tuija i. pulkkinen finnish meteorological institute helsinki, finland

23
Inner magnetospheric dynamics: How the solar wind and outer magnetosphere drive the radiation belts and ring current - Recent advances - Challenges Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland

Upload: zareh

Post on 05-Feb-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Inner magnetospheric dynamics: How the solar wind and outer magnetosphere drive the radiation belts and ring current - Recent advances - Challenges. Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland. Space weather chain. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetospheric dynamics: How the solar wind and outer magnetosphere drive theradiation belts and ring current

- Recent advances - Challenges

Tuija I. PulkkinenFinnish Meteorological Institute Helsinki, Finland

Page 2: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Space weather chain

1. Solar activity drives solar wind structures and dynamics

2. Solar windinteraction drives magnetosphericdynamics

3. Inner magnetosphereresponds to solar wind and magnetospheric driving

Page 3: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetosphereplasmas• Plasmasphere

• 1-10 eV ions

• ionospheric origin

• Ring current

• 50-500 keV ions

• both ionospheric and solar wind origin

• Outer radiation belt

• 0.1-10 MeV electrons

• magnetospheric origin

(Goldstein et al.)

(Goldstein et al.)

(Reeves et al.)

Page 4: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetospheremodels• Plasmasphere

• cold ion drifts

• electric field

• Ring current

• particle tracing

• drift approximation not always valid!

• Outer radiation belt

• diffusion models

• Mostly: no couplings!

(Goldstein et al.)

(Goldstein et al.)

(Reeves et al.)

Page 5: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Large-scale models for inner magnetosphere

Fluid description

• MHD simulations solve self-consistent (single-) fluid equations

Kinetic description

• RAM-codes solve the bounce-averaged Vlasov equation in given electromagnetic fields

Empirical models

• magnetic field evolution from fitting empirical models to observations

• particle tracing in drift approximation

Difficulties in modeling the inner magnetosphere

• coupling to ionosphere and solar wind driver important

• coupling of large-scale and microscale processes

• multiple plasma populations (cold plasmasphere, plasma sheet, ring current, radiation belts)

• highly varying E and B in multiple scales

• poor observational coverage (especially electric field)

Page 6: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Space weather chain

1. Solar activity: what is the solar wind ?

2. What are thekey processes ?-reconnection-energy transport

3. What are the couplingsto the ionosphere and inner magnetosphere ?

MHD simulations:

Outer boundary: solar driving

Inner boundary:inner magnetosphere

boundary condition

Page 7: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

GUMICS-4 global MHD simulation

Inputs

Solar windand IMF

Solar EUVproxy F10.7

Earth’s dipole field

Models

Ideal MHD Ideal MHD in solar windin solar windand magneto-and magneto-spheresphere

ElectrostaticElectrostaticequations inequations inionosphereionosphere

Couplings

Mapping to ionosphere- precipitation - FAC

Mapping tomagnetosphere- potential

Ma

gn

etos

ph

ereM

ag

neto

sp

here

Ion

os

ph

ere

Ion

os

ph

ere

Page 8: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

X-line controls energy conversion and inputX-line Energy conversion Energy input

Change of field topology

(Laitinen et al., 2006, 2007)

Page 9: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

X-line controls energy conversion and inputX-line Energy conversion Energy input

Conversion fromplasma to magneticenergy

(Laitinen et al., 2006, 2007)

Page 10: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

X-line controls energy conversion and inputX-line Energy conversion Energy input

Energy flux fromsolar wind intomagnetosphere

(Laitinen et al., 2006, 2007)

Page 11: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

high P

low P

Both Bz and Psw control energy entry

Energy entry:

• driven by reconnection, (IMF Bz), modulated by pressure Psw

Energy conversion:

• strong B-annihilation at the nose, flux generation behind cusps

Ionospheric dissipation:

• driven by frontside reconnection (IMF Bz), rate controlled by Psw

(Pulkkinen et al, JASTP, 2007)

Page 12: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Both Bz and Psw control energy entry

Energy entry:

