tugas utilitas

13
Steam Generation system 5.1 Introduction The steam generating system, frequently called the boiler, is a system that transfers the heat from the products of combustion to water and produces hot water or steam. The combustion is accomplished in a furnace. Heat is transferred in the furnace mainly by radiation to water-cooled walls, which constitutes the evaporation section of the steam generation system. After leaving the furnace, the gases pass through a superheater in which steam receives heat from the gases and has its temperature raised above the saturation temperature. Since the temperature of the gases leaving the superheater section is still high, modern steam generators often employ additional heat transfer surfaces to utilize the thermal energy of the gases. These include the surfaces of reheaters, economizers, and air-preheaters. Boilers may be classified into three categories according to their applications. These include industrial, marine, and central electric power station. Generally, the industrial boilers produces saturated steam or hot water with flow rates up to 50.000 lb/hr. The pressure condition is frequently 300 psia or lower. The marine boilers are much larger and usually produces superheated steam at the conditions around 900 psia and 1000⁰F. The boilers for electric power generation stasions are quite different in terms of steam conditions and generation rates. These boiler can produces steamat the rate up to several million pounds per hour. The steam pressure may be either supercritical or subcritical and the temperature is frequently around 1000⁰F. In this chapter attention is only given to boilers use for electric power generation.

Upload: akhmadsumarno

Post on 15-Nov-2015

214 views

Category:

Documents


2 download

DESCRIPTION

haha

TRANSCRIPT

Steam Generation system

5.1 IntroductionThe steam generating system, frequently called the boiler, is a system that transfers the heat from the products of combustion to water and produces hot water or steam. The combustion is accomplished in a furnace. Heat is transferred in the furnace mainly by radiation to water-cooled walls, which constitutes the evaporation section of the steam generation system. After leaving the furnace, the gases pass through a superheater in which steam receives heat from the gases and has its temperature raised above the saturation temperature. Since the temperature of the gases leaving the superheater section is still high, modern steam generators often employ additional heat transfer surfaces to utilize the thermal energy of the gases. These include the surfaces of reheaters, economizers, and air-preheaters.

Boilers may be classified into three categories according to their applications. These include industrial, marine, and central electric power station. Generally, the industrial boilers produces saturated steam or hot water with flow rates up to 50.000 lb/hr. The pressure condition is frequently 300 psia or lower. The marine boilers are much larger and usually produces superheated steam at the conditions around 900 psia and 1000F. The boilers for electric power generation stasions are quite different in terms of steam conditions and generation rates. These boiler can produces steamat the rate up to several million pounds per hour. The steam pressure may be either supercritical or subcritical and the temperature is frequently around 1000F. In this chapter attention is only given to boilers use for electric power generation.

Boilers may also be classified according to the relative positions of products of combustion. In one type boiler, called the fire-tube boiler, the products of combustion flow through tubes surrounded by water. This type of boiler is frequently used in most steam locomotives, in small factories, and sometimes in heating buildings. In another type of boiler, called the water-tube boiler, the products of combustion flow over water-filled tubes. Both ends of the water tubes are connected to the headers or the boiler drums. In the drum the steam is separated from the saturated water. Then, the saturated steam usually goes to the superheater in which the steam temperature is increased. All high-pressure and large boilers are of the water-tube type. The small tubes in the water-tube boiler can withstand high pressure better than the large drums of a fire-tube boiler.

Boilers are operated by firing various fuels. These fuels include bituminous coal, lignite, natural gas, and oil. Different fuels result in different boiler designs and operations. In the United States coal is the most prevalent fuel used in central electric power stations.

Use of steam for electric power generation in this country did not start until the year 1881. In that year the Brush Electric Light Company in Philadelphia started to generate steam from four 73hp boilers. In 1903, Commonwealth Edison Company became the first utility to run steam turbines exclusively for electric power generation. In the Commonwealth Edison Plant, 96 boiler, each rated at 508 hp, were installed and used to supply the turbines with the steam at 170 psia and 434F. in the ;last several decades progress has been made in steam generator development. Like turbine development, the progress is mainly in the areas of steam conditions and unit size. At the present most units generate steam at 2400 psia, 1000F. to attain high system efficiency, the steam generator usually consists of the evaporation section, superheaters, reheaters, economizers, and air preheaters. In power plant system design one steam generator is frequently used to match one turbine unit. Because of this, steam generator unit size increases as turbine unit size increases. For a 800 MW plant, a single steam generator produces almost 6 million pounds of steam per hour.

