝑇1, 𝑇2 =2

𝑒2𝑅𝑇 0

𝐸ℳ1 𝐸, 𝑇1 ℳ2 𝐸, 𝑇2 𝑓1 𝐸, 𝑇1 − 𝑓2 𝐸, 𝑇2 𝑑𝐸

𝑄𝑞𝑝 𝑇1, 𝑇2 =2

𝑒2𝑅𝑇 0

𝐸ℵ1 𝐸, 𝑇1 ℵ2 𝐸, 𝑇2 𝑓1 𝐸, 𝑇1 − 𝑓2 𝐸, 𝑇2 𝑑𝐸

ℵ1,2(𝐸, 𝑇1,2) = 𝐸 𝐸2 − Δ1,2 𝑇1,22𝜃 𝐸2 − Δ1,2 𝑇1,2

2

ℳ1,2(𝐸, 𝑇1,2) = Δ1,2(𝑇1,2) 𝐸2 − Δ1,2 𝑇1,22𝜃 𝐸2 − Δ1,2 𝑇1,2

2

𝑓1,2 𝐸, 𝑇1,2 = 1 + 𝑒 𝐸 𝑘𝐵𝑇1,2−1

quasiparticle

interference

𝑄𝑞𝑝 = 0

𝑄𝑖𝑛𝑡 = 0𝑖𝑓 𝑇1 = 𝑇2

𝑄𝑖𝑛𝑡 = 0𝑖𝑓 𝑆1 𝑜𝑟 𝑆2 𝑖𝑛𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑎𝑡𝑒

Maki and Griffin, PRL 15, 921 (1965);

Zhao et al., PRL 91, 077003 (2003);

Zhao et al., PRB 69, 134503 (2004

Page 16: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

16

Temperature-biased DC-SQUID: theory (i)

𝑄𝑡𝑜𝑡 = 𝑄𝑞𝑝 𝑇1, 𝑇2 − 𝑄𝑖𝑛𝑡 𝑇1, 𝑇2, 𝜑𝑎 , 𝜑𝑏

𝑄𝑞𝑝 𝑇1, 𝑇2 = 𝑄𝑞𝑝𝑎 𝑇1, 𝑇2 + 𝑄𝑞𝑝

𝑏 𝑇1, 𝑇2

𝑄𝑖𝑛𝑡 𝑇1, 𝑇2 = 𝑄𝑖𝑛𝑡𝑎 𝑇1, 𝑇2 cos𝜑𝑎 + 𝑄𝑞𝑝

𝑏 𝑇1, 𝑇2 cos𝜑𝑏

𝑄𝑖𝑛𝑡 = 𝑄𝑖𝑛𝑡𝑏 𝑇1, 𝑇2 1 + 𝑟2 + 2𝑟 cos

2𝜋Φ

Φ0

𝑄𝑖𝑛𝑡 = 2 𝑄𝑖𝑛𝑡𝑏 𝑇1, 𝑇2 cos

𝜋Φ

Φ0

𝜑𝑎 + 𝜑𝑏 + 2𝜋 Φ Φ0 = 2𝑘𝜋

𝐼𝑗𝑎 sin𝜑𝑎 = 𝐼𝑗

𝑎 sin𝜑𝑏

cos𝜑𝑎 =𝑟 + cos 2𝜋𝑥

1 + 𝑟22𝑟 cos 2𝜋𝑥

cos𝜑𝑏 =1 + cos 2𝜋𝑥

1 + 𝑟22𝑟 cos 2𝜋𝑥

Flux quantization

Current conservation

𝑥 = Φ Φ0

r= 𝐼𝑗𝑎 𝐼𝑗

𝑏

Symmetric SQUID

FG and M. J. Martinez-Perez, APL 101, 102601 (2012)

11/05/2018 Quantum Thermodynamics and Transport

Page 17: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 17

Temperature-biased DC-SQUID: theory (ii)

Role of critical current asymmetry

Maximum

Minimum

Total heat current behavior

(symmetric SQUID)

FG and M. J. Martinez-Perez, APL 101, 102601 (2012)

Page 18: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 18

“Josephson heat interferometer”: setup (i)

FG and M. J. Martinez-Perez, Nature 492, 401 (2012)

Symmetric SQUID (r = 1)

T1 ≥ T2

Page 19: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 19

Behavior @ 235 mK (i)