• driven by reconnection, (IMF Bz), modulated by pressure Psw

Energy conversion:

• strong B-annihilation at the nose, flux generation behind cusps

Ionospheric dissipation:

• driven by frontside reconnection (IMF Bz), rate controlled by Psw

(Pulkkinen et al, JASTP, 2007)

Page 13: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

high P

low P

Both Bz and Psw control energy entry

Energy entry:

• driven by reconnection, (IMF Bz), modulated by pressure Psw

Energy conversion:

• strong B-annihilation at the nose, flux generation behind cusps

Ionospheric dissipation:

• driven by frontside reconnection (IMF Bz), rate controlled by Psw

(Pulkkinen et al, JASTP, 2007)

Page 14: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Tail dynamics determined by driver • Increasing EY = V.Bz changes magnetospheric response

• increasing Bz stabilizes tail• increasing V increases fluctuations and variability

original run increased Bz increased V

(Pulkkinen et al, GRL, 2007)

Page 15: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Conclusions from MHD simulations• Energy entry controlled by reconnection

• energy input through magnetopause determines ionospheric dissipation and tail reconnection efficiency

• Solar wind speed is a key controlling factor

• for the same Ey:

• higher V and lower IMF Bz higher activity

• lower V and higher IMF Bz lower activity

• for the same pressure Psw:

• higher V and lower N higher activity

• lower V and higher N lower activity

Page 16: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Empirical magnetic field modeling

Event-oriented magnetic field models

• empirical formulation of magnetospheric current systems based on Tsyganenko models

• give evolution of current systems for specific events

Page 17: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

magneto-pause

ringcurrent

tailcurrent

What creates Dst?

Early main phase:

• tail current intensifies, causes Dst drop

Later main phase:

• ring current develops, causes Dst minimum

Moderate storms:

• tail current dominates

Intense storms:

• ring current dominates (Ganushkina et al, 2004)

Page 18: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Drift modeling of particle motion

Particle motion in drift approximation

• conservation of 1st and 2nd adiabatic invariants

• prescribed electric and magnetic fields (test particle approach)

• gives ion energy distributions in the inner magnetosphere

Page 19: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

What drives inner magnetosphere fluxes?

20 - 80 keV 80 - 200 keVStandard case:

• constant dipole B-field, Volland-Stern convection

• low fluxes, low energy

Empirical model case:

• time-dependent B-field, convection from ionosphere (Boyle)

• larger fluxes, more high-energy particles

Dipole

Empirical fields

(Ganushkina et al., 2006)

Page 20: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Conclusions from empirical models• Inner magnetosphere energy density controlled by

(small-scale) electric and magnetic field variations

• rapid, small-scale variations lead to higher fluxes and more energization of the ring current

• Accurate representation of the large-scale fields is critical for ring current evolution

• B-field variations change particle orbits which leads to losses to magnetopause

• B-field and E-field variations energize particles much more than adiabatic inward convection

Page 21: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetosphereinteractions• Plasmasphere

• supports low-frequency waves

• Ring current

• modifies magnetic field

• participates in wave generation

• Outer radiation belt

• electrons accelerated and scattered by waves

(from Reeves, after Summers et al.)

Page 22: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetospherechallenges• Generation of waves

• interactions between plasmas and fields

• Net balance between sources and losses

• identification of all processes

• External driving

• solar wind, magnetosphere, and ionosphere

WARP Waves andAcceleration of RelativisticParticles

Pulkkinen et al.Cosmic vision call 2007

Page 23: Tuija I. Pulkkinen Finnish Meteorological Institute  Helsinki, Finland

Inner magnetospherechallenges• Wave properties

• chorus, hiss, EMIC wave amplitudes, growth rates, location

• Wave-particle interactions

• energy, pitch-angle diffusion

• External driving

• plasma sheet sources, E & B fields, diffusion rates, ionospheric outflow

• solar wind coupling

WARP Waves andAcceleration of RelativisticParticles

Pulkkinen et al.Cosmic vision call 2007