trigonometric functions sine function

18
Trigonometric Functions Sine Function A periodic function repeats the same value at equal intervals of the independent variable (the pattern repeats). Ex: A sine function is a periodic function. Knowing this will help graph and/or solve sine functions. The basic rule of a sine function is: = sin The period is the length of one cycle (2) The frequency is how often the cycle happens per unit time – the reciprocal of the period ( 1 2 ) The amplitude is the distance from the center to the highest (or lowest) point (1) The maximum is 1. The minimum is βˆ’1. So the range is [βˆ’1, 1] The domain is ] βˆ’ ∞, ∞[ The zeros are integer multiples of

Upload: others

Post on 07-Apr-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trigonometric Functions Sine Function

Trigonometric Functions Sine Function A periodic function repeats the same value at equal intervals of the independent variable (the pattern repeats). Ex: A sine function is a periodic function. Knowing this will help graph and/or solve sine functions. The basic rule of a sine function is:

𝑦 = sin π‘₯

The period is the length of one cycle (2πœ‹)

The frequency is how often the cycle happens per unit time – the reciprocal of the period (1

2πœ‹)

The amplitude is the distance from the center to the highest (or lowest) point (1) The maximum is 1. The minimum is βˆ’1. So the range is [βˆ’1, 1] The domain is ] βˆ’ ∞, ∞[ The zeros are integer multiples of πœ‹

Page 2: Trigonometric Functions Sine Function

The transformed sine function is 𝑦 = π‘Ž sin(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜

The amplitude is β€œa” and it is a vertical stretch and/or reflection over the x-axis.

π‘Ž =π‘“π‘šπ‘Žπ‘₯βˆ’π‘“π‘šπ‘–π‘›

2

The frequency is β€œb” and it is a horizontal stretch and/or reflection over the y-axis.

The period is calculated using π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ = 2πœ‹

|𝑏|

β€œh” is a horizontal translation (phase shift) β€œk” is a vertical translation (h,k) is a β€œstarting” point on the curve The maximum is π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| and the minimum is π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž| If π‘Žπ‘ > 0, then start by going up from (h,k) If π‘Žπ‘ < 0, then start by going down from (h,k)

Page 3: Trigonometric Functions Sine Function

Sketching a Sine Function To sketch a sine function:

1) Determine a, b, h, k 2) Find period, max, min, and starting point 3) Determine if going up or down from starting point 4) Use period and min/max to label graph 5) Plot starting point and additional points for one cycle 6) Sketch and graph additional cycles as necessary

Ex: Sketch the function 𝑦 = 2 sin π‘₯ π‘Ž = 2, 𝑏 = 1, β„Ž = 0, π‘˜ = 0 π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž|, π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| π‘šπ‘–π‘› = 0 βˆ’ |2|, π‘šπ‘Žπ‘₯ = 0 + |2| π‘šπ‘–π‘› = βˆ’2, π‘šπ‘Žπ‘₯ = 2

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

1= 2πœ‹

π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘: (0,0) π‘Žπ‘ > 0 π‘ π‘œ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”

Ex: Sketch the function 𝑦 = sin 2π‘₯ π‘Ž = 1, 𝑏 = 2, β„Ž = 0, π‘˜ = 0 π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž|, π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| π‘šπ‘–π‘› = 0 βˆ’ |1|, π‘šπ‘Žπ‘₯ = 0 + |1| π‘šπ‘–π‘› = βˆ’1, π‘šπ‘Žπ‘₯ = 1

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

2= πœ‹

π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘: (0,0) π‘Žπ‘ > 0 π‘ π‘œ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”

Page 4: Trigonometric Functions Sine Function

Ex: Sketch the function 𝑦 = 3 sin(1

2( π‘₯ βˆ’ πœ‹)) + 1

π‘Ž = 3, 𝑏 =1

2, β„Ž = πœ‹, π‘˜ = 1

π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž|, π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| π‘šπ‘–π‘› = 1 βˆ’ |3|, π‘šπ‘Žπ‘₯ = 1 + |3| π‘šπ‘–π‘› = βˆ’2, π‘šπ‘Žπ‘₯ = 4

