tustp 2003 by angel bustamante may 20, 2003 by angel bustamante may 20, 2003 doe project: design and...

38
TUSTP 2003 TUSTP 2003 By By Angel Bustamante Angel Bustamante May 20, 2003 May 20, 2003 DOE Project: DOE Project: Design and Performance of Design and Performance of Multiphase Distribution Manifold Multiphase Distribution Manifold

Upload: sharleen-patterson

Post on 13-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

TUSTP 2003TUSTP 2003TUSTP 2003TUSTP 2003

By By Angel BustamanteAngel Bustamante

May 20, 2003May 20, 2003

By By Angel BustamanteAngel Bustamante

May 20, 2003May 20, 2003

DOE Project:DOE Project:Design and Performance of Design and Performance of

Multiphase Distribution ManifoldMultiphase Distribution Manifold

DOE Project:DOE Project:Design and Performance of Design and Performance of

Multiphase Distribution ManifoldMultiphase Distribution Manifold

Introduction

Objectives

Experimental Program

Manifold Design

Future work

TopicsTopicsTopicsTopics

IntroductionIntroductionIntroductionIntroduction

Wells connected to a manifold have a different liquid and Wells connected to a manifold have a different liquid and

gas flowrategas flowrate

Provide and guarantee equal split of gas and liquid flow Provide and guarantee equal split of gas and liquid flow

for downstream separatorsfor downstream separators

Protect downstream metering equipment and provide Protect downstream metering equipment and provide

high accuracy of metering high accuracy of metering

Multiphase distribution manifold, as a flow conditioning Multiphase distribution manifold, as a flow conditioning device:device:

ObjectivesObjectivesObjectivesObjectives

Develop a lab prototype multiphase distribution manifold Develop a lab prototype multiphase distribution manifold

Acquire systematic experimental data for performanceAcquire systematic experimental data for performance evaluationevaluation

Develop a mechanistic model Develop a mechanistic model Design tool Design tool

Performance evaluationPerformance evaluation

System optimizationSystem optimization

Experimental ProgramExperimental ProgramExperimental ProgramExperimental Program

Experimental Facility

Test Matrix

Results

System Operational Envelope

Manifold Operational Envelope

Liquid and Gas Split Ratios

Manifold Resistance Coefficient (Kl)

Transient Performance

Experimental FacilityExperimental FacilityExperimental FacilityExperimental Facility

Liquid Outletsto Micromotion

GLCC # 1

Gas Outlets

Vortex Meter

Vortex Meter

Distribution Manifold

Slug Damper

Rotameters

Liquid line

Gas line

GLCC # 2

Flow Configurations

1 2 3 4

L GL LCASE 1

1 2 3 4

L LL GCASE 2

1 2 3 4

L GL GCASE 3

1 2 3 4

L LG GCASE 4

1 2 3 4

G GL LCASE 5

1 2 3 4

L GG GCASE 6

1 2 3 4

G GL GCASE 7

Test Matrix Test Matrix

Test Matrix Test Matrix

Vsg: 10.5 fts/s to 30.5 ft/s, Vsl: 1.0 ft/s to 2.75 ft/s

1 2 3 4

CASE 8 L/G L/GL/G L/G

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case I

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC's

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

1 2 3 4

L GL LCASE 1

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case II

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC

's

1 2 3 4

L LL GCASE 2

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case III

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC

1 2 3 4

L GL GCASE 3

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case VI

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC

's

1 2 3 4

L GG GCASE 6

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case VII

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC'

s

1 2 3 4

G GL GCASE 7

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

Manifold / Slug DamperLiquid Carry-Over

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Vsg (ft/s)

Vs

l (ft

/s)

Single GLCC

Double GLCC

Case VIII Equal Flow

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLC

C's

1 2 3 4

CASE 8 L/G L/GL/G L/G

THE SAME ENVELOPE APPLIES TO CASES IV AND V

1 2 3 4

L LG G

CASE 4

1 2 3 4

G GL L

CASE 5

System Operational EnvelopeSystem Operational EnvelopeSystem Operational EnvelopeSystem Operational Envelope

Manifold Operational EnvelopeManifold Operational EnvelopeManifold Operational EnvelopeManifold Operational Envelope

Manifold Operational Envelope for Liquid Carry-Over

0.0

0.5

1.0

1.5

2.0

2.5

3.0

5 10 15 20 25 30 35

Vsg (ft/s)

Vs

l (ft

/s)

Case I

Case II

Case III

Case IV

Case V

Case VI

Case VII

Case VIII Equal Flow

Manifold Operational Envelope for Liquid Carry-Over

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20 25 30 35 40 45

Vsg (ft/s)

Vs

l (ft

/s)