5.2 Boiler ArrangementsAll power station boilers are of the water-tube type. Water circulates within the tubes and partially becomes steam as it receives heat from the products of combustion. When water circulation within the boiler takes place due to its own density difference, it is called the natural circulation boiler. In this type of boiler, water from the boiler drum first flows downward to the bottom of the heated evaporative tubes through several pipes (frequently called downcomers). Then, the water reverses its flow direction and returns to the drum as it receives the heat from the furnace. Since the evaporative tubes (frequently called risers) contain a mixture of steam and water, the average density in the riser is always lower than that in the downcomer. This density difference gives rise to a driving force that will overcome all friction in the water stean circuit. Figure 5-1 shows a schematic diagram of water tube boiler operating on the natural circulation principle. Natural circulation is a simple and efficient technique and is frequently employed in boiler designs.

As the boiler pressure becomes higher and higher, the difference in density of the fluid between the downcomers and the risers will become less and less. At a certain boiler pressure, the driving force, which is proportional to the density difference, is not sufficiently large to balance the frictional resistance. One alternative is to employ pumps to force the water through the evaporative tubes. The boiler using circulation pumps is called the forced circulation boiler. Figure 5-1 shows a schematic diagram of forced circulation water tube boiler. It is seen that the circulation pumps take the water from the drum and supply it to the headers at the bottom of the boiler. From the headers water moves upward as it receives heat from the products of combustion. Becaused sufficient driving force is available, smaller diameter tubes can be used in the forced circulation boiler. Furthermore, it is possible to apply an orifice to each tube so that more uniform flow and tube temperature can be achieved. These advantages frequently offset the cost of circulation pumps and their pumping power. Similar to the forced circulation boiler is the once through boiler shown in Fig. 5-1. It is seen that there is no boiler drum. Water flows throught the evaporation section without any recirculation. This arrangement is frequently employed when the steam pressure in the boiler is supercritical.

In the three boiler arrangements just introduced, each has its own economizer, evaporator section and superheater. Not shown in the diagrams is the reheater and air preheater, which are usually employed in modern boiler design. The economizer is a heat exchanger used to increase feedwater temperature. The evaporation section, which usually surrounds the boiler furnace, is to produce saturated steam and supply it to the superheater. In the superheater the steam is further heated and has its temperature raised to the level above the saturation temperature. Then, the superheated steam flows to the turbine-generator throttle for power production. The reheater, when included in a steam generator, is usually installed in the location adjacent to the superheater. The reheater receives the steam absorbs heat from the high-pressure turbine after the steam partially expands. In the reheater, steam absorbs heat from the products of combustion and has its own temperature increased. Usually, the outlet temperature is identical to the temperature of the steam leaving the superheater. To maintain high furnace temperature and boiler efficiency, an air preheater is frequently employed in boiler design. It is usually installed in the location just before the hot gases leave the steam generation system. More discussion on these components will be presented later.

The products of combustion are generated in the boiler furnace. The hot gases first transfer heat to the evaporation section by radiation and convection. Then, these gases exit the furnace and enter the superheater and the reheater zone. In these zones the gases further transfer heat away. The basic heat transfer mechanisms are still convection and radiation. Next along the gas path is the economizer. In the economizer heat is transferred to the feed water from the gases. Because of the low temperature in the products of combustion, convective heat transfer is the prevalent mode. In the air preheater, the gas temperature is further reduced. The lower the gas temperature, the higher the boiler efficiency will be. However, the gas temperature should not be lower than the dew point of water vapor in the gases. Any water condensation will give rise to a formation of liquid acid, which results in a corrosion of the air heater surfaces.

Figure 5-2 illustrates the design of a typical water-tube boiler with natural circulation. For this type of boiler the capacity varies from 300.000 l/hr to 7.000.000 lb/hr. the steam conditions are usually subcritical with throttle pressure 1.800 to 2.520 psia and the temperature around 1000F. The boiler can use coal lignite, oil and natural gas as the fuel. In case of burning coal or lignite, the boiler firing equipment is either a pulverizer-burner system or a cyclone furnace. Usually the boiler is completely automatic, including combustion, steam temperature, and feedwater flow.

