trends in iot infrastructure - people power company · !!...

11
www.peoplepowerco.com WEARABLES AND INTERNET OF THINGS 2015 Sunil Maulik, Ph.D.

Upload: others

Post on 20-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

     

 

WEARABLES  AND  

INTERNET  OF  THINGS  2015      

Sunil  Maulik,  Ph.D.  

 

 

 

       

Page 2: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

A.  A  History  of  Wearables  

Wearable  technology  first  originated  from  the  field  of  ubiquitous  computing  and  the  history  and  development  of  wearable  computers.  With  ubiquitous  computing,  wearable  technologies  shares  the  vision  of  interweaving  technology  into  everyday  life  by  making  technology  pervasive  and  lessening  the  friction  of  interaction  between  human  and  machine.  Throughout  the  nascent  development  of  wearable  computing,  this  vision  has  been  contrasted  and  affirmed.  The  history  of  wearable  technology  is  influenced  by  both  of  these  responses  to  the  vision  of  ubiquitous  computing  (1).      One  of  the  earliest  “wearable”  computers  was  the  pocket  calculator[2]  first  introduced  in  the  1970s,  followed  by  the  calculator  watch,  introduced  in  the  1980s.  Also  in  the  1980s,  cheap,  fast  and  highly  reliable  computer  systems  became  embedded  into  automobiles  and  airplanes,  and  the  rise  of  so-­‐called  “embedded  systems”  (tightly  integrated  hardware  and  software  that  did  not  need  maintenance  and  was  highly  reliable)  for  industrial  use  predated  their  application  into  consumer  wearable  products.  Examples  of  wearables  today  range  from  Bluetooth  headsets  designed  into  a  pair  of  earrings  with  a  hidden  microphone,  a  Spy  Tie,  which  includes  a  color  video  camera,  and  USB  Heating  Gloves  keep  hands  warm  when  plugged  in.[3]  More  recently,  wearable  technology  such  as  the  Jawbone  Up  or  Fitbit  have  applications  in  monitoring  and  real-­‐time  feedback  for  athletes.[4]  The  decreasing  cost  of  processing  power  and  other  components  is  encouraging  widespread  adoption  and  availability,  evidenced  by  Fitbit  recently  filing  for  an  Initial  Public  Offering  (IPO).[4]    

 In  general,  a  wearable  computing  device  can  be  thought  of  as  having  three  components,  each  of  which  has  significant  implications  for  market  development  and  study.  These  are        

 

The  User  Interface  (or  UI)  is  highly  specific  to  the  type  and  usage  of  the  wearable,  and  requires  significant  design  considerations.  The  Compute  Engine  may  be  part  of  the  wearable,  part  of  a  local  device  (e.g.  a  smartphone)  or  may  be  entirely  in  the  cloud.    Lastly,  the  Analytics  &  Feedback  are  a  layer  on  top  of  the  Compute  Engine  that  provide  the  user  with  actionable  feedback  in  (near)  real-­‐time  that  leads  to  a  desired  behavior.  

Wearables  –  A  Definition  

Juniper  research[5]  defines  a  ‘smart  wearable  device’  as  an  app-­‐enabled  computing  device  (that  is  a  device  which  accepts  input  and  processes  that  input)  which  is  worn  on,  or  otherwise  attached  to,  the  body  while  being  used.  In  some  cases  a  wearable  device  may  also  be  a  fashion  accessory.  

Compute  Engine  ( local  or  remote)  

Analytics  &  Feedback  

 Input   Output  

Page 3: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

Most  wearable  devices  are  always-­‐on  and  accessible  at  any  time,  with  constant  interaction  between  the  user  and  the  device.  This  definition  covers  a  wide  range  of  devices  from  watches  to  clothing  to  displays,  any  of  which  can  either  work  independently  or  in  conjunction  with  an  external  platform,  such  as  a  smartphone  or  tablet.    