FG and M. J. Martinez-Perez, Nature 492, 401 (2012)

-2 -1 0 1 2

240

280

320

Tsource

(mK)

235

395

445

475

525

585

675

Td

rain(m

K)

/0

δTdrain ~ 21 mK

9% relative

modulation amplitude

Page 20: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 20

Comparison to theory

-2 -1 0 1 2

675

Td

rain(m

K)

525

445

310

273

243

/0

252

Tsource

(mK) = 395

Good agreement with theoretical prediction

Page 21: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 21

Electric vs thermal quantum diffraction

Electric diffraction through

a rectangular slit

Diffraction of heat current

through a rectangular slit

Page 22: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 22

Heat current quantum diffraction in extended short JJs

𝑡 = 𝑑 + 𝜆1tanh𝑡12𝜆1

+ 𝜆2tanh𝑡22𝜆2

𝐿 ≪ 𝜆𝐽 ≡Φ0𝑊𝐿

2𝜇0𝐼𝑐 𝑡

𝐼𝑐 Φ = |2𝐼𝑐0 −∞∞

𝑓(𝑦)cos(2𝜋Φ

Φ0

𝑦

𝐿)𝑑𝑦|

Josephson critical current

4 2 2 4

0.2

0.4

0.6

0.8

1.0

Critical current Fraunhofer

pattern for a rectangular JJ

Ic/Ic0

/0

𝐼𝑐𝐼𝑐0

= | sin 𝜋Φ Φ0 /(𝜋Φ/Φ0)|

FG, M. J. Martinez-Perez, and P. Solinas, Phys. Rev. B 88, 094506 (2013)

Page 23: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 23

A “quantum diffractor” for thermal flux: experimental setup

Heater ThermometersVthVth

Source (Al0.98Mn0.02)

Bia

s Jo

seph

son

junc

tion

H4 mm

Rectangular Josephson junction

S3 (Al) S2 (Al)

Drain (Al0.98Mn0.02)Rs

S1 (Al)

Rd

Rectangular JJ

Josephson current behavior

Magnetic interference

pattern

Page 24: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 24

Temperature diffraction pattern @ 240 mK

M. J. Martinez-Perez and FG, Nat. Commun. 5, 3579 (2014)

Page 25: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 25

Fully-balanced heat interferometer

• Enhanced control over the flux-to

heat current transfer function

• Complete suppression of the

phase-coherent part

Quantum heat pumping & time-dependent heat enginesM. J. Martinez-Perez and FG, APL 102, 401 (2013)

Page 26: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 26

Nanoscale phase-engineering of thermal transport

i) Electrical response

Ic suppression 99%

Fully-balanced quantum thermal modulator structure:

full phase-engineering of heat currents

Page 27: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 27

Nanoscale phase-engineering of thermal transport

ii) Thermal response at base Tbath

Thermal model

Jint suppression 99%

A. Fornieri, C. Blanc, R. Bosisio, S. D’Ambrosio, and FG, Nat.Nanotech. 11, 258 (2016)

40mK temperature swing

t 200mK/0 @ 25mK

X 3 previous exps

Page 28: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 28

Phase-controllable 0- thermal Josephson junction

A. Fornieri, G. Timossi, P. Solinas, P. Virtanen, and FG, Nat. Nanotechnol. 12, 425-429 (2017);

A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, and FG, Phys. Rev. B 93, 134508 (2016)

Page 29: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

11/05/2018 Quantum Thermodynamics and Transport 29

0- thermal Josephson junction: thermal behavior

A. Fornieri, G. Timossi, P. Solinas, P. Virtanen, and FG, Nat. Nanotechnol. 12, 425-429 (2017);

A. Fornieri, G. Timossi, R. Bosisio, P. Solinas, and FG, Phys. Rev. B 93, 134508 (2016)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.50.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Jin (pW)16301253681337188112

T1 (K

)

(0)

δT up to 100 mK @ 25 mK

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.550.60

0.850.900.95

Tbath

800 mK

0.800.85

600 mK

Jin = 112 pW

0.700.75

T1 (K

)

400 mK

0.650.70

200 mK

25 mK

/0

δT20 mK @ 800 mK

-1 0 1-1.0

-0.5

0.0

0.5

1.0

t (

K/

0)

(0)

