trends in judo biomechanics researches

33
ENTE PER LE NUOVE TECNOLOGIE L'ENERGIA E L'AMBIENTE VALUTAZIONE DEL COSTO ENERGETICO DEGLI SPORT DI COMBATTIMENTO IN .REMOTE SENSINGm PROGRESS REPORT 8 New trends in the judo and wrestling Biomechanics research A. SACRIPANTI E.N.E.A. - Direzione centrale Sicurezza e Protezione Sanitaria Coordinatore Federazione Italiana Lotta, Pesi, Judo M. FAINA, G. GUIDI C.O.N.I. - Istituto Scienze dello Sport Dipartimertto di Fisiologia e biomeccanica (Direttore Scientifico - A. DAL MONTE) M. FABBRI, R. MASO, L. ROSSI ENEA - Area Energia e Innovazione Centro Ricerche Energia Casaccia, Roma Paper presented at the *% EIGHTH MEETING OF THE EUROPEAN SOCIETY OF BIOMECHANICS June 21-24, 1992 Rome - Italy

Upload: attilio-sacripanti

Post on 14-Nov-2014

139 views

Category:

Documents


1 download

DESCRIPTION

biomechanics researches

TRANSCRIPT

Page 1: trends in judo biomechanics researches

ENTE PER LE NUOVE TECNOLOGIE L'ENERGIA E L'AMBIENTE

VALUTAZIONE DEL COSTO ENERGETICO

DEGLI SPORT DI COMBATTIMENTO IN

.REMOTE SENSINGm PROGRESS REPORT 8

New trends in the judo and wrestling Biomechanics research

A. SACRIPANTI E.N.E.A. - Direzione centrale Sicurezza e Protezione Sanitaria

Coordinatore Federazione Italiana Lotta, Pesi, Judo

M. FAINA, G. GUIDI C.O.N.I. - Istituto Scienze dello Sport

Dipartimertto di Fisiologia e biomeccanica (Direttore Scientifico - A. DAL MONTE)

M. FABBRI, R. MASO, L. ROSSI ENEA - Area Energia e Innovazione

Centro Ricerche Energia Casaccia, Roma

Paper presented at the *%

EIGHTH MEETING OF THE EUROPEAN SOCIETY OF BIOMECHANICS

June 21-24, 1992 Rome - Italy

Page 2: trends in judo biomechanics researches

Testo pervenuto nel luglio 1992

Gli autori ringraziano i gruppi sportivi della GUARDIA FORESTALE

e GUARDIA DI FINANZA

per la gentile e fattiva collaborazione prestata, nel corso della ricerca

I contenuti tecnico-scientifici dei rapporti tecnici dell'ENEA rispecchiano l'opinione degli autori e non necessariamente quella dell'ente.

Page 3: trends in judo biomechanics researches

ABSTRACT

In this report the aim of a CONI (Italian Olimpic Commitee) - ENEA (Italian Commitee for Technology Innovation, Energy and Environment) - FILPJ (Italian Federation of Wrestling, Weigthlifting and Judo) joint research is presented.

The main goal is to obtain quantitative data on energy consumption of Judo and Wrestling actual competition, by athletesf thernial emission.

In the text the first results and the future trends of this very complex experienke performed in Italy are presented.

In the appendix it is explained the first mathematical theory for 'both the problems: - analysis of competition on the basis of statistica1 physics - interaction between athletes on the basis of variational analysis.

RIASSUNTO

In questo rapporto viene presentata una ricerca congiunta fra CONI (Comitato Olimpico Italiano), ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente) ed il FILPJ (Federazione Italiana Lotta, Pesi e Judo).

Lo scopo principale della ricerca è quello di ottenere dati quantitativi sul consumo energetico di atleti in competizione tramite rilevamento di emissione termica.

E' Nell'appendice viene ililustrata la prima teorka

matematica per entrambi i problemi di analisi della competizione su basi di fisica statistica e di interazioni fra atleti su base di analisi variazionale.

