transformadores de instrumentos · 2018. 10. 28. · transformadores de corriente los...

73
Transformadores de Instrumentos

Upload: others

Post on 05-Aug-2021

34 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

Transformadores de Instrumentos

Page 2: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

2

¿Por qué se usan los Transformadores de Instrumentos?

Porque es necesario reducir Voltajes y Corrientes a niveles manejables,

en Instrumentos, Medidores de Electricidad y Protecciones.

Existen sistemas de Voltaje y Corriente tan altos como 765,000 V y 10,000 A (y mas)

Niveles usuales de voltaje y de corriente en instrumentos son 120 V y 5A (1A es mas común en Europa).

Page 3: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

9

Transformadores de Corriente

Page 4: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

10

Transformadores de Corriente

Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema eléctrico, a valores manejables y prácticos a ser analizados por relevadores, instrumentos de medida y/o otros equipos de control.

Usualmente esos valores son 5 amperios o 1 Amperio.

Page 5: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

11

Tipo de construcción del primario

Tipo de construcción del Primario: Barra, Ventana, Arrollado Localización de la Instalación: Interior / Exterior Voltaje del Sistema Nivel Básico de Aislamiento (BIL) Relación: Corrientes Primaria y Secundaria Precisión: Medida y/o Protección Burden (Cargabilidad) Capacidad de Sobre corriente de Corta Duración: Térmica y

Mecánica. Frecuencia

Transformadores de Corriente

Page 6: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

12

Tipo de construcción del Primario:

Barra: Es el transformador que tiene fijas y directas las vueltas del primario

pasando a través de un circuito magnético.

Transformadores de Corriente

Page 7: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

13

Tipo de construcción del Primario: Ventana: ( Definir el diámetro de los cables) Es el TC que tiene el núcleo en forma de anillo y el devanado secundario

aislado y enrollado permanentemente alrededor del núcleo, pero no tiene devanado primario y por lo tanto no tiene aislamiento para el devanado primario. El Primario no es parte de la estructura del TC.

Estos TC son usados con conductores totalmente aislados como devanado primario.

Estos TC son usados usualmente en equipos donde el conductor primario es componente o parte de otro aparato.

Transformadores de Corriente

Page 8: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

14

Tipo de construcción del Primario: Arrollado o devanado: Es el TC que tiene el devanado primario aislado y enrollado

permanentemente alrededor del núcleo. Devanado primario, núcleo y devanado secundario, hacen parte de la

estructura del TC.

Transformadores de Corriente

Devanado Primario

Page 9: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

15

Localización de la Instalación: Interior / Exterior Distancia de Impacto y Distancia de Fuga (Strike y Creapage)

Transformador de Corriente

Page 10: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

16

Voltaje del Sistema o Voltaje Nominal

Voltaje línea a línea. 13800 V Línea a Línea o 14400 V Línea a Línea Automáticamente queda definido el Voltaje Máximo de

aislamiento de acuerdo a IEEE están definidos para Distribución

15.5 kV 25.5 kV 36.5 kV Nivel Básico de Aislamiento (BIL) 110 kV 125 & 150 kV 200 kV

Transformadores de Corriente

Page 11: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

17

La relación de un TC puede ser interpretada de dos formas distintas:

La relación de corriente o relación nominal: Es la relación

de los amperios primarios con los amperios secundarios (2000:5)

La relación de vueltas: Es la relación matemática de las vueltas primarias con las secundarias (2000:5 es 400:1)

Se asumen 5 A secundarios si no se solicita algo distinto.

La relación es fija. Así que, para cualquier corriente primaria, usted puede determinar fácilmente la corriente secundaria

que fluirá, simplemente se divide por la relación.