The design of a typical once-through boiler is illustrated in figure 5-3. This type of boiler is usually applied to a large turbine-generation unit size. The generating capacity can exceed 10.000.000 lb/hr. when the subcritical steam is generated, the conditions are usually 2400 or 2520 psia for throttle pressure and 1000F for throttle temperature. For supercritical steam, the throttle pressure is 3500 psia or higher. Like the natural-circulation boiler, this type of boiler can burn coal, lignite, oil, and natural gas. In a once-through boiler the feedwater pump speed and turbine throttle are used to control the steam flow and steam pressure. Steam temperature is controlled by the fuel firing rate and the gas tempering. The temperature of steam leaving the reheater is also important. It is frequently controlled by gas-recirculation and or attemperation. A further discussion of temperature control is presented later in this chapter.

Most central station boilers are equipped with air pollution control system. These often include an efficient precipitator and sometimes an SO2 removal system. In addition, sufficient stack height is frequently used to ensure an acceptable level of pollution concentration in the plants surroundings.

SISTEM GENERASI UAP

5.1 PengantarSistem pembangkit uap, sering disebut boiler, adalah sistem yang memindahkan panas dari produk pembakaran terhadap air dan menghasilkan air panas atau uap. Pembakaran ini dilakukan dalam tungku. Panas dipindahkan dalam tungku terutama oleh radiasi dinding air - dingin, yang merupakan bagian penguapan sistem pembangkitan uap. Setelah meninggalkan tungku, gas melewati superheater di mana uap menerima panas dari gas dan suhu telah dinaikkan di atas suhu saturasi. Karena suhu gas meninggalkan bagian superheater masih tinggi, generator uap modern sering menggunakan tambahan permukaan perpindahan panas untuk memanfaatkan energi panas dari gas. Ini termasuk permukaan alat pemanas kembali, economizer, dan udara - preheaters.

Boiler dapat diklasifikasikan ke dalam tiga kategori sesuai dengan aplikasi mereka. Ini termasuk industri, kelautan, dan pembangkit listrik pusat. Secara umum, industri boiler menghasilkan uap jenuh atau air panas dengan laju aliran hingga 50,000 / jam. Kondisi tekanan sering 300 psia atau lebih rendah. Boiler laut yang jauh lebih besar dan biasanya menghasilkan uap superheated pada kondisi sekitar 900 psia dan 1000F. Boiler untuk pembangkit pembangkit tenaga listrik yang cukup berbeda dalam hal kondisi uap dan tingkat generasi. Boiler ini dapat menghasilkan uap pada tingkat hingga beberapa juta pound per jam. Tekanan uap dapat berupa superkritis atau subkritis dan suhu sering sekitar 1000F. Dalam bab ini perhatian hanya diberikan kepada boiler digunakan untuk pembangkit tenaga listrik.

Boiler juga dapat diklasifikasikan sesuai dengan posisi relatif produk pembakaran. Dalam satu jenis boiler, yang disebut boiler api tabung, produk aliran pembakaran melalui tabung yang dikelilingi oleh air. Jenis boiler sering digunakan di sebagian besar lokomotif uap, di pabrik-pabrik kecil, dan kadang-kadang di gedung-gedung pemanasan. Dalam jenis lain dari boiler, yang disebut boiler air tabung, produk aliran pembakaran atas tabung berisi air. Kedua ujung tabung air terhubung ke header atau drum boiler. Dalam drum uap dipisahkan dari air jenuh. Kemudian, uap jenuh biasanya pergi ke superheater di mana suhu uap meningkat. Semua tekanan tinggi dan boiler besar adalah dari jenis air tabung. Tabung kecil di ketel air tabung dapat menahan tekanan tinggi lebih baik dari drum besar boiler api tabung.

Boiler dioperasikan dengan menembakkan berbagai bahan bakar. Bahan bakar ini termasuk batubara bituminous, lignite, gas alam, dan minyak. Bahan bakar yang berbeda menghasilkan desain dan operasi boiler yang berbeda dan operasi. Di batubara Amerika Serikat adalah bahan bakar yang paling umum digunakan dalam pembangkit listrik listrik pusat.