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

1/2= 4πœ‹

π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘: (πœ‹, 1πœ‹) π‘Žπ‘ > 0 π‘ π‘œ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”

Ex: Sketch the function 𝑦 = βˆ’2 sin (Ο€

4( π‘₯ βˆ’ 3)) βˆ’ 2

π‘Ž = βˆ’2, 𝑏 =πœ‹

4, β„Ž = 3, π‘˜ = βˆ’2

π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž|, π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| π‘šπ‘–π‘› = βˆ’2 βˆ’ |βˆ’2|, π‘šπ‘Žπ‘₯

= βˆ’2 + |βˆ’2| π‘šπ‘–π‘› = βˆ’2 βˆ’ 4, π‘šπ‘Žπ‘₯ = 0

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

πœ‹/4= 8

π‘ π‘‘π‘Žπ‘Ÿπ‘‘π‘–π‘›π‘” π‘π‘œπ‘–π‘›π‘‘: (3, βˆ’2) π‘Žπ‘ < 0 π‘ π‘œ π‘‘π‘’π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”

Page 5: Trigonometric Functions Sine Function

Solving Sine Functions To solve for y given x, plug in x and solve (in radians)

Ex: Given 𝑓(π‘₯) = 4 sin (πœ‹

6(π‘₯ + 1)) βˆ’ 3, determine the initial value of 𝑓(π‘₯).

𝑓(π‘₯) = 4 sin (πœ‹

6(π‘₯ + 1)) βˆ’ 3

𝑓(0) = 4 sin (πœ‹

6(0 + 1)) βˆ’ 3

𝑓(0) = 4 sin (πœ‹

6(1)) βˆ’ 3

𝑓(0) = 4 sin (πœ‹

6) βˆ’ 3

𝑓(0) = 4 (1

2) βˆ’ 3

𝑓(0) = 2 βˆ’ 3

𝑓(0) = βˆ’1 To solve for x given y:

1. Isolate sin(𝑏(π‘₯ βˆ’ β„Ž)) and let (𝑏(π‘₯ βˆ’ β„Ž)) = πœƒ if 𝑏 β‰  1 π‘œπ‘Ÿ β„Ž β‰  0

2. Use CAST rule or unit circle to solve for πœƒ

3. Let (𝑏(π‘₯ βˆ’ β„Ž)) = πœƒ and solve for x

4. Solve for x over the given domain

Ex: Solve 2 sin π‘₯ βˆ’ √3 = 0 over 0 ≀ πœƒ ≀ 2πœ‹

2 sin π‘₯ βˆ’ √3 = 0

2 sin π‘₯ = √3

sin π‘₯ =√3

2

π‘₯ =πœ‹

3 π‘Žπ‘›π‘‘

2πœ‹

3

Ex: Solve 4 sin π‘₯ + 3 = 0 over 0 ≀ πœƒ ≀ 2πœ‹

4 sin π‘₯ + 3 = 0 4 sin π‘₯ = βˆ’3

sin π‘₯ = βˆ’3

4 in quadrants 3 and 4

πœƒπ‘… = 0.8481 πœƒ1 = πœ‹ + 0.8481 = 3.9897

πœƒ2 = 2πœ‹ βˆ’ 0.8481 = 5.4351 So π‘₯ = 3.9897 π‘Žπ‘›π‘‘ 5.4351

Page 6: Trigonometric Functions Sine Function

Ex: Solve sin π‘₯ + 6 = 2 0 over 0 ≀ πœƒ ≀ 2πœ‹

sin π‘₯ + 6 = 2 sin π‘₯ = βˆ’4

NO SOLUTION

Ex: Solve 3 sin(π‘₯ βˆ’ πœ‹) + 3 = 0 over 0 ≀ πœƒ ≀ 8πœ‹

3 sin(π‘₯ βˆ’ πœ‹) + 3 = 0 3 sin(π‘₯ βˆ’ πœ‹) = βˆ’3 sin(π‘₯ βˆ’ πœ‹) = βˆ’1

sin πœƒ = βˆ’1

πœƒ =3πœ‹

2

π‘₯ βˆ’ πœ‹ =3πœ‹

2

π‘₯ =5πœ‹

2

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

|𝑏|=

2πœ‹

1= 2πœ‹

So

π‘₯ =5πœ‹

2,5πœ‹

2+ 2πœ‹,

5πœ‹

2+ 4πœ‹

Also

π‘₯ =5πœ‹

2βˆ’ 2πœ‹

Therefore:

π‘₯ =πœ‹

2,5πœ‹

2,9πœ‹

2,13πœ‹

2

Ex: Solve 6 sin(πœ‹(π‘₯ βˆ’ 1)) = βˆ’3

6 sin(πœ‹(π‘₯ βˆ’ 1)) = βˆ’3

sin(πœ‹(π‘₯ βˆ’ 1)) = βˆ’1

2

sin πœƒ = βˆ’1

2

πœƒ =7πœ‹

6 π‘Žπ‘›π‘‘

11πœ‹

6

πœ‹(π‘₯ βˆ’ 1) =7πœ‹

6 π‘Žπ‘›π‘‘ πœ‹(π‘₯ βˆ’ 1) =

11πœ‹

6

π‘₯ βˆ’ 1 =7

6 π‘Žπ‘›π‘‘ π‘₯ βˆ’ 1 =

11

6

π‘₯ =13

6 π‘Žπ‘›π‘‘ π‘₯ =

17

6

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

|𝑏|=

2πœ‹

πœ‹= 2

Therefore:

π‘₯ =13

6+ 2𝑛 π‘Žπ‘›π‘‘ π‘₯ =

17

6+ 2𝑛

Page 7: Trigonometric Functions Sine Function

Ex: Given 𝑓(π‘₯) = 4 sin (πœ‹

6(π‘₯ + 8)) + 4 over a domain of [0, 30]

For what values of x is 𝑦 = 6?

4 sin (πœ‹

6(π‘₯ + 8)) + 4 = 6

4 sin (πœ‹

6(π‘₯ + 8)) = 2

sin (πœ‹

6(π‘₯ + 8)) =

1

2

sin πœƒ =1

2

πœƒ =πœ‹

6 π‘Žπ‘›π‘‘

5πœ‹

6

πœ‹

6(π‘₯ + 8) =

πœ‹

6 π‘Žπ‘›π‘‘

πœ‹

6(π‘₯ + 8) =

5πœ‹

6

π‘₯ + 8 = 1 π‘Žπ‘›π‘‘ π‘₯ + 8 = 5

π‘₯ = βˆ’7 π‘Žπ‘›π‘‘ π‘₯ = βˆ’3

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

|𝑏|=

2πœ‹

πœ‹/6= 12

π‘₯ = βˆ’7 + 12 = 5 π‘₯ = 5 + 12 = 17

π‘₯ = 17 + 12 = 29

π‘₯ = βˆ’3 + 12 = 9 π‘₯ = 9 + 12 = 21

Therefore:

π‘₯ = 5, 9, 17, 21, 29

Page 8: Trigonometric Functions Sine Function

Sine Function Inequalities Solving sine function inequalities is very similar to solving sine functions. The only difference is we will need to look at a sketch (or use a test point) to determine the intervals for the solution. Steps:

1) Change inequality to equality 2) Solve as before 3) Use sketch or test point to determine solution interval 4) Solve over domain (or generalize if no domain is given)

Ex: Where is the function 𝑓(π‘₯) = βˆ’ sin 3π‘₯ +1

2 greater than 0?