Transformadores de Corriente

Page 12: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

18

Transformadores de Corriente

Amperios – Vuelta o NI La igualdad

NI Primario = NI Secundario La ecuación

Amperios-Vuelta = Amperios x Vueltas

En el caso de TC tipo anillo: El buje (la boquilla) es el devanado primario - representa un

amperio-vuelta. El devanado secundario se enrolla sobre el núcleo – está

compuesto de varias vueltas secundarias. Los Amperios-Vuelta son uno de los factores que determinan la precisión

y el tamaño del TC.

Page 13: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

19

Transformadores de Corriente

Ejemplo: Relación de TC = 2000:5 NI Primario = 2000 Amperios x 1 Vuelta = 2000 NI NI Secundario = NI Primario = 2000 NI por lo tanto … Vueltas secundario = 2000 NI ÷ 5 A = 400 Vueltas Los amperios-vuelta en un TC tipo boquilla son siempre

iguales a la corriente nominal del TC.

Page 14: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

20

Relación: Corrientes Primaria y Secundaria Corriente Primaria Relación Sencilla Ej.: 100 : 5 A “ : “ Relación entre el primario y el secundario del TC. TC con un devanado primario y uno secundario. Relación Doble Ej.: 100/200 : 5 A 100 “/ “ 200 Diferentes relaciones de corrientes primarias obtenidas

por derivaciones en el devanado secundario. Corriente Secundaria 1 Núcleo Ej. 100 : 5 A 1 devanado sencillo en 1 solo núcleo 2 Núcleos Ej. 100 : 5 // 5 A Devanados secundarios separados cada uno en un núcleo independiente.

Transformadores de Corriente

Page 15: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

21

Precisión: Medida y/o Protección

Medida 0.3 B 0.1 – 1.8 0.3 Error en la medida a carga o corriente nominal 0.1 a 1.8 (2.5VA a 45VA) Cargabilidad (Burden) del TC. Protección C100 o T100 Error en la corrección de la relación no debe exceder el 10% La precisión en los relevadores es designada por clasificación y por el

voltaje en los terminales secundarios. Clasificación C o T: C : TC en los cuales la fuga de flujo magnético no tiene efecto

apreciable en la relación. T : TC en los cuales la fuga de flujo magnético tiene efecto apreciable

en la relación. ( 1% diferencia en valor probado y valor calculado) Voltaje en los terminales secundarios: Es el valor de voltaje en los terminales secundarios a 20 veces la

corriente nominal secundaria sin exceder el 10% de error en la corrección de la relación.

Transformadores de Corriente

Page 16: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

22

Protección TC con secundario 5 A, el valor de precisión de protección es C100 Esto significa que el valor es Calculado y que el error no excede el

10% en ningún valor de corriente entre 1 a 20 veces la corriente secundaria, con 1 Ohmio de carga.

> 1 Ohmio x 20 x 5 A C 100 C = calculado 1 = 1 Ohmio carga 100 V en terminales secundarios a 20 veces la corriente

Secundaria Pasemos el valor de OHM de la carga a VA. VA = R x I 2 = 1 ohmio x 5A 2 = 25 VA

Transformadores de Corriente

Page 17: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

23

Capacidad de soportar sobre corrientes de corta duración:

Mecánica y Térmica.

Mecánica: Es la capacidad que tiene el TC de soportar una sobre corriente con el devanado secundario cortocircuitado, sin sufrir ningún daño.

Térmica: Es la corriente primaria que puede pasar por el primario de

un TC en 1 s. con el devanado secundario cortocircuitado, sin exceder los límites de temperatura en los devanados.

Ambos se definen como = Número de veces x I nom. (kA) Valores usuales Mecánica = 290 x I nom. Térmica = 100 x I nom.

Transformadores de Corriente

Page 18: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

24

Factor de Corriente Térmico Continuo : CRF (Current

Rating Factor) Es el número por el cual la corriente primaria de un TC es

multiplicada para obtener la máxima corriente primaria que puede ser soportada continuamente sin exceder los limites de temperatura de 30 o C ambiente promedio.