Page 4: trends in judo biomechanics researches

INDEX

1. - INTRODUCTION 2. - HISTORICAL BACKGROUND 3 . - DESCRIPTIQN OF EXPERIENCES

4. - APPENDIX 5 . - B.IBLIOGRAPHY

Page 5: trends in judo biomechanics researches

1. INTRODUCTION

Knowledge remains partial in every field of Science, even thogh it records steady increase thanks to the advanced thecnologies and the theoretical and experimental researchers; thus the advanced thecnologies and the theoretical intuitions enabled us to perfect scientific knowledge in the field o£ macrothermophysiology.

A joint research carried out by CONI, ENEA and FILPJ started at the end of 1989 designed to assess the athletefs

I

energy cost in effettive competition. Considering the high complexity of this issue, it was

recognized the need to tackle it through an integrated multi- disciplinary approach, by resprting to the knowledge in the physiological biomechanics and to the related specific equipment provided by CONI laboratories, to the sophisticated

~l processing methods and instruments provided by ENEA and finally to athletes and to the technical and specialized

l l knowledge in the physical biomechanics by FILPJ. i 1 /

The "simple" idea is td consider athletes as complex I I thermal machines. The joint application of the principles of

I

l thermodynamics must allows us consequently to statistically

i assess the average work carried out by athletes during

i competition. ! Obviosly, from a theoretical point of view, the

problem could be rapidly solved if it was possible to i evaluate the athletesf direct calorimetry during their

performance. Since this is technically impossible, it is f

1 common practice in sport to assess the athletefs work by

i means o,$ the "simpler" indirect calorimetry. i r' This means that through an appropriate mechanical I equivalent o£ the oxygen we can trace back - through the fuel i kinetics - the work carried out in laboratory which, for many t

f sports, is made day by day more similar to the efiective competitive load. In our time, in the case of fighting sports

I the few experimental data are indeed limited and it is virtually impossible to extrapolate reliable data from these laboratory results which can allow an adequate training based on scientific principles.

The retracing of direct calorimetry by means of the r energy equations of the man-environment heat exchange is

therefore possible. Doing so the athletefs body superficial average temperature needs to be directly reckoned, because al1 heat transfers are regulated by it.

Page 6: trends in judo biomechanics researches

On the basis of the athletesl heat-energy emission recorded by remote sensing techniques, or retraced by energy exchange equations, more reliable quantitative data can be obtained on the competition without affecting the performace.

Page 7: trends in judo biomechanics researches

1. HISTORICAL BACKGROUND . .

The neapolitan Alfonso Borelli was 'one of the first scientists who conceptually associated the oxygen consumption with the muscolar activity. Indeed, in the chapter entitled "De usu respirationis" of his book "De Motu Animalium" (1680), he describes his own individual experience made some years before on the Etna. The following titles of paragraphs. show that such a mechanism was already clear in his mind: "Through breathing, air particles mix with blood", "The mixture of air introduced in blood throug breathing produces and preserves anima1 life", "This is t& reason why breathing is more difficult and rapid during pressing motion and muscolar activity", "That is why muscolar activity in raref ied air causes dif f icultyg in breathing" ..

However, the first scientists who developed laboratory experiments in the fieid of thermophysiology were Lavoisier, Laplace and Sequin between 1775 and 1785.

They detected on Guinea pigs at first and then on men that - under confortable temperature conditions - the oxygen consumption was at its lowest before eating; sligthly increased when the environment temperature decreased; sharply increased after food intake and ever more when working.

In mid-XIX century the chemical-physical studies by Regnault and Reiset were developed. They sought to de.mostrate that oxydation was the main source of anima1 heat by using the oxygen consumption as the simple measure of heat production.

Hoping to relate life processes to the well-known physical laws, Reubner, Helmholtz and other verifed the principle of energy conservation both for biosystems and inanimated systems, defined the basal metabolic temperatu~e and discovered that the hot blood biosystems were basically homoiothermic.

Mayer was the first physicist to develop the idea of equating an anima1 with a sort of thermal machine where the breathing hèat is partially turned into muscolar activity.

M. Hirn sought to experimentally demonstrate this hypothesis for man by locking an individual in a thermal chamber and placing two rubber pipes in his mouth - the former for air int-ake and the latter for emission gases - which' werp thén 'm~rasukea 'in te'rms -Q£ oxygen consumed and i1 . l i

carbon ' h?bxide produced. The breathing chemical and thermal effects were thus evaluated both under basal and working

Page 8: trends in judo biomechanics researches

conditions - that is by lifting his own weight on the circumference of a mobile wheel.