Case I

Case II

Case III

Case IV

Case V

Case VI

Case VII

Case VIII Equal Flow

Single GLCC

2 Parallel GLCC's

Manifold/Slug Damper/GLCC's

Liquid Split ( GLCC# 2 over Total Flow) v.s. GVF

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.75 0.8 0.85 0.9 0.95 1

GVF

Liq

uid

Sp

lit

Case I

Case III

Case VI1 2 3 4

L GL LCASE 1

1 2 3 4

L GL GCASE 3

1 2 3 4

L GG GCASE 6

Liquid Split RatiosLiquid Split RatiosLiquid Split RatiosLiquid Split Ratios

Liquid Split ( GLCC# 2 over Total Flow) v.s. GVF

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.75 0.8 0.85 0.9 0.95 1

GVF

Liq

uid

Sp

lit

Case IV

Case V

Case VIIIEqual Flow

1 2 3 4

L LG GCASE 4

1 2 3 4

G GL LCASE 5

1 2 3 4

CASE 8 L/G L/GL/G L/G

Liquid Split RatiosLiquid Split RatiosLiquid Split RatiosLiquid Split Ratios

Liquid Split ( GLCC# 2 over Total Flow) v.s. GVF

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.75 0.8 0.85 0.9 0.95 1

GVF

Liq

uid

Sp

lit

Case II

Case VII 1 2 3 4

L LL GCASE 2

1 2 3 4

G GL GCASE 7

Liquid Split RatiosLiquid Split RatiosLiquid Split RatiosLiquid Split Ratios

Gas Split ( GLCC# 2 over Total Flow) v.s. GVF

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.75 0.8 0.85 0.9 0.95 1

GVF

Ga

s S

pli

t

Case I

Case III

Case VI1 2 3 4

L GL LCASE 1

1 2 3 4

L GL G

CASE 3

1 2 3 4

L GG G

CASE 6

Gas Split RatiosGas Split RatiosGas Split RatiosGas Split Ratios

Gas Split ( GLCC# 2 over Total Flow) v.s. GVF

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.75 0.8 0.85 0.9 0.95 1

GVF

Ga

s S

pli

t

Case IV

Case V

Case VIIIEqual Flow

1 2 3 4

L LG GCASE 4

1 2 3 4

G GL LCASE 5

1 2 3 4

CASE 8 L/G L/GL/G L/G

Gas Split RatiosGas Split RatiosGas Split RatiosGas Split Ratios

Gas Split ( GLCC# 2 over Total Flow) v.s. GVF

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.75 0.8 0.85 0.9 0.95 1

GVF

Ga

s S

pli

t

Case II

Case VII

1 2 3 4

L LL GCASE 2

1 2 3 4

G GL GCASE 7

Gas Split RatiosGas Split RatiosGas Split RatiosGas Split Ratios

Liquid / Gas Split RatiosLiquid / Gas Split RatiosCases I / III / VICases I / III / VI

Liquid / Gas Split RatiosLiquid / Gas Split RatiosCases I / III / VICases I / III / VI

Liquid and Gas Split ( GLCC# 2 over Total Flow) v.s. GVF

Cases I / III / VI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.75 0.80 0.85 0.90 0.95 1.00G.V.F.

Liq

Sp

lit

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gas

Sp

lit

Case I

Case III

Case VI

LIQUID SPLIT

GAS SPLIT

Resistance Coefficient (Kl) for Manifold

Manifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance Coefficient

LIQ

WELLWELL

LIQ

WELLWELL

hh h h

Kl is calculated using the following equation

1)(

**22'

VK

sll

hg

Where V’sl is the liquid velocity in each liquid leg

Manifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance Coefficient

Kl v.s. Reynolds

0

10

20

30

40

50

60

70

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Re

Kl

LIQ

WELLWELL

LIQ

WELLWELL

Manifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance CoefficientManifold Resistance Coefficient

Transient PerformanceTransient PerformanceTransient PerformanceTransient Performance

Transient PerformanceVsg=0 ft/s

0.00

0.50

1.00

1.50

2.00

2.50

0 20 40 60 80 100 120 140

t (s)

Vsl

(ft

/s)

Total Flow In

Total Flow Out

Flow in GLCC # 2

Flow in GLCC # 1

Total Flow InTotal Flow In

Total Flow OutTotal Flow Out

GLCC # 1GLCC # 1

GLCC # 2GLCC # 2

Transient PerformanceVsg=6.7 ft/s

0.00

0.50

1.00

1.50

2.00

2.50

0 50 100 150 200

t (s)

Vs

l (f

t/s

)

Total Flow In

Total Flow Out

Flow in GLCC # 2

Flow in GLCC # 1

Transient PerformanceTransient PerformanceTransient PerformanceTransient Performance

Total Flow InTotal Flow In

Total Flow OutTotal Flow Out

GLCC # 1GLCC # 1

GLCC # 2GLCC # 2

Manifold DesignManifold DesignManifold DesignManifold Design

Diameter

Manifold

Outlets

Inlet Wells Arrangement

Design Example

Manifold SizingManifold SizingManifold SizingManifold Sizing

The Design Code is based on simplified Kelvin-Helmholtz stability analysis

The stabilizing gravity force acting on the wave is,

gCoshh GLGG '

The pressure suction force causing wave growth is given by,

22''

2

1GGG vvPP

Manifold SizingManifold SizingManifold SizingManifold Sizing

Two criteria were evaluated to determine the manifold

diameter

Criterion 1: Diameter is calculated only considering

each section separately

Manifold SizingManifold SizingManifold SizingManifold Sizing

Criterion 2: Diameter is calculated considering the

effect of one well on its neighbors

Outlets SizingOutlets SizingOutlets SizingOutlets Sizing

Liquid Outlets

1

2

lL K

ghV

L

L

V

QA

Gas Outlets

1

2

2

VKg

P

G

G

V

QA

Wells ArrangementWells ArrangementWells ArrangementWells Arrangement

Based on experimental results, two modifications were

proposed to Avila-Gomez model

Proposal 1: Make well arrangement based on ratio

Qmixture/Ql

Proposal 2: Make well arrangement locating wells with

high gas flow rates in middle section of manifold.

Design ExampleDesign ExampleDesign ExampleDesign Example

Example of manifold with seven wells connected

Design CodeDesign CodeDesign CodeDesign Code

Auto-arrangement considering proposal # 1

Design CodeDesign CodeDesign CodeDesign Code

Auto-arrangement considering proposal # 2

Future WorkFuture WorkFuture WorkFuture Work

Design Code

Safety TipSafety TipSafety TipSafety Tip

QUESTIONSQUESTIONSQUESTIONSQUESTIONS

?