a) Over 0 ≀ π‘₯ ≀ 2πœ‹ b) Over βˆ’βˆž ≀ π‘₯ ≀ ∞

SOLVE

βˆ’ sin 3π‘₯ +1

2> 0

βˆ’ sin 3π‘₯ +1

2= 0

βˆ’ sin 3π‘₯ = βˆ’1

2

sin 3π‘₯ =1

2

sin πœƒ =1

2

πœƒ =πœ‹

6 π‘Žπ‘›π‘‘

5πœ‹

6

3π‘₯ =πœ‹

6 π‘Žπ‘›π‘‘ 3π‘₯ =

5πœ‹

6

π‘₯ =πœ‹

18 π‘Žπ‘›π‘‘ π‘₯ =

5πœ‹

18

SKETCH Use period to solve for all critical points.

π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ =2πœ‹

3=

12πœ‹

18

Consult sketch to determine possible intervals. SOLUTION

a) [0,πœ‹

18[ βˆͺ ]

5πœ‹

18,

13πœ‹

18[ βˆͺ ]

17πœ‹

18,

25πœ‹

18[ βˆͺ ]

29πœ‹

18, 2πœ‹]

b) ]5πœ‹

18+

12πœ‹

18𝑛,

13πœ‹

18+

12πœ‹

18𝑛[

(πœ‹

18, 0) (

5πœ‹

18, 0)

(13πœ‹

18, 0)

(17πœ‹

18, 0)

(25πœ‹

18, 0) (

29πœ‹

18, 0)

Page 9: Trigonometric Functions Sine Function

Finding the Rule of Sine Functions From a Graph To find the rule of a sine function from a graph:

1) Find the center line (k): max +min

2

2) Find h (use any point where 𝑦 = π‘˜)

3) Determine period (one full cycle) and b: 2πœ‹

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

4) Determine a: π‘šπ‘Žπ‘₯ βˆ’ π‘˜ 5) Determine signs on a and b (does the function increase or decrease from h,k) 6) Write the function

Note: There are an infinite number of possibilities when writing the rule based on the h,k you choose and the signs on a and b. Ex: Determine the rule for the sine function graphed below.

π‘˜ =βˆ’1 βˆ’ βˆ’5

2= βˆ’3

Choose h at 2πœ‹

(β„Ž, π‘˜) = (2πœ‹, βˆ’3)

π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ = 4πœ‹

𝑏 =2πœ‹

4πœ‹=

1

2

|π‘Ž| = π‘šπ‘Žπ‘₯ βˆ’ π‘˜ = βˆ’1 βˆ’ βˆ’3 = 2

Function decreases from (h,k) so a and b must have opposite signs

∴ 𝑓(π‘₯) = 2 sin (βˆ’1

2(π‘₯ βˆ’ 2πœ‹)) βˆ’ 3

Page 10: Trigonometric Functions Sine Function

Finding the Rule of Sine Functions From Words Recall 𝑦 = π‘Ž sin[𝑏(π‘₯ βˆ’ β„Ž)] + π‘˜ Where:

a is the amplitude (a vertical stretch and/or reflection over the x-axis) π‘Ž =π‘“π‘šπ‘Žπ‘₯βˆ’π‘“π‘šπ‘–π‘›

2

b is the frequency (a horizontal stretch and/or reflection over the y-axis) π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ = 2πœ‹

|𝑏|

h is the horizontal translation/phase shift (the x-value when 𝑦 = π‘˜)