Indeed the temperature increase in the chamber was measured unti1 when - becoming constant - the radiation emission of the walls was equivalent to the heat produced by the body within it. Afterwards, the individua1 was replaced by a burner (Bunsen jet) regulated in such a way to keep air in the chamber at the same constant temperature. From the volume of the gas burnt it was then possible to infer the heat produced by the combustion and, by way of analogy, the quantity of heat produced by the human body in that given time.

This interesting experience led to the result that 30 grams of oxygen consumed corresponded to 150 calories. Considering the time element,'it is appropriate to think over the remarkable accuracy Of the results obtained, since this value of the mechanical equivalent is still used to make rapid calculations in the field of Industria1 Medicine.

Page 9: trends in judo biomechanics researches

11

3. DESCRIPTION OF EXPERIENCES

The aim of the research is to make possible actual- competition experimental study by means of thermovision cameras. Ti11 now a TV cameia AGA 782 (fig. l ) recorded the athletesf heat emission in the infrared band on a magnetic tape, but it is foreseen a more modern device as the HUGRES PROBEY SYSTEM that display in rea1 time a thermal map in 256 different colours (fig. 2). We can thus obtain quantitative data related to the athletest thermo-energy dispersion which accounts for 75-80 % 'of the overall c~nsumption of the metabolic energy produced.

The data on heat recorded by - 4 photograms a minute - are analyzed by a highly specialized system for Image Processing, tha E.D.I. (ENEA ~IGITAL IMGERY) system , (fig. 3 ) . This one by means of appropriate programs and procedures is capable of provtding processing-factors as: - the statistica1 survey on the "grey tones" such as maximum, minimum, average and standard deviation, - the construction o£ appropiate histograms, - the cumulative integral of the images in term o£ energy, - the "inverse area" integral of the images, - the "smoothing treatment" of the phenomenon kinetic, - the kinetic trend of the phenomenon, - the electronic "cleaning" of the images, - the electronic "colouringl' of the images.

In order to abtain more reliable data, images are subjected to the "electronic" cleaning system, thereby eliminating al1 the interferences o£ the environmen-t background which distorts and downgrades the obtained

P results. A further possibility of the system, already mentioned, is that o£ providing images trough the electronk pseudo-color technique. This allows to obtain heat maps of the athletesf bodies on high definition screen (fig. 4). These maps enable us to identify the most used muscles in performance, that is "the moast warmed upw one. ThiS knowledge is useful £or technical-related physical preparation, but also £or averting some possible traumatisms in contest situation. In thic field the CONI-ENEA-FILPJ research was awarded the second prize, in the "GRIFO D'ORO" annua1 competition £or the benefits minimizing risks in human activities.

The initial stage of the research allowed to-consider the gauged thermal emission as a function of the oxygen

Page 10: trends in judo biomechanics researches

LW 782 AGA SCANNER

BLOCK SCHE?JIE OF THE THERMOGFIAPHIC SYSTE?A

Fig. 1

Page 11: trends in judo biomechanics researches

I

I Brobeyea Thermal Video Systems * subsdiary 01

GM Hughes Ektronrs

FOV istantaneo , (

II O 2m :m I Om 100m

Distanza I , I

Processore Telecamera Relazione tra FOV e distanza ,, l

Sistema Videotermografico

Page 12: trends in judo biomechanics researches

Fig. 3

Page 13: trends in judo biomechanics researches

intake, detected telemetrically by a sophisticated CONI instrument (Cosmed K2 system - fig. 9 ) , by means of an athlete placed on an engine conveyor belt running at costant speed for a given time period (fig. 10.). This was possible through the application of the thermodyfidimic principle of the energy conservation which states,~ for athletes under conditions of vitually neglegible "physicaln work and aerobic "steady-state", that the oxygen uptake and thermal emissiop were roughly equal. Alledgedly, the used technologies allowed, for the first time, to follow the evolution of kinetics of both phenomena (oxygen input and radiation output), thereby enabling us to try to find the functional relation linking them. Considering the biochemical origin of the athleters metabolic *energy - for the aerobic "steady-state" conditions - it was possible to associate - with a good degree of approximation - the oxygen ineut and the heat output by means of a simple relation; whereas the relation connecting the anaerobic-lactacid energy sources with the heat output is more complex and still unknown. In this respect, the first functional links are being attempted during experiments.

A further step was to provide the attempt to measure the kinetics of the "athletets superficial average temperature" by direct methods. For this purpose a set of 16 thermocouples, with special calibration, was used and suitably placed on the athletefs body (fig. 11 ) ; the data mesured in rea1 time were recorded on magnetic tape HP data logger 3497A and the average temperature was computed by HP-9816A computer, with the Hardy, du ~ o i s and Soderstrom formula: Tp = (0.07 T1 + 0.14 T2 + 0.05 T3 + 0.07 T4 + 0.13 T5 +

. + 0.19 T6 + 0.35 T7) where T1 trough T7 are head, arms, hands, feet, legs, thigs and trunk average temperatures and the coefficients (which sum is one) are 'the mean weighted surfaces bodyts parts. The knowledge of kinetics of the average superf icial temperature let us intercalibrate them, with oxygen input and thermal infrared output, to obtain the first gross intercomparison of instruments.

The next two steps (fig.12) were related first to the rough extimation of Judogi shielding 'ef fect, against thermal long-wave infrared emission (in the CONI laboratories in ROME) and afterwards to the quantitative evaluation of this efect (performing the experiment in a climatic chamber,

Page 14: trends in judo biomechanics researches

assembled in theSENEA-CASACCIA laboratories - fig. 13 ), to have more reliable data from a better controlleà experimental situation.

At the same time the theoretical knowled'ge about competition was improved with the first physical-mathemat.ica1 theory of Judo contest to state and carry out the most important physical parameters and to have a first rough extimation of average energy expenditure in competition. For the mean kinetic energy of couple of athletest system, related to-the absolute velocity, changing the Einsteints relation the result was 0.2 of overall oxygen consumption. This problem is discussed in the appendix.

The last but one experiment carried out was the fiist of the larger series in pragress and was related to study the oxygen input partition in heat emission and physical work. The physical work, lifting up and down 40 Kg, was separate in two phases: "negativen (pulling down) ,and "positive" (lifting up) against the gravity force - fig.6 _. This differentia3ion is necessary because, if the total physical work, being cyclic, in conservative field will be zero, 'the athletes' rating perforwnces are different in eaqh of the two paths.

The last one experiment m s connected to study different kind of work (a predefined physical work'of 150 J/s using a cycloergometers with two definite numbers of thrusts on pedals - fig. I - ) and, in the same session by two thermocameras, to define the work related to some throwing techniques (one technique of couple and one-of physical lever at frequence of 20 throwings a minute - fig.3).

The theoretical approch is concerned with equdfions .. describing, in forecasting form, the sweating kinetics of athletes. These thermodynamical equations, not c&npletely known or tested, are very important for studying energy exchanges between athletes and external environment.

The problem is to modelize simultaneously heat and mass transier as evaporation by natura1 convection and mass

. tranfer by diffusion, throbgh integuments, in transient heat balance during exercise as function of free atmosphere temperature, vapor pressure, atmspheric pressur,bodyfs dimensions and equivalent temperature.

At the present time the problem is not completely solved, but some approximative solutions are ready and will be used in the condictions of negligible physical work, during which energy input is equa1 to &nergy output, unless higher rank negligible factors, The use is in an iterative

Page 15: trends in judo biomechanics researches

Fig. 4

Athlete's Thermografhic Image

Page 16: trends in judo biomechanics researches

Fig. 6

Experience with Phisical Work

Page 17: trends in judo biomechanics researches

Fig. 7 A-B

Experience with Cycloergometer

Page 18: trends in judo biomechanics researches

Fig. 8

Judo Throwing Techniques

Page 19: trends in judo biomechanics researches

Fig. 9

Page 20: trends in judo biomechanics researches

'." .:':.:':':';..'.:::::.:::::::i:i:::::.::: i$$r;g~i.~fiiiii~@&~i~g$$$#$~;;~~i;;;; ~#~~&g~~jiii~ii;i;ii!il.ioiii :::;:I:;:i:l:i:l::.:1!1:::::::%!::!?:!i1iiiii1~!i!iIi1ii!*ii;ii'+:

.......''.'. iie9.F jii!ii'?i#@.#$$$i'~;$iii:: ; i j i ; i i i i i i i i ; i ~ @ ~ i i f % ~ ~ $ & ; ~ :::::::::;:;:::::::::::::::!?::::::::;::!y:.:.:.::. ;i;jgljl$i;iiii;;y:::.:.:.:.:.:.:.:'::::.: ...................... ST UD 10 ?i'if%$if i'tisiii :l:l:l,l.:i>..i.i.r.it.~ ?;%'li?? ............................................ ri;;;ii;iiiii+gii;;;iii~;iiiiii:;ti~;~~~~igig;iii; jimi ;iiis$;icc$::~fi!:;:$~?:q$ii~~*:2::;:il?::!:;::::::.::* jiii$iiiiiiiiijii@$ii*.ì@$$$iif ;$i$$@$ :.:.:.:.:.: .... . . . . . :..:.:.:.:. ... . ... . . . . . . . . ....... ..... i;ii$iii:iiiiiiii;iii~ijjiii;iiiiit;I;i;g$i;;i;i;$iji.$$;i~$::;j: ;$$$giiiiijg$;$i$~;ii@if$$$g~#;~;;$ii$$j;i r jii~if $iliiiilif~~$~;~;;ii~;+~i$$$~g$:i!i!~ i:i:iri:i$ii$i:ii$iiiiggii$g$$i;i.iii$ii.~.:i:i:;:;:: i,;;i:l:I:l:$>~BI:;;i:::i'.::~$aI::::::::::!:::::::::;:i:;:!:~:!:i: :::.:.::::.:.: ... .................................. :2:::::::;:;:i:>I:;:>;:;:;:::1:;yi::::::;2:;:;:::>~~~i:~::>;:::;:

FONDO NERO APP. TERMOGRAFICA

ow W5 . :.:.t,;.>;s*.? n< 48 +a

. .

DATASP I R

SCHEMA SITUAZIONE SPERIMENTALE

Fig. 10

Page 21: trends in judo biomechanics researches

Lcgenda

C - capo A - Avambracc-io 5 = Braccio T - Torace ,F - Cosce G - Ginocchio S - Stinco

APPLICATION POINTS OF THE THERMOCOUPLES

Fig. 11

Page 22: trends in judo biomechanics researches

Exptricncc semplified prbiocol lo define the kimono screcning eifecl ..

rccoràimg : -Nane -Fmily nune -Agc . -PnclUed sporls

I

I Functional con trol 1 I

I Technical parameiers recording I I

I, Syncronizalion 1 I

I Fin1 experience xilhoul kimono I

Encrgy recovery ~ I - ~ I . - ~

1 I Technical parainelers recording

I I

I Syncronizalion I I Second expericnce rilh kirnono 1

Athlele weighling Kimono weighting

l

I 1

t

Fig. 12 J

Basai

I Kimono undrcssing

Work Energy recovery

Page 23: trends in judo biomechanics researches

THERMAL CHAMBER

> \

I

BLACK BACKGROUND C . . . % i '

COSMFn RECEIVER

ROLLING I?LATFORM

TEMPERATURE RECORDER

TAPE RECORDER

EXPERIENCE SCHEME

Fig. 13

Page 24: trends in judo biomechanics researches

program running on VAX 8800 computer to obtain the best approximation of the main parameters.

Page 25: trends in judo biomechanics researches

4. APPENDIX

BIOMECHANICS QF JUDO CONTEST

Theoretical-physical-biomechanical analysis is a powerful method of investigation which, when fully used, allows analytically difficult problem to be sqlved with simple and somewhat elegant means. Its basic instruments are differential analysis and structural synthesis. The former consists of dividing the technical performance into severa1 categories (e.9.: holds, posture, unbalance, throw, ect.); if we are to understand in a direct way the problems relating to the correct use of propulsive forces into space, the above division prove to be a useful semplification. The latter consists of the phase through which, the semplified mechanisms or the correlated subsets of technical performance are reinterpreted as a whole. Later, this method will be applied to define contest and interaction in it (throwings).

The comparative study through differential analysis and structural syntesis will be carried out on a consecutive-phase basis (fig. 14).

In order to obtain analytical proof of the contest as motion and interaction, reference must be made to definitions o£ : "biomechanical athlete" and,@lcouple of athletes" system, they being the basic preliminary step whereby such a goal may be reached. Therefore, with the due approximation, we shall define the biomechanical athlete as a solid of varying geometry and of cylindrical symmetry, that may assume dif ferent positions, normally placed in conditions of unstable equilibrium in the gravitational iield on a plane area with friction, who through the articular joints is abPe to perform only certain rotations.

The biomechanical athlete, thus defined, may assume a wide range of positions, called,"postures": each of these will be accomplished by the "fixation" and immobilization of the skeletal segments in a given position expressed as "aptitude" o£ the wole body to maintain through time such a marked state of equilibrium. Whereas the "structure" is able to perform only determined rotations through the articular joints, the execution of translations is made possible only under the condition that the sum. of the angles of the relative articular rotations would be zero.

The "couple of athletes" system may be defined in

Page 26: trends in judo biomechanics researches

Sviluppo dell'analisi biomeccanica.

1 % a

Scomposizione In particolari o I d e n t i f l ~ i o n e dei corollari sulla dlrezlorm delle forze nello spazio In condirlone statiea

i t

Composizione e studio della variazione nello spazio e nel tempo delle f orre. Identitlczulone delle traiettorie e delle simmetrie In condizione statlea

Gesto sportivo: tecnica In piedi

. Identificazione dei meccanismi fisicl e del movimenti d i *

base:"fondarnentali"

Analfsl differenziale Slntesi strutturala In condizione statlea in condizione statica

I l

l ' i

Applica.zio-ne della . 1 relatfvita galileiana l

I

generale

Fig. 14

Page 27: trends in judo biomechanics researches

physical terms, with' the due approximation, as an articulated system of cylindrical symmetry, placed in the gravitational field in stable equilibrium on a plane area with friction, formed by the semi-rigid union of two biomechanical athletes.

The aim of the semplifications introduced in the preceding definitions is to facilitate the mathematical handling of this issue, it falling under the sphere of classica1 mechanics.

It is important to note that the ncouple of athletes" may be regarded as a whole system upon which acts only one external force (gravity force) annuled by mat reaction, and that it may shifts or changes its interna1 set-up, under push and pull force only on account of the existence of friction.

Very generally, in i~teraction (throwing techiqhes), the analysis as above may be performed under "static conditionsn, that is at zero shifting system velocity or "absolute velocity", since the results obtained will be, with verry good approximation, applicable also to the condition relating to contest, effective average velocity between 0.5-1.2 Km/h.

In fact on the basis of Galileots Principle of Relativity, according to which the functional relations in mechanics are equally valid both for an immobile system, and for a system in uniform linear motion with respect to this, the two treatment will be equivalent.

Therefore - for rather self-evident convenience-related reasons, it is preferable to treat the mechanical problem of the intraction (throwing techniques) in the condition of greatest semplicity.

The mode1 and the characterization of the generic motion of the "couple of athletes" system - developed thanks to the specific techniques of the statical mechanics 9-

allowed to affirme that it is ruled by Langevin equation and then that it belongs to the class of *bidimensional Brownian motion. The experimental check could be done from a study of dromodrams made at the Japan Judo CHANPIONSHIP IN 1971. By applying Einstein methods - adequately modified through the second principle of thermodynamics - it has been demonstrated that the average kinetic energy is directly proportional to one fifth of the athletets overall oxygen consumption, and also that the most important parameter in contest are the "absolute velocity" o£ the system, and the "relative velocityn of attack speed.

On the other hand, the use of variational'amalysis -

Page 28: trends in judo biomechanics researches

applied to the aspect of interaction between athletes in static conditions and extendable to contest on the basis of Galileian relativity - enable us to identify the physical principles on which this ' interaction (throwing techniques) relies and to infer and define the lower energy consumption trajectories of throwing.

From a historical point of view, the theory of variations was born thanks to the stydy of the brachistocrone or "smaller transit time" trajectory. This problem was studied by Galileo, Jacobi, Bernoulli, Newton, Leibnitz and others even though Euler, Bernoulli and Lagrange are generally considered to be the founders of this method. It was applied to the problem of identifying the lower transit time*trajectory that a body.can cover between two points when only the gravitational field acts on it.

In our case, throwing techniques, since by first approximation, we deem correct the assumption according to which the initial thrust.exerted by the attacking athlete on the attacked one, acts for a neglegible lapse of time, we are once again faced with a formally similar case.

The external field of forces to the "couple of athletes" system is conservative and not depending on time (gravitational field). Therefore the principle of minimal , action will.be true and we can demonstrate either that the body covers a minimum lenght curve in the space or that its trajectory coincides with a geodesic of a specific simmetry.

Considering this study, we may define the two physical principles according to which al1 throwing techniques have been classified:

- Techniques in which the attacker uses a physical lever to throw down his opponent. - Techniques in which the attacker uses a couple of forces to throw down his opponent.

For the physical lever techniques, the impulse applied by the attacker at the start ot throw, although its act,ion is limited only to a short time, may be considered sufficient both to obtain unbalance, ?hat is to shift the barycentral projection outside the supporting area, and to simultaneously impart a rotating momemtum on the thrown athletefs body so that, given the mechanics of the techniques (establishment of a stopping point, fulcrum, and rotation around the same.) they strongly depend from the friction between ukefs feet and the

Page 29: trends in judo biomechanics researches

mat; the equation of motion is provided by the solution of the classica1 problem of heavy symmetrical ro-tator that starts falling down, in gravitational field.

These techniques are less energetically convenient because Ukefs barycentre must be lifted and shifted for a more long trajectory, i.e. as in standing Seoi nage, O goshi, etc.

For the couples of forces techniques, the equation of motion proves to be the sum of produced by the couple of forces, parallel to the gravitational field- , called "principal": that is a pure rotative motion independent of the gravitational field, and those ,produced by the composition of the movement of the perpendicular torque to the gravitational field, called ltsecondary", plus the component of the field itself. Such techniques therefore have the property of being pratically non-dependent on the 'friction between ukefs feet and the mat.

They are also more energetically convenient, because Uke's body only rotates on its own barycentre and then falls down .

Page 30: trends in judo biomechanics researches

5. BIBLIOGRAPHY

BEJAN A. "Heat Tranfer-Based Reconstruction of the Concepts and

Laws of Classica1 Thermodynaricsn Journal of Heat Transfer vol. 110 (1988)

DAVID R. BASSETT JR., FRANCIS J. NAGLE, SWAPAN MOOKERJEE, KEVIN C.DARR, ALEXANDER V.NG, STEPHEN G. VOSS, and JEROME P. NAPP

nTermoregulatory responses to skin wetting during prolonged treadmill runningn

Medicine and Science in Sports and Exercise Copyright 1987 by American College of Spprts Medicine

CAMPBELL G.S.,. McARTHUR A.J. and MONTEITH J.L. "Windspeed dependence of heat and mass transfer

.through coats and clothingn Boundary-Layer Meteorology 18 (1980) 485-493

CENA K. a.nd MONTEITH J.L. Transfer processes in animal coats

Io - Radiative transfern 11° - Conduction and convection"

'111° - Water vapour diffusionn Proc. R. Soc. Lond. B. 188,413-423 (1975)

C.K. CHARNY, M.J. HAGMANN, R.L. LEVIN "A whole body thermal model of man during hyperthemian IEEE Transactions on Biomedical Engineering

BME-34 (1987)

C.K. CHARNY, R.L. LEVIN "A whole body thermal model of man with a realistic

circulatory' systemn IEEE Transactions on Biomedical Engineering

HTD-95 BED-7 (198.7)

CLARK R. P. "Human Skin ~emperature and Convective Heat Lossn

ELSGOLC

Page 31: trends in judo biomechanics researches

"Calculus of variations" Pergarnon Press N.Y.1961

FOWLER "~tatistical mechanics"

Cambridge 1936

J.P. FUNK "Direct measurement of radiative heat exchange of the

human body" NATURE February 29,1964

GRUCZA R. "Body .Heat Balance in.Han Subjected to Endogenous and

Exogenous Heat Load" 51:419-433

HAK-SHING TAM, ROBERT C. DARLING, JOHN A. DOWNEY, and HUK-YUK CHEH

"Relationship between avaporation rate of sweat and mean sweating rate" a

Journal of Applied Phisiology No 5 (1976)

KHINCHIN "Hathematical fundations of Statistica1 Hechanics"

Dover N.Y.1949

KURT "Axiomatics of Statkstical Hechanic~ .

Pergarnon Press N.Y. 1960

KENNEY W.L., LEWIS D.A., HYDE D.E.,- DIKSTERHOUSE T.S2, ARMSTRONG C.G., FOWLER S.,R., and WILLIAMS D.A.

"Physiologically derived critica1 evaporative coefficients for protective clothing ensemles"

CopyrigHt 1987 the American Physiological Sodiety

KATTO Y. and AOKI H. "Peculiarity of Evaporating Liquid-Surface With

Reference to Turbolent Heat Transferm Bulletin of JSME, vol. 12 (1969)

KATTO Y. and KOIZUMI H.

Page 32: trends in judo biomechanics researches

"Turbolent Heat Transfer of a Gas Flow on an Evaporation Liquid Surfaceu

Bulletin of JSME, vol. 18 (1975)

T. KUMADA, T. HIROTA, N. TAMURA, R. ISHIGURO "Heat and Mass ~ransfer With Liquid Evaporation Into a

Turbole'nt Air Stream" Transactions of the ASME vol. 108 (1986)

KANDO KOBAYASHI, STEVEN M. HORVATH, FRANCISCO J.DIAZ, DONALD R. BRANSFORD, and BARBARA L. DRINKWATER

"The~more~plation during rest and exercise in different postures in a hot huniid environment"

Copyright 1980 the Amrican Physiological Society

KHAIR K.R. and BEJAN A. "Wass Transfer to Natura1 Convection Boundary Layer

Flow Driven by Heat Transfer" Journal of Heat Transfer voi. 107 (1979)

H.E. LEWJS, A.R. FOSTER, a ~ d B.J. MULLAN "Aerodynamics of the human microenvironmentu

The Lancet Saturday 28 June 1969,

A.T. PRATA and E.M. SPARROW "Diffusion-Driven Nonisothermal Evaporation" Journal of Heat Transfer vol. 107 (1985)

R.S. RANA, V.CHARAN, and H.K. VA- "Heat and Hass Transfer From a Row of hibes in a

Vertical Plane of an Evaporative Heat Dissipatorn V

Transactions of the ASME vol. 111 (1989)

A. SACRIPANTI "Biomeccanica del judon

Ed. Mediteranee 1989

A. SACRIPANTI, M. FAINA, G. GUIDI, M. FABBRI, G. GALIFI, P.LUPOL1, R. MASO, A. PICCA, L. ROSSI. Valutazione del costo energetico degli sport di combattimento

in "REMOTE SENSING" . PROGRESS REPORT 1 "Screening preliminare"

Page 33: trends in judo biomechanics researches

ENEA RT:1989 PROGRESS REPORT 2 "Intercomparazione Orientativa"

ENEA RT:1990 PROGRESS REPORT 3 "Teoria biomeccanica della competizione"

ENEA ~ ~ : 1 9 9 0 PROGRESS REPORT 4/5 " Stima dellreffetto schermo del Judogi"

ENEA RT:1991 PROGRESS REPORT 6 " Valutazione dellreffetto schermo del

Judogi " ENEA RT:1991

PROGRESS REPORT 7 " Han enviroment, heat-excange equations a new thermodynamic approach" ENEA RT:1991

SHAPIRO Y., PANDOLF K.B., and GOLDMAN "Predicting . Sweat Loss Response to Exercise,

Environment and Clothing" Eur J Appl Phisiol (1982)

STOLWIJK,J.A.J., and J.D. HARDY "Partitional calorimetric studies of responses of man

thermal transientsn J. Appl. Phisiol 21:967-977 (1966)

STOLWIJK,J.A.J., and J.D. HARDY "Contro1 of body temperature"

In DHK Lee (Ed.):Handbook o£ ~hysiology-Reactions t0 Environment Agent. Bethesda,

American Physiological Society 1977

S? SMOLSKY B.M.,and SERGEYEV G.T. "Heat and Hass Transfer With Liquid Evaporation"

Int. J. Heat and Mass Transfer, vo1.5, 1962

WAX "Selected papers on Noise and Statistica1 Processes".

Dover N.Y. 1954

WHITTARKER "A Treatise on the Anaiytical Dynamics of Particles

and.Rigid Bodies" Cambridge Univ. Press 1937