Jin (pW) 112 188 337 1253

1 mK/0 @ 550 mK

Page 30: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

30

Single output caloritronic devices

The Josephson heat interferometer

Nature 492, 401 (2012)

A quantum diffractor for thermal flux

Nat. Commun. 5, 3579 (2014)

Nanoscale phase engineering of thermal transport with a Josephson heat modulator

Nat. Nanotech. 11, 258 (2016)

Rectification of electronic heat current by a hybrid thermal

diode

Nat. Nanotech. 10, 303 (2015)

0- phase-controllable thermal Josephson junction

Nat. Nanotech. 12, 425 (2017)

11/05/2018 Quantum Thermodynamics and Transport

Page 31: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

31

Phase-tunable thermal router: General scheme

0 0.5 1

T

Φ Φ0

Splitter

Swapper

Φ = 𝑛Φ0

Φ = (𝑛 + 1 2)Φ0

DOI: 10.1021/acs.nanolett.7b04906

11/05/2018 Quantum Thermodynamics and Transport

Page 32: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

32

Phase-tunable thermal router: Device structureV

Heater

VThermometer

V

Thermometer

Source

Drain1

Drain2

P1

P2

SQUID

Thermometer

Cooling Fin

S1

S2

S3

A

B

𝑄𝑖𝑛𝑡 = 𝑄𝑖𝑛𝑡𝐴 𝑇𝑆1, 𝑇𝑆2 1 + 𝑟2 + 2𝑟 cos

2𝜋Φ

Φ0

11/05/2018 Quantum Thermodynamics and Transport

G. Timossi, A. Fornieri, F. Paolucci, C. Puglia, and FG, Nano Lett. 18, 1764 (2018)

Page 33: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

33

Phase-tunable thermal router: Experiment

Bath, Tbath

Source, TSource

Jin

S1, TS1

Drain1, TD1

Drain2, TD2S2, TS2

S3, TS3

Bath, Tbath

Bath, Tbath Bath, Tbath

SQUID

T D1,

T D2

(mK

)

0 3 Φ Φ0

1 2-1-2-3270

330

390

Jin=412pW

350mK

300mK200mK

0 3 Φ Φ0

1 2-1-2-3360

390

420

Tbath=350mK

63pW

412pW10.411nW

11/05/2018 Quantum Thermodynamics and Transport

G. Timossi, A. Fornieri, F. Paolucci, C. Puglia, and FG, Nano Lett. 18, 1764 (2018)

Page 34: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

34

Phase-tunable thermal router: Experiment

Drain2Drain1

0 5 10Pin (nW)

200

250

300

350

400

450

T (m

K)

Tbath (mK)

400

350

300

200Drain2Drain1

Tbath=400mK

Tbath=200mK

0 Φ Φ0

1 2-1-2

406

408

410

412

T (m

K)

240

250

260

270

T (m

K)

Splitter

Swapper

Experiment

Theory

11/05/2018 Quantum Thermodynamics and Transport

G. Timossi, A. Fornieri, F. Paolucci, C. Puglia, and FG, Nano Lett. 18, 1764 (2018)

Page 35: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

35

Conclusions

11/05/2018 Quantum Thermodynamics and Transport

1. Realization of the first heat interferometer

2. Confirmation of the existence, magnitude and sign of the phase-dependent

heat current

3. Realization of the first quantum diffractor for thermal flux, complementary

proof of the “thermal” Josephson effect

4. Double-loop Josephson thermal modulator: complete phase-engineering of

electronic heat current at the nanoscale

5. Realization of the first controllable 0- thermal Josephson junction

6. Realization of the first phase-tunable Josephson thermal router with large T

separation and sizeable T inversion: gateway to realize mesoscopic “thermal

machines”

Page 36: Tutorial: Superconductivity: The coherence in thermal transport · 2020-01-21 · Phase-manipulate & master heat transfer in a solid-state environment ... J. Govenius, et al., Phys

36

Acknowledgments

A. Fornieri

M. J. Martinez-Perez

P. Solinas

F. Paolucci

G. Timossi

R. Bosisio

S. D’Ambrosio

C. Blanc

P. Virtanen

C. Puglia

ERC consolidator grant No. 615187 - COMANCHE

MIUR-FIRB2013-Project Coca

FARFAS 2014-Project SCIADRO

11/05/2018 Quantum Thermodynamics and Transport