1.0, 1.33, 1.5, 2.0, 3.0, o 4.0 Ej.: carga 90 A >>> TC 100 : 5 A si el TC tiene RF 4.0 >>>> 100 A x 4 = 400 A

Transformadores de Corriente

Page 19: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

25

Incremento de temperatura a 55° C Transformadores de Corriente. ANSI/IEEE C57.13-1978, Fig. 1

Average Cooling air temperature for 24 hour period, Degrees C.(Maximum temperature must not exceed average by more than 10 deg. C.)

0 10 20 30 40 50 600

50

100

150

200

250

300

350

400

450

500

1.0

1.33

1.5

2.0

3.0

4.0P

erce

nt o

f rat

ed p

rimar

y cu

rrent

Curve designations arecontinuous thermal current rating factorsat 30 deg. C ambient air temperature.

Transformadores de Corriente

Page 20: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

26

Transformadores de Corriente

Frecuencia:

La frecuencia es crítica para definir los parámetros de operación del transformador.

En Costa Rica la frecuencia es 60Hz. En otros países como Bolivia es de 50Hz en otros paises puede ser 50 o 60.

Algunos países, como Japón y Brasil, de hecho utilizan ambas frecuencias dependiendo de la localidad.

Debemos asegurarnos de que el TC está designado para operar a la frecuencia correcta.

La frecuencia afecta el desempeño del transformador así como su precisión en general.

Page 21: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

27

Transformadores de Corriente

Partes de un TC:

Circuito eléctrico primario (Cable, boquilla o devanado) Circuito eléctrico secundario (usualmente un devanado

enrollado alrededor del núcleo) Un circuito magnético que une los dos circuitos

eléctricos (núcleo magnético).

•En un TC tipo boquilla, la boquilla del aparato donde el TC es montado es el Circuito Eléctrico Primario.

•El aislamiento de la boquilla protege al TC del voltaje de línea y de hecho provee el nivel básico de aislamiento BIL.

Page 22: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

28

Transformadores de Corriente

Devanado primario TC tipo primario arrollado completo antes de ser encapsulado.

Núcleo magnético

Devanado Secundario

Page 23: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

29

Transformadores de Corriente

Barra primaria

TC tipo ventana

Page 24: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

30

Transformadores de Corriente

Flujo Magnético:

Un núcleo de TC es la vía que une el primario con el secundario – es decir, permite al secundario proveer una salida proporcional a la entrada en el primario.

El núcleo contiene líneas de flujo magnético. La cantidad de flujo en el núcleo determina cuanta energía el núcleo consume energía que introduce errores en la transformación.

La cantidad de flujo que un núcleo puede soportar, o densidad de flujo, es limitada. Cuando el núcleo está lleno, se dice que está saturado.

Page 25: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

31

Transformadores de Corriente

Flujo magnético:

La densidad de flujo en el núcleo se mide en Tesla (T) o Gauss. 1 T = 10,000 Gauss. 1 Gauss = 1 Línea de flujo por centímetro cuadrado de sección

transversal del núcleo. El área sombreada es la sección transversal del núcleo. Para

mantener la densidad de flujo en un rango de trabajo aceptable es muchas veces necesario incrementar el área.

Page 26: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

32

Transformadores de Corriente

¿Qué afecta la densidad de flujo?

La densidad de flujo es proporcional al voltaje a través del devanado.

El voltaje a través del devanado es proporcional al burden y la corriente.

La densidad de flujo es inversamente proporcional a la frecuencia.

La densidad de flujo es inversamente proporcional al área transversal del núcleo.

Mientras la carga incrementa, el voltaje a través del devanado aumenta. Esto causa un incremento de densidad de flujo, Para compensar este incremento en densidad de flujo el área del núcleo tiene que incrementarse, de tal forma que se incrementa el tamaño del TC.

Page 27: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

33

Transformadores de Corriente

Reducción de Capacidad por Frecuencia Supongamos que tenemos un TC C-400, para 60 Hz. Se necesita un TC con la misma capacidad para 50 Hz. La sección transversal del núcleo necesitará crecer por una

relación de 60/50 o 1.2 (20%). De tal forma que, el TC será mas grande, mas pesado y mas caro.

Un TC con características garantizadas a 60 Hz no operará a 50 Hz con las mismas características garantizadas. Por otro lado, un TC con características garantizadas a 50 Hz operará a 60 Hz con las mismas características garantizadas. Será simplemente mas grande de lo necesario. Ocasionalmente los TCs se clasifican tanto para operación a 50Hz como a 60 Hz,

Page 28: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

34

Transformadores de corriente

Pérdidas totales

Las pérdidas en el núcleo son la primera componente del error en la transformación.

Las pérdidas en el circuito secundario son la segunda

componente del error en la transformación. Las pérdidas en el circuito secundario son una función

de la corriente y la carga total en el circuito.

La carga (burden) total en el circuito secundario está compuesto por: • la resistencia en el devanado secundario, • los cables • y las cargas conectadas al devanado.

Page 29: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

35

Transformadores de Corriente

Precisión

¿Por qué es importante la precisión? Cuando se calcula la factura de energía de un punto

primario de medición, la lectura del medidor es multiplicada por la relación del TC o TP.

Page 30: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

36

Transformadores de Corriente

Supongamos que tenemos una medición en una planta industrial a 7200/12470Y y que estamos utilizando un TC 40:5.

El multiplicador es entonces: VT: 7200:120=60:1 CT: 40:5=8:1 60 x 8 = 480 Supongamos que los kWh contabilizados por el medidor en un

mes son 500. Esto se multiplica entonces por 480 y luego por la tarifa

acordada (asumamos $0.08/kWh). 500 x 480 x $0.08 = $19,200. Anualmente esto es $230,000. Si la precisión del transformador de instrumento está fuera del

1%, el efecto en la factura anual del cliente es $2,300 afectando ya sea al cliente o a la compañía de servicio eléctrico.

Si tenemos 50 clientes como este en el sistema, el impacto anual llega a ser $ 115,000

Y en la vida de la instalación (un promedio de 15 años) estamos hablando de $ 1,175,000.

Page 31: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

37

Transformadores de Corriente

La precisión de un transformador de corriente es la diferencia porcentual entre la corriente real y la corriente nominal del secundario.

El error de transformación consiste tanto en una variación

en la relación como en el ángulo de fase. Las aplicaciones de medida limitan tanto el error en la

relación como en el ángulo de fase. Las aplicaciones de protección limitan solamente el error

a la relación.

Page 32: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

38

Transformadores de Corriente

Dependiente de los amperios-vueltas Dependiente de la carga conectada externamente –

incrementos de pérdidas en los circuitos secundarios. Dependiente de la construcción de los devanados – la

resistencia afecta la cargabilidad total del secundario. Dependiente del acero magnético con que se construye -

afecta las perdidas del núcleo.

Page 33: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

39

Transformadores de Corriente

Precisión de Medida

IEEE C57.13 lista varias clases de precisión normalizadas. La mas común es la clase de precisión 0.3.

IEEE C57.13 define un paralelogramo el cual representa un

factor de corrección máximo en la transformación de 0.3%. El factor de corrección de transformación es una

combinación de la relación en si y el error en el ángulo.

Page 34: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

40

Precisión IEEE

-5 +5-10 +10 +15-15

0.997

0.998

0.999

1.001

1.002

1.003

1.000

Phase Angle Minutes

Rat

io C

orre

ctio

n Fa

ctor

The Basic 0.3 Class Parallelogram for Current Transformers

* A

* B

A: RCF = 0.998, PhA = 3.5B: RCF = 1.002, PhA = 5.0

Page 35: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

41

Transformadores de Corriente

Precisión en la medida

Las unidades que cumplan con la clase de