The  Wearables  Market  in  2015  

While  Wearables  technology  is  in  its  infancy  stage,  it  is  expected  to  become  a  $1.6  trillion  business  in  the  near  future,  according  to  research  by  Morgan-­‐Stanley[6].  Analysts  project  sales  of  wearable  devices  will  grow  at  a  154%  annual  compound  rate  through  2017,  where  248  million  devices  will  be  sold.  The  figure  will  grow  even  further  after  that  and  sales  of  wearable  technologies  are  expected  to  reach  one  billion  by  2020.    Customer  surveys  by  Forrester  Research[7]  of  types  and  locations  of  wearable  devices  on  the  human  body  reveal  the  following  preferences:    

Wrist         42%  Clipped  on  clothing     35%  Headphones/Earbuds     21%  Shoes         20%  Clothing       19%  

Glasses       18%  Jewelry       16%  Other         45%  

   

   B.  Market  Overview    Broadly,  six  sectors  where  wearable  technologies  could  prove  to  be  disruptive  have  been  identified[5,6]:    

• Consumer/Jewelry  (Watches):  wearable  technology  will  change  how  consumers  view  traditional  watches,  as  their  expectations  for  so-­‐called  “smart”  watches  are  influenced  by  products  such  as  the  Apple  Watch  and  Pebble  Time.  These  types  of  wearables  fall  under  the  “lifestyle”  category,  epitomized  by  wearables  that  are  worn  to  perform  a  specific  function  that  enhances  an  aspect  of  the  user’s  lifestyle,  generally  without  having  more  detailed  or  customizable  functionality.  Such  devices  include  notification  jewelry  and  smart  clothing  that  uses  location-­‐based  or  other  contextual  information  to  change  its  appearance.        

Apparel:  Wearables  will  accelerate  an  already  strong  retail  trend  by  imbuing  apparel  with  

Page 4: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

sensors  so  that  clothing  will  be  able  to  provide  real-­‐time  feedback  on  comfort,  fit,  style  etc.  In  addition,  virtual  and  augmented  reality  devices  that  are  based  on  the  availability  of  content  to  be  consumed  while  the  device  is  worn  are  now  emerging  for  a  wide  variety  of  use-­‐cases  ranging  from  video  eye  wear  (smart  goggles  and  wearable  cameras)  that  enable  users  to  “consume”  a  retail  product  in  their  own  homes  before  they  actually  purchase  it,  to  augmented  or  virtual  reality  headsets  (such  as  the  Oculus  Rift  and  the  Microsoft  HoloLens)  that  enable  them  to  engage  with  stores  in  a  completely  new  way.        

Payments:  Apple’s  ApplePay  payment  system,  as  adopted  in  the  Apple  Watch,  makes  mobile  electronic  payments  even  easier  to  use,  generating  intense  competition  for  others  to  follow  suit.  Other  “wearable”  payment  systems  include  Google  Wallet,  Samsung  Pay,  and  the  CurrentC  standard  supported  by  Walmart,  CVS,  Rite-­‐Aid  and  others.  These  devices  perform  a  variety  of  different  computational  functions  generally  (but  not  necessarily)  relayed  through  a  tethered  smartphone.  Due  to  the  variety  of  different  wearable  form-­‐factors  that  have  evolved  to  service  specific  purposes,  multi-­‐functional  devices  are  generally  limited  to  smart  phones  or  smart  watches,  into  which  payments  functionality  can  be  easily  integrated  using  NFC,  Bluetooth,  or  other  low-­‐energy  radios.    

Retail:  Enormous  “e-­‐tailers”  such  as  Alibaba  Group  Holding  Ltd,  Amazon  Corp,  Baidu  Inc  and  eBay  are  working  with  suppliers  of  mobile  “beacon”  technology  (including  iBeacon  from  Apple)  to  equip  stores  and  malls  with  technology  that  improve  the  customer  experience  by  interacting  with  wearable  and  mobile  devices  and  provide  rich  real-­‐time  data  analytics  that  personalize  offers  to  consumers.  Other  applications  in  retail  include  augmented  reality  (using  either  a  smartphone  or  headset  to  “layer”  virtual  elements  onto  the  existing  physical  landscape),  or  full  virtual  reality  (using  next-­‐generation  headsets  by  vendors  such  as  Facebook/Oculus,  Sony,  Microsoft  and  others)  to  enable  a  completely  immersive  digital  retail  experience.  One  of  the  “holy  grails”  in  retail  marketing  is  the  “Omnichannel  Experience”,  the  capability  whereby,  regardless  of  channel  or  device,  consumers  can  engage  with  a  company  in  a  physical  store,  on  an  online  website  or  mobile  app,  through  a  catalog,  or  through  social  media  with  a  seamless  experience.  Wearable  devices  that  can  communicate  a  user’s  person  information  to  a  store  go  a  long  way  to  having  the  store  “respond”  to  the  customer  in  a  highly  personalized,  targeted  manner.  

 Healthcare:  Wearable  devices  will  have  a  profound  impact  on  healthcare  by  monitoring  

patient  passively,  actively  suggesting  wellness  strategies,  and  providing  patient  diaries  and  other  continuously  monitored  information  that  can  improve  clinical  studies  and  other  activities.  In  addition,  system  inefficiencies  in  the  delivery  of  medical  care  will  be  addressed  by  tracking  patient  and  provider  workflow,  follow-­‐up,  and  reminders.  (We  review  the  healthcare  opportunity  in  more  detail  in  the  Case  Study,  (E)  below.)  Wearables  may  be  used  by  consumers  to  monitor  medical  conditions,  to  aid  in  the  administration  of  medical  aid  (by  either  the  consumer  themselves  e.g.  self-­‐administered  insulin  for  diabetics),  or  by  a  healthcare  professional  (such  as  a  wearable  ECG  monitor).  

Page 5: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

They  may  also  include  smart  clothing  (e.g.  an  undershirt  that  could  monitor  for  atrial  fibrillation)  to  smart  sheets  (in  hospitals)  that  could  monitor  vital  signs  at  night-­‐time  in  a  non-­‐invasive  manner.  One  category  of  intense  interest  is  non-­‐invasive  (no  blood-­‐stick)  continuous  glucose  monitoring  for  diabetics  and  others.    Examples  of  health  and  wellness  wearables  include  those  that  are  worn  to  enable  quantification  of  user’s  routine  or  fitness  activities,  such  as  pedometers,  mobility  and  heart-­‐rate  trackers.  These  include  clip-­‐on  or  wristband  activity  trackers,  as  well  as  clothing  that  monitors  biometric  data,  such  as  the  Samsung  Gear  Fit,  Razer  Nabu,  Jawbone  Up,  FitBit  and  Acer  Liquid  Leap  that  also  offer  notification  services,  but  are  still  primarily  considered  fitness  devices.        

Industrials/Military:  Wearables  will  be  a  catalyst  offering  consumers  a  gateway  into  the  Internet  of  Things  (IoT)  –  for  instance  allowing  unique  products  to  emerge  for  the  smart  home,  smart  community,  and  smart  workplace.  Wearable  devices  will  also  enable  seamless  interaction  between  consumers  and  their  “built”  environment,  optimizing  for  factors  such  as  transportation,  weather,  work  or  leisure  activities,  and  the  like.  Lastly,  wearables  can  be  extremely  effective  on  the  factory  floor  or  the  stock-­‐room,  ensuring  workers  follow  appropriate  Standard  Operating  Procedures  (SOPs),  manufacturing  processes,  on-­‐the-­‐spot  training,  as  well  as  certification  and  licensing  for  Occupational  Safety  and  Health  Administration  (OSHA).    

 The  military  are  at  the  cutting  edge  of  wearable  technology,  with  many  developments  in  the  way  of  object  and  facial  recognition  hardware.  In  addition,  the  military  is  pioneering  in  the  use  of  technologies  such  as  exoskeletons  (augmented  wearables),  robotics  and  the  intersection  between  individual  and  group  (team)  wearable  technology.  Other  augmenting  wearable  tools  (for  instance,  infrared  “night-­‐vision”  goggles  are  already  standard  operating  practice  in  many  militaries)  will  find  use  and  be  made  robust  under  battlefield  conditions  before  being  transferred  to  broader  consumer  use.  

 • Enterprise  Wearables:  Enterprise  wearables  are  app-­‐enabled  smart  devices  that  perform  

tasks  in  a  business  context.  Exactly  what  that  task  is  will  vary  depending  on  the  industry  in  question,  but  many  have  shown  a  preference  for  smart  glasses,  from  industries  as  diverse  as  logistics  and  warehousing  to  healthcare  and  surgery.  Other  examples  of  enterprise  wearables  include  high-­‐capacity  strap-­‐on  tablets  (e.g.  for  airline  pilots  or  others  who  need  to  access  manuals  and  other  documents),  or  for  those  in  the  energy  or  construction  industries.  Another  application  is  performing  real-­‐time  quality  audits  in  manufacturing  processes,  based  on  feedback  from  wearable  devices  and  sensors.  

Wearables  may  be  organized  into  a  technology  hierarchy,  with  consumer  wearables  being  the  largest  sub-­‐category:  

Page 6: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

 

Figure  2  –  Hierarchy  of  Smart  Wearable  Device  Categories  

 

IDTechX  has  conducted  a  survey  into  wearable  data[8]  and  identified  transportation  and  health  data  as  the  top-­‐two  data-­‐streams  that  consumers  identify  as  having  value  emanating  from  wearables.  Interestingly,  security  (secure  identification)  and  payments  are  the  next  two  categories:  

 

Figure  3  –  Interest  in  Wearable  Functionality  (IDTechX,  2015)  

 

C.  Wearables  and  the  Internet  of  Things  

The  Internet  of  Things  broadly  refers  to  the  networking  of  physical  objects  through  the  use  of  embedded  sensors,  actuators,  and  other  devices  that  can  collect  or  transmit  information  about  the  objects.  The  data  amassed  from  these  devices  can  then  be  analyzed  to  optimize  products,  services,  and  operations.  Perhaps  one  of  the  earliest  and  best-­‐known  applications  of  such  technology  has  been  in  the  area  of  energy  efficiency:  sensors  deployed  across  the  electricity  grid  can  help  utilities  remotely  monitor  energy  usage  and  adjust  generation  and  distribution  flows  to  account  for  peak  times  and  downtimes.  But  applications  are  also  being  introduced  in  a  number  of  other  industries.  Some  insurance  companies,  for  example,  now  offer  plans  that  require  drivers  to  install  a  sensor  in  their  cars,  allowing  insurers  to  base  premiums  on  actual  driving  behavior  rather  than  projections.  Physicians  can  use  the  information  collected  from  wireless  sensors  in  their  patients’  homes  to  improve  their  management  of  chronic  diseases.  Wearables  offer  consumer  an  entrée  into  the  Internet  of  Things,  by  providing  a  viewpoint  and  interface  for  individuals  to  interact  and  modify  with  the  “designed”  (or  “built”)  environment.    

In  IDTechX  report  on  sensors,  wearable  and  data-­‐streams,  they  have  identified  five  different  sensor  types  as  being  of  strong  interest  to  manufacturers  in  the  IoT  space.  These  include  stretch  and  pressure  sensors,  as  well  as  chemical,  optical  and  biopotential  sensors.  This  give  us  some  idea  of  manufacturer’s  expectations  of  these  sensor  types  into  “smart”  clothing,  jewelry,  watches  and  other  wearable-­‐types,  as  well  as  embedding  these  sensors  into  the  environment  so  they  can  respond  to  passers-­‐by  on  the  ambient  conditions  via  their  own  wearable  devices:  

 

Figure  4  -­‐  Cumulative  Annual  Growth  Rate  (CAGR)  of  various  sensor  types  –  IDTechX,  2015  

Page 7: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

Tiny  sensors  and  actuators,  proliferating  at  astounding  rates,  are  expected  to  explode  in  number  over  the  next  decade,  potentially  linking  over  50  billion  physical  entities  as  costs  plummet  and  networks  become  more  pervasive.    Companies  are  starting  to  use  such  technologies  to  run  complex  operations,  so  that  systems  make  autonomous  decisions  based  on  data  the  sensors  report.  Smart  networks  now  use  sensors  to  monitor  vehicle  flows  and  reprogram  traffic  signals  accordingly  or  to  confirm  whether  repairs  have  been  made  effectively  in  electric-­‐power  grids.  These  technologies  are  also  leading  to  what’s  known  as  the  “quantified  self”  movement,  allowing  people  to  become  highly  involved  with  their  health  and  wellness  by  using  devices  that  monitor  blood  pressure  and  activity,  and  sleep  patterns.  Leading-­‐edge  ingestible  sensors  take  this  approach  further,  relaying  information  via  smartphones  to  physicians  from  within  the  body  (e.g.  on  the  rate  of  uptake  of  drugs  in  the  digestive  system),  thereby  providing  new  opportunities  to  manage  health  and  disease.    

D.  Wearables   in  Healthcare  

Technology  is  opening  new  opportunities  to  contain  rising  health-­‐care  costs  and  improve  access.  Mobile  notification  systems  can  now  alert  clinics  to  dispatch  a  nurse  or  other  allied  healthcare  professional.  Wearables  have  an  opportunity  to  revolutionize  health  and  wellness  care  by  providing  seamless  daily  tracking  of  vital  signs  enabling  earlier  intervention,  better  prevention,  and  the  ability  to  recognize  and  understand  long-­‐term  patterns.  Already  in  China,  a  public–private  partnership  created  a  cardiovascular-­‐monitoring  system  that  allows  patients  to  self-­‐administer  electrocardiograms  and  transmit  data  to  specialists  in  Beijing,  who  can  suggest  treatments  by  phone.  At  New  York’s  Mount  Sinai  Hospital,  a  venture  with  General  Electric  uses  smart  tags  to  track  the  flow  of  hundreds  of  patients,  treatments,  and  medical  assets  in  real  time.  The  hospital  estimates  it  could  potentially  treat  10,000  more  patients  each  year  as  a  result  and  generate  $120  million  in  savings  and  revenues  over  several  years.    

As  with  many  other  industries,  consumers  in  the  healthcare  sector  are  becoming  more  informed,  empowered,  and  demanding.  The  vast  majority  of  connected  patients  are  using  an  array  of  digital  tools  to  take  control  of  the  healthcare  services  that  they  access  and  purchase:  already  more  than  70  percent  of  patients  who  are  online  in  the  United  States  use  the  Internet  to  find  healthcare  information,  and  more  than  40  percent  of  have  diagnosed  their  condition  through  online  research  before  having  it  confirmed  by  a  physician.  

 

Figure  5  –  Examples  of  Wearables  in  Healthcare.  

The  more  that  healthcare  data  becomes  digitally  accessible  and  monitorable  via  wearable  devices,  the  more  patients  will  use  it  to  weigh  the  value  of  cost-­‐effective  prevention  versus  expensive  healthcare  treatments.  This  is  particularly  true  in  the  United  States,  where  patients  pay  a  greater  percentage  of  the  cost  of  their  drug  therapies  (25  percent  is  not  unusual)  than  they  do  for  other  healthcare  expenses  such  as  inpatient  services.  Not  surprisingly,  these  consumers  

Page 8: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

are  demanding  more  information  so  they  can  apply  the  same  cost-­‐benefit  analysis  and  research  techniques  they  use  to  purchase  cars  or  phones  when  they  purchase  healthcare;  they  are  also  making  more  informed,  rational  choices  about  where  they  put  their  money.  

If  healthcare  follows  the  path  of  other  consumer-­‐oriented  sectors  that  compete  on  data  analytics,  such  as  high-­‐tech  and  retailing,  winners  and  losers  will  be  determined  in  part  by  who  makes  the  best  use  of  the  data  available  and  the  strongest  case  for  change.  Government  agencies  across  the  globe  are  leading  the  way,  and  entrepreneurs  are  taking  advantage  of  government’s  interest  in  facilitating  data  exchange.  However,  pharmaceutical  and  medical-­‐device  companies  have  largely  stayed  on  the  sidelines,  leaving  others  to  dictate  how  information  related  to  their  products  is  used.  Pharmaceutical  companies  have  used  data  generated  from  long-­‐running  randomized  controlled  trials  as  the  gold  standard  to  demonstrate  the  efficacy  and  safety  of  products  and  gain  regulatory  approval  or  formulary  listings.  Yet  many  of  their  customers—insurers,  increasingly  providers,  and  even  patients—are  looking  for  real-­‐world  evidence.  Both  access  to  and  quality  of  real-­‐world  data  will  increase  exponentially  thanks  to  wearable  healthcare  monitors.  As  data  integration  and  analyses  take  precedence  over  data  ownership  or  sponsorship,  competitive  advantage  will  rest  with  those  organizations  that  innovatively  use  wearable  data  sources  to  uncover  clinical  insights.  Meeting  long-­‐standing  requirements  regarding  clinical-­‐trial  data  continues  to  be  necessary  for  government  approval  of  new  drugs,  but  it  is  no  longer  enough  for  other  stakeholders  when  more  and  more  targeted  and  timely  data  are  available.    

A  recent  study  by  Juniper  Research  (2014)  has  revealed  that,  in  addition  to  health/fitness  trackers  worn  around  the  wrist  (e.g.  Fitbit,  Garmin,  Jawbone,  Apple  Watch),  consumers  are  also  increasingly  interested  in  wearable  technology  that  is  embedded  into  other  articles  of  clothing:  

 

Figure  6  –  Desired  healthcare  wearable  types  (Juniper  Research,  2014)      The  results  of  this  survey  indicate  an  expectation  and  willingness  by  consumers  to  try  various  forms  of  wearable  technology  if  it  will  result  in  better  health  outcomes.  The  continuing  rising  cost  of  treatments  means  more  and  more  consumers  are  seeking  the  route  of  prevention,  assisted  by  the  appropriate  wearable  technology  that  can  “nudge”  them  into  the  desired  behavior.  

 

(i)  Healthcare  in  a  wearable-­‐centric  world    

Healthcare  is  moving  from  a  focus  on  addressing  point-­‐in-­‐time  issues  toward  coordinated,  continuous  health  management,  monitored  by  a  combination  of  wearable  devices,  in-­‐home  sensors,  and  mobile  technologies  that  can  serve  as  'hubs'  for  personalized  information.  The  need  

Page 9: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

to  provide  ongoing  management  of  chronic  diseases  and  to  predict  and  prevent  severe  episodes  and  events  offers  new  opportunities  and  places  new  communication  demands  on  every  element  of  the  mobile/wearable  infrastructure.    In  addition,  targeted  sensor  technology  allows  continuous  collection  of  physiological  data  (for  example,  electroencephalograph,  electrocardiogram,  movement,  heart  rate,  and  glucose  levels),  which  will  vastly  improve  disease  management  by  providing  real-­‐time  status  reports  that  can  alert  providers  to  impending  patient  problems.  When  scaled  broadly,  these  innovations  also  may  reduce  the  need  for  many  courses  of  treatment.    Some  innovators  already  are  combining  technology-­‐enabled  monitoring  and  insight  to  deliver  new  solutions  to  patients.  For  example,  inserting  GPS  technology  into  inhalers  to  identify  environmental  triggers  (that  cause  asthma  sufferers  to  use  the  device)  allows  providers  to  alert  consumers  who  can  then  head  off  severe  attacks.    

There  are  now  thousands  of  healthcare-­‐related  apps  available  from  the  US  Apple  App  Store,  but  only  a  fraction  are  patient-­‐facing  with  genuine  health  content,  according  to  a  new  study  from  the  IMS  Institute  for  Healthcare  Informatics.  The  recent  announcement  of  the  Apple  Watch  and  the  company’s  release  of  its  HealthKit  and  ResearchKit  developer  tool  are  likely  to  increase  the  variety  of  functions  and  number  of  health-­‐related  apps  that  are  available.  Google  Glass  is  the  most  high-­‐profile  wearable  that  has  been  tested  for  healthcare  applications—  surgeons  are  using  it  to  facilitate  and  record  operations,  office  physicians  are  reducing  interruptions  in  patient  engagement  by  retrieving  and  sending  information  to  electronic  medical  records  through  the  device,  and  emergency-­‐medicine  physicians  are  getting  specialist  consults  by  transmitting  video  or  images  taken  by  Glass.  In  the  future  these  and  other  wearables  will  play  an  ever-­‐increasing  role  in  moderating  health  and  wellness  outside  of  the  clinic.  

(ii)  Wearables  and  home-­‐health    

The  full  potential  of  the  technology-­‐enabled  home  health  care  market  remains  to  be  tapped.  In  the  United  States,  home-­‐health  care  accounts  for  about  3  percent  ($68  billion  a  year)  of  national  health  spending.  The  market  is  increasing  by  about  9  percent  annually,  

solid  but  hardly  booming  growth,  especially  since  labor  (mainly  nurses  and  aides)  accounts  for  about  two-­‐thirds  of  the  expenditure,  while  home-­‐monitoring  technology  represents  a  small  fraction  of  it.  Wearable  technology  holds  a  central  role  in  expanding  the  market  for  home  health  care.  Historically,  most  infrastructure  and  equipment  consisted  of  durable  medical  products:  walkers,  wheelchairs,  wall  rungs,  safety  rugs,  and  the  like.  That  infrastructure  enabled  basic  home  care  but  could  not  substitute  for  the  more  sophisticated  capabilities  of  specialized  care  settings,  such  as  on-­‐call  nursing  in  long-­‐term-­‐care  facilities.  In  recent  years,  however,  new  home  care  technologies—Internet-­‐enabled  home  monitors,  apps  for  mobile  health,  and  telemedicine—are  bringing  aspects  of  advanced  care  into  patients’  homes.  These  technologies  are  finding  a  place  in  all  parts  of  the  globe.    

Page 10: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

The  most  important  value  offered  by  wearable  and  sensor-­‐enabled  home  care  is  preventing  or  delaying  the  shift  of  patients  to  acute-­‐  or  long-­‐term-­‐care  settings.    The  medical  conditions  that  can  be  addressed  successfully  by  technology-­‐enabled  home  care  meet  three  criteria:    

They  are  chronic:  persisting  for  years  rather  than  days  or  months  

They  can  be  prevented  or  addressed  by  protocols:  repeatable  and  standardized  step-­‐  by-­‐step  instructions  executed  by  non-­‐physicians.      

They  are  non-­‐intensive:  there  is  no  requirement  for  round-­‐the-­‐clock  attention  or  human  monitoring.      

Diabetes,  hypertension,  congestive  heart  failure,  chronic  obstructive  pulmonary  disease  (COPD),  and  fracture  prevention  are  examples  of  high-­‐prevalence  medical  conditions  that  satisfy  these  criteria.  They  are  important  disease  targets  for  current  and  future  technological  advances  in  home  care.    

E.  Summary    The  advent  of  wearable  technology,  dependent  on  cheap  wireless  sensors,  ubiquitous  compute  engines,  and  novel  user  interfaces,  ushers  in  a  huge  new  market  opportunity.  The  design  and  innovation  of  business  models  for  this  market  is  a  major  challenge  for  entrants  into  the  wearables  market.  However  there  is  no  doubt  that  “blue-­‐oceans”  exist  for  novel  wearable  products,  and  that,  suitably  marketed,  they  can  be  hugely  successful.      Critical  to  the  success  of  wearables  will  be  ensuring  that  their  wearable  products  are  designed  for  long-­‐term  behavior  change,  as  only  these  will  succeed  and  scale  across  groups,  communities  and  entire  populations.  In  the  long-­‐run,  the  success  of  wearables  will  be  less  the  impact  they  have  on  individuals,  than  the  role  they  play  in  co-­‐ordinating  communities.  Nowhere  is  this  more  apparent  than  in  health-­‐care.  Encouraging  old  and  young  alike  to  be  more  active,  to  eat  and  sleep  better,  and  to  be  more  pro-­‐active  in  monitoring  and  intervening  in  their  health  will  drive  improved  health  outcomes  and  help  bend  the  healthcare  cost-­‐curve.  “Nudging”  communities,  cities  and  even  states  into  smarter  behavior,  coupled  with  augmented  reality  and  robotics,  will  finally  give  rise  to  the  21st  Century  ecosystem:  an  environment  with  virtually  limitless  upside  for  human  accomplishment.      F.  References    

Page 11: Trends in IoT Infrastructure - People Power Company · !! sensorssothatclothingwillbeabletoprovidereal Ytime!feedback!on!comfort,!fit,!style! etc.!In!addition,!virtual!and!augmented!reality!devices

 

www.peoplepowerco.com  

 

1. M.  Weiser:  The  Computer  for  the  21st  Century.  Scientific  American,  vol.  265  (1991),  no.  9,  pp.  66–75    

2. Ball,  Guy;  Flamm,  Bruce.  "The  History  of  Pocket  Electronic  Calculators".  3. Alexandra  Le  Tellier  Tech  Togs  July  22,  2009  Technology  Brand  X/  LA  Times.  4. And  you  thought  the  Jawbone  Headset  was  stylish,  LA  Times  blog.  5. “Smart  market  wearables  to  generate  $53BN  hardware  revenues  by  2019”  Juniper  

Research,  Sept.  2014.  6. “Wearable  Technology  A  Potential  $1.6  Trillion  Business”  Morgan  Stanley  Research,  Nov  

2014  7. “Are  Wearables  a  Disruptive  Technology?”  Forrester  Research  James  McQuivey,  April  

2015  8. “Wearable  Technology  2015-­‐2025:  Technologies,  Markets”,  IDtechX  Report,  February  

2015,  Peter  Harrop,  James  Hayward,  Raghu  Das  and  Glyn  Holland.