Penggunaan uap untuk pembangkit tenaga listrik di negara ini tidak mulai sampai tahun 1881. Pada tahun itu Brush Electric Light Company di Philadelphia mulai menghasilkan uap dari empat boiler 73hp. Pada tahun 1903, Commonwealth Edison menjadi Perusahaan utilitas pertama yang menjalankan turbin uap khusus untuk pembangkit tenaga listrik. Di Commonwealth Edison Plant, 96 boiler, masing-masing peringkat 508 hp, dipasang dan digunakan untuk memasok turbin dengan uap pada 170 psia dan 434F. Dalam beberapa dekade terakhir kemajuan telah dibuat dalam pengembangan pembangkit uap. Seperti pembangunan turbin, kemajuan terutama di bidang kondisi uap dan ukuran unit. Saat ini sebagian besar unit menghasilkan uap pada 2400 psia, 1000F. Untuk mencapai efisiensi sistem yang tinggi, generator uap biasanya terdiri dari bagian penguapan, superheaters, reheaters, economizers, dan preheaters udara. Dalam sistem pembangkit listrik desain satu generator uap sering digunakan untuk mencocokkan satu unit turbin. Karena itu, generator uap ukuran unit meningkat sebagai ukuran unit turbin meningkat. Untuk MW 800 plant, generator uap tunggal menghasilkan hampir 6 juta pon uap per jam.

5.2 Pengaturan Boiler Semua boiler pembangkit listrik adalah dari jenis air tabung. Air bersirkulasi dalam tabung dan sebagian menjadi uap karena menerima panas dari produk pembakaran. Ketika sirkulasi air dalam boiler terjadi karena perbedaan densitas sendiri, hal itu disebut alam - boiler sirkulasi. Dalam jenis boiler, air dari drum boiler pertama mengalir ke bagian bawah tabung penguapan dipanaskan melalui beberapa pipa (sering disebut downcomers). Kemudian, air berbalik arah aliran dan kembali ke drum karena menerima panas dari tungku. Karena tabung menguapkan (sering disebut anak tangga) mengandung campuran uap dan air, kepadatan rata-rata di riser selalu lebih rendah dari downcomer. Perbedaan densitas ini menimbulkan kekuatan pendorong yang akan mengatasi semua gesekan di dalam air - sirkuit uap. Gambar 5-1 menunjukkan diagram skematik air - tabung boiler beroperasi pada prinsip sirkulasi alami. Sirkulasi alami adalah teknik sederhana dan efisien dan sering digunakan dalam desain boiler.

Sebagai tekanan boiler menjadi lebih tinggi dan lebih tinggi, perbedaan densitas fluida antara downcomers dan anak tangga akan menjadi kurang dan kurang. Pada tekanan boiler tertentu, kekuatan pendorong, yang sebanding dengan perbedaan kepadatan, tidak cukup besar untuk menyeimbangkan perlawanan gesekan. Salah satu alternatifnya adalah menggunakan pompa untuk memaksa air melalui tabung menguapkan. Boiler menggunakan pompa sirkulasi disebut sirkulasi boiler paksa. Gambar 5-1 menunjukkan diagram skematik dipaksa sirkulasi air - tabung boiler. Hal ini terlihat bahwa pompa sirkulasi mengambil air dari drum dan pasokan ke header di bagian bawah boiler. Dari header air bergerak ke atas karena menerima panas dari produk pembakaran. Karena disebabkan kekuatan pendorong yang cukup tersedia, tabung diameter yang lebih kecil dapat digunakan dalam paksa - boiler sirkulasi. Selanjutnya, adalah mungkin untuk menerapkan sebuah lubang untuk masing-masing tabung sehingga aliran dan tabung suhu lebih seragam dapat dicapai. Keuntungan ini sering meringankan biaya pompa sirkulasi dan kekuatan memompa mereka. Serupa dengan paksa - boiler sirkulasi sekali - melalui boiler ditunjukkan pada Gambar. 5-1. Hal ini terlihat bahwa tidak ada boiler drum yang. Air mengalir pikir bagian penguapan tanpa resirkulasi apapun. Susunan ini sering digunakan ketika tekanan uap dalam boiler adalah superkritis.

Dalam tiga pengaturan boiler baru saja memperkenalkan, masing-masing memiliki economizer, bagian evaporator sendiri dan superheater. Tidak ditampilkan dalam diagram adalah alat pemanas dan udara preheater, yang biasanya digunakan dalam desain boiler modern. Economizer adalah penukar panas yang digunakan untuk meningkatkan suhu air umpan. Bagian penguapan, yang biasanya mengelilingi tungku boiler, adalah untuk menghasilkan uap jenuh dan pasokan ke superheater. Dalam superheater uap yang selanjutnya dipanaskan dan suhunya telah dinaikkan ke tingkat di atas suhu saturasi. Kemudian, uap superheated mengalir ke throttle turbin-generator untuk produksi listrik. Alat pemanas, ketika dimasukkan dalam generator uap, biasanya dipasang di lokasi yang berdekatan dengan superheater. Alat pemanas menerima uap menyerap panas dari turbin bertekanan tinggi setelah uap sebagian mengembang. Dalam alat pemanas itu, uap menyerap panas dari produk pembakaran dan memiliki suhu sendiri meningkat. Biasanya, suhu outlet identik dengan suhu uap meninggalkan superheater. Untuk menjaga suhu tungku yang tinggi dan efisiensi boiler, sebuah pemanas awal udara sering digunakan dalam desain boiler. Hal ini biasanya dipasang di lokasi sebelum gas panas meninggalkan sistem pembangkitan steam. Diskusi lebih lanjut tentang komponen ini akan disajikan nanti.

Produk pembakaran yang dihasilkan dalam tungku boiler. Gas panas pertama mentransfer panas ke bagian penguapan oleh radiasi dan konveksi. Kemudian, gas-gas ini keluar tungku dan masukkan superheater dan zona alat pemanas. Dalam zona ini gas lebih mentransfer panas pergi. Mekanisme perpindahan panas dasar masih konveksi dan radiasi. Selanjutnya di sepanjang jalur gas economizer. Dalam panas economizer ditransfer ke air umpan dari gas. Karena suhu rendah dalam produk pembakaran, perpindahan panas konvektif adalah modus umum. Dalam pemanas awal udara, suhu gas jauh berkurang. Semakin rendah suhu gas, akan menjadi semakin tinggi efisiensi boiler. Namun, suhu gas tidak boleh lebih rendah dari titik embun uap air dalam gas. Setiap kondensasi air akan menimbulkan pembentukan asam cair, yang menghasilkan korosi dari permukaan pemanas udara.

Gambar 5-2 mengilustrasikan desain air-tabung boiler khas dengan sirkulasi alami. Untuk jenis boiler kapasitas bervariasi dari 300.000 lb/ jam sampai 7.000.000 lb / hr. kondisi uap biasanya subkritis dengan tekanan throttle 1800-2520 psia dan suhu sekitar 1000F. Boiler dapat menggunakan lignit batubara, minyak dan gas alam sebagai bahan bakar. Dalam kasus pembakaran batu bara atau lignit, peralatan boiler pembakaran adalah baik sistem semprot-burner atau tungku siklon. Biasanya boiler benar-benar otomatis, termasuk pembakaran, temperatur uap, dan aliran air umpan.

Desain khas sekali melalui boiler diilustrasikan pada Gambar 5-3. Jenis boiler biasanya diterapkan pada ukuran unit turbin generasi besar. Kapasitas pembangkit dapat melebihi 10.000.000 lb / hr. ketika uap subkritis dihasilkan, kondisi biasanya 2400 atau 2520 psia untuk tekanan throttle dan 1000F untuk suhu throttle. Untuk uap superkritis, tekanan throttle 3500 psia atau lebih tinggi. Seperti boiler alam-sirkulasi, jenis boiler dapat membakar batubara, lignit, minyak, dan gas alam. Dalam boiler sekali melalui kecepatan pompa air umpan dan throttle turbin digunakan untuk mengontrol aliran steam dan tekanan steam. Suhu uap dikendalikan oleh laju pembakaran bahan bakar dan tempering gas. Suhu uap meninggalkan alat pemanas juga penting. Hal ini sering dikendalikan oleh gas-resirkulasi dan atau temperation. Sebuah diskusi lebih lanjut tentang kontrol suhu disajikan kemudian dalam bab ini.

Kebanyakan boiler stasiun pusat dilengkapi dengan sistem kontrol polusi udara. Ini sering mencakup precipitator efisien dan kadang-kadang sistem penghapusan SO2. Selain itu, tinggi tumpukan cukup sering digunakan untuk memastikan tingkat yang dapat diterima konsentrasi polusi di pabrik sekitarnya.