β€œk” is the vertical translation π‘˜ =π‘“π‘šπ‘Žπ‘₯+π‘“π‘šπ‘–π‘›

2

(h,k) is a β€œstarting” point on the curve The maximum is π‘šπ‘Žπ‘₯ = π‘˜ + |π‘Ž| and the minimum is π‘šπ‘–π‘› = π‘˜ βˆ’ |π‘Ž| If π‘Žπ‘ > 0, then start by going up from (h,k) If π‘Žπ‘ < 0, then start by going down from (h,k) Ex: Lobster fishermen dock at a small fishing harbor on the Bay of Fundy. The depth of the water varies according to the tides. A sinusoidal function can be used to predict the water’s depth. The Bay of Fundy has the highest tidal range in the world. At low tide, the depth of the water is 2m. Six hours later, at high tide, the depth of the water is 14m. The fishermen leave from, and return to, the harbor when the depth of the water is at least 5 m. For how many hours can the fishermen be at sea between two consecutive low tides?

π‘Ž =π‘“π‘šπ‘Žπ‘₯ βˆ’ π‘“π‘šπ‘–π‘›

2=

14 βˆ’ 2

2= 6

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ = 12 π‘ π‘œ 𝑏 =2πœ‹

12=

πœ‹

6

h: 12 hour period. If low tide is at π‘₯ = 0

β„Ž =12

4= 3

π‘˜ =π‘“π‘šπ‘Žπ‘₯ + π‘“π‘šπ‘–π‘›

2=

14 + 2

2= 8

Increasing to start, so a and b same signs

𝑓(π‘₯) = 6 sin [πœ‹

6(π‘₯ βˆ’ 3)] + 8

Page 11: Trigonometric Functions Sine Function

Now we can use the function to determine when the water depth is at least 5 m.

𝑓(π‘₯) = 6 sin [πœ‹

6(π‘₯ βˆ’ 3)] + 8

6 sin [πœ‹

6(π‘₯ βˆ’ 3)] + 8 β‰₯ 5

6 sin [πœ‹

6(π‘₯ βˆ’ 3)] + 8 = 5

6 sin [πœ‹

6(π‘₯ βˆ’ 3)] = βˆ’3

sin [πœ‹

6(π‘₯ βˆ’ 3)] = βˆ’

1

2

sin πœƒ = βˆ’1

2

πœƒ =7πœ‹

6 π‘Žπ‘›π‘‘

11πœ‹

6

πœ‹

6(π‘₯ βˆ’ 3) =

7πœ‹

6 π‘Žπ‘›π‘‘

πœ‹

6(π‘₯ βˆ’ 3) =

11πœ‹

6

(π‘₯ βˆ’ 3) = 7 π‘Žπ‘›π‘‘ (π‘₯ βˆ’ 3) = 11 π‘₯ = 11 π‘Žπ‘›π‘‘ π‘₯ = 14

Looking at our solutions, we know ? 2 = 11 π‘Žπ‘›π‘‘ ? 3 = 14. We also know ? 1 =? 3 βˆ’ π‘œπ‘›π‘’ π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ = 2 The question states that the fishermen leave and return between two consecutive low tides, so they are never at sea during a low tide. means they must leave at ?1 (2) and return at ?2 (10). The fishermen are away for 8 hours.

Page 12: Trigonometric Functions Sine Function

Cosine Functions

A cosine function is a sine function shifted by πœ‹

2

cos π‘₯ = sin (π‘₯ +πœ‹

2) π‘œπ‘Ÿ cos π‘₯ = sin (π‘₯ βˆ’

3πœ‹

2)

sin π‘₯ = cos (π‘₯ βˆ’πœ‹

2) π‘œπ‘Ÿ sin π‘₯ = cos (π‘₯ +

3πœ‹

2)

Basic function

𝑓(π‘₯) = cos π‘₯

Domain: ]βˆ’βˆž, ∞[ Range: [βˆ’1, 1] Period: 2πœ‹ Amplitude: 1 Initial Value: 1

Parameters (a, b, h, k) are the same as in the sine function: a: amplitude

b: 2πœ‹

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘

h: horizontal translation (phase shift) k: vertical translation What’s new?

1) The sign of b has no effect on the graph since the graph is symmetrical over the y-axis. a. If π‘Ž > 0, decreasing to β€œstart” (β€œstart” at max) b. If π‘Ž < 0 increasing to β€œstart” (β€œstart” at min)

2) (h, k) is on the graph a. If β€œstart” is max, then β€œstarting point” is (β„Ž, max) = h, k + |π‘Ž|) b. If β€œstart” is min, then β€œstarting point” is (β„Ž, min) = h, k βˆ’ |π‘Ž|)

Page 13: Trigonometric Functions Sine Function

Tangent Function

Recall that tan π‘₯ =π‘œπ‘π‘

π‘Žπ‘‘π‘—, but we also know that tan π‘₯ =

sin π‘₯

cos π‘₯

Basic Function

If we look at the unit circle, we find that tan π‘₯ = 1 π‘Žπ‘‘πœ‹

4 π‘Žπ‘›π‘‘

5πœ‹

4 and tan π‘₯ = βˆ’1 π‘Žπ‘‘

3πœ‹

4 π‘Žπ‘›π‘‘

7πœ‹

4

We also know that tan π‘₯ is 0 when sin π‘₯ = 0 (0 π‘Žπ‘›π‘‘ πœ‹).

We can also determine that tan π‘₯ is undefined when cos π‘₯ = 0 (πœ‹

2π‘Žπ‘›π‘‘

3πœ‹

2). This means there

must be vertical asymptotes at πœ‹

2π‘Žπ‘›π‘‘

3πœ‹

2.

Key Information π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ = πœ‹

π·π‘œπ‘šπ‘Žπ‘–π‘›: ℝ / {πœ‹

2+ πœ‹π‘›}

π‘…π‘Žπ‘›π‘”π‘’: ℝ

π΄π‘ π‘¦π‘šπ‘π‘‘π‘œπ‘‘π‘’π‘ : πœ‹

2+ πœ‹π‘›

π‘π‘’π‘Ÿπ‘œπ‘ : πœ‹ + πœ‹π‘› πΌπ‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘‰π‘Žπ‘™π‘’π‘’: 0 No max, min, or amplitude

Transformed Tangent Function

𝑓(π‘₯) = π‘Ž tan(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜ π‘œπ‘Ÿ 𝑓(π‘₯) = π‘Ž (sin(𝑏(π‘₯ βˆ’ β„Ž))

cos(𝑏(π‘₯ βˆ’ β„Ž))) + π‘˜

If π‘Žπ‘ > 0 the function is increasing If π‘Žπ‘ < 0 the function is decreasing

π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ =πœ‹

|𝑏|

π΄π‘ π‘¦π‘šπ‘π‘‘π‘œπ‘‘π‘’π‘ : π‘ π‘œπ‘™π‘£π‘’ cos(𝑏(π‘₯ βˆ’ β„Ž)) = 0

Page 14: Trigonometric Functions Sine Function

Sketching a Tangent Function To sketch a tangent function:

β€’ Find inflection point (β„Ž, π‘˜)

β€’ Find period: πœ‹

|𝑏|

β€’ Find asymptotes: cos(𝑏(π‘₯ βˆ’ β„Ž)) = 0

β€’ Find zeros

β€’ Determine increasing/decreasing

β€’ Sketch

Ex: Sketch 𝑓(π‘₯) = 2 tan(2(π‘₯ βˆ’ πœ‹))

Inflection point (πœ‹, 0)

Period: πœ‹

2

Asymptotes: cos(2(π‘₯ βˆ’ πœ‹)) = 0

2(π‘₯ βˆ’ πœ‹) =πœ‹

2 and 2(π‘₯ βˆ’ πœ‹) =

3πœ‹

2

(π‘₯ βˆ’ πœ‹) =πœ‹

4 and (π‘₯ βˆ’ πœ‹) =

3πœ‹

4

π‘₯ =5πœ‹

4 and x=

7πœ‹

4

So asymptotes at: π‘₯ =5πœ‹

4+

πœ‹

2𝑛

Zeros: 2 tan(2(π‘₯ βˆ’ πœ‹)) = 0

tan(2(π‘₯ βˆ’ πœ‹)) = 0

sin(2(π‘₯ βˆ’ πœ‹))

cos(2(π‘₯ βˆ’ πœ‹))= 0

sin(2(π‘₯ βˆ’ πœ‹)) = 0

2(π‘₯ βˆ’ πœ‹) = 0 π‘Žπ‘›π‘‘ 2(π‘₯ βˆ’ πœ‹) = πœ‹

(π‘₯ βˆ’ πœ‹) = 0 π‘Žπ‘›π‘‘ (π‘₯ βˆ’ πœ‹) =πœ‹

2

π‘₯ = πœ‹ π‘Žπ‘›π‘‘ π‘₯ =3πœ‹

2

So zeros at: π‘₯ = πœ‹ +πœ‹

2𝑛

π‘Žπ‘ > 0 so increasing

Page 15: Trigonometric Functions Sine Function

Solving Tangent Functions We can add tangent values to the unit circle.

Just like the sine function and cosine function, we can use the unit circle to solve tangent functions, or we can solve for x using π‘‘π‘Žπ‘›βˆ’1, using CAST.

π‘‡π‘Žπ‘› = 0 π‘‡π‘Žπ‘› = 0

π‘‡π‘Žπ‘› = 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

π‘‡π‘Žπ‘› = 𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑

π‘‡π‘Žπ‘› = 1

π‘‡π‘Žπ‘› = 1

π‘‡π‘Žπ‘› = βˆ’1

π‘‡π‘Žπ‘› = βˆ’1

π‘‡π‘Žπ‘› =√3

3

π‘‡π‘Žπ‘› =√3

3

π‘‡π‘Žπ‘› = βˆ’βˆš3

3

π‘‡π‘Žπ‘› =√3

3

π‘‡π‘Žπ‘› = √3

π‘‡π‘Žπ‘› = √3

π‘‡π‘Žπ‘› = βˆ’βˆš3

π‘‡π‘Žπ‘› = βˆ’βˆš3

Page 16: Trigonometric Functions Sine Function

Ex: Solve βˆ’3 tan (πœ‹

3(π‘₯ + 2)) = √3

βˆ’3 tan (πœ‹

3(π‘₯ + 2)) = √3

tan (πœ‹

3(π‘₯ + 2)) = βˆ’

√3

3

(πœ‹

3(π‘₯ + 2)) =

5πœ‹

6 π‘Žπ‘›π‘‘ (

πœ‹

3(π‘₯ + 2))

=11πœ‹

6

π‘₯ + 2 = (5πœ‹

6) (

3

πœ‹) π‘Žπ‘›π‘‘ π‘₯ + 2

= (11πœ‹

6) (

3

πœ‹)

π‘₯ + 2 = (5

2) π‘Žπ‘›π‘‘ π‘₯ + 2 = (

11

2)

π‘₯ =1

2 π‘Žπ‘›π‘‘ π‘₯ =

7

2

Period:

π‘π‘’π‘Ÿπ‘–π‘œπ‘‘ =πœ‹πœ‹3

= πœ‹ (3

πœ‹) = 3

∴ π‘₯ =1

2+ 3𝑛

Ex: Solve 3 tan(βˆ’4(π‘₯ βˆ’ 6)) = 1 when 6 ≀ π‘₯ ≀ 7

3 tan(βˆ’4(π‘₯ βˆ’ 6)) = 1

tan(βˆ’4(π‘₯ βˆ’ 6)) =1

3

tan(πœƒ) =1

3

πœƒπ‘… = 0.3218 πœƒ1 = 0.3218 πœƒ2 = πœ‹ + 0.3218

πœƒ1 = 0.3218 πœƒ2 = 3.4633 βˆ’4(π‘₯ βˆ’ 6) = 0.3218 π‘Žπ‘›π‘‘ βˆ’ 4(π‘₯ βˆ’ 6) = 3.4633

(π‘₯ βˆ’ 6) = βˆ’0.0805 π‘Žπ‘›π‘‘ (π‘₯ βˆ’ 6) = βˆ’0.8658 π‘₯ = 5.9195 π‘Žπ‘›π‘‘ π‘₯ = 5.1342

π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ =πœ‹

4

∴ π‘₯ = 6.7049

Page 17: Trigonometric Functions Sine Function

Solving Tangent Inequalities To solve inequalities:

1. Replace inequality with = 2. Solve 3. Consult sketch for solution set

Ex: Determine the intervals over which the function 𝑓(π‘₯) = 3 tan (2 (π‘₯ +πœ‹

2)) + 3 is positive.

3 tan (2 (π‘₯ +πœ‹

2)) + 3 β‰₯ 0

3 tan (2 (π‘₯ +πœ‹

2)) + 3 = 0

3 tan (2 (π‘₯ +πœ‹

2)) = βˆ’3

tan (2 (π‘₯ +πœ‹

2)) = βˆ’1

2 (π‘₯ +πœ‹

2) =

3πœ‹

4 π‘Žπ‘›π‘‘ 2 (π‘₯ +

πœ‹

2) =

7πœ‹

4

(π‘₯ +πœ‹

2) =

3πœ‹

8 π‘Žπ‘›π‘‘ (π‘₯ +

πœ‹

2) =

7πœ‹

8

π‘₯ = βˆ’πœ‹

8 π‘Žπ‘›π‘‘ π‘₯ =

3πœ‹

8

∴ 𝑓(π‘₯)𝑖𝑠 π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘œπ‘£π‘’π‘Ÿ [3πœ‹

8+

πœ‹

2𝑛,

3πœ‹

4+

πœ‹

2𝑛]

π‘ƒπ‘’π‘Ÿπ‘–π‘œπ‘‘ =πœ‹

2

Asymptotes:

cos (2 (π‘₯ +πœ‹

2)) = 0

2 (π‘₯ +πœ‹

2) =

πœ‹

2 π‘Žπ‘›π‘‘ 2 (π‘₯ +

πœ‹

2) =

3πœ‹

2

(π‘₯ +πœ‹

2) =

πœ‹

4 π‘Žπ‘›π‘‘ (π‘₯ +

πœ‹

2) =

3πœ‹

4

π‘₯ = βˆ’πœ‹

4 π‘Žπ‘›π‘‘ π‘₯ =

πœ‹

4

π‘Žπ‘ > 0 π‘ π‘œ π‘–π‘›π‘π‘Ÿπ‘’π‘Žπ‘ π‘–π‘›π‘”

Page 18: Trigonometric Functions Sine Function

Finding the Rule of a Tangent Function To find the rule of a tangent function:

1. Find the coordinates of the inflection point (h, k) and another point (x, y) 2. Use graph to determine period and solve for b 3. Substitute h, k, x, y, and b, then solve for a 4. Determine signs on a and b 5. Write rule

Ex: Find the rule of the tangent function graphed below.

Inflection point: (3, 2) Additional point: (0.5, 0) Period: 2.5 βˆ’ 0.5 = 2

𝑏 =πœ‹

2

𝑓(π‘₯) = π‘Ž tan(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜

0 = π‘Ž tan (πœ‹

2(0.5 βˆ’ 3)) + 2

0 = π‘Ž tan (πœ‹

2(βˆ’2.5)) + 2

βˆ’2 = π‘Ž tan (βˆ’5πœ‹

4)

βˆ’2 = π‘Ž(βˆ’1) π‘Ž = 2

Increasing, so π‘Žπ‘ > 0

∴ 𝑓(π‘₯) = 2 tan (πœ‹

2(π‘₯ βˆ’ 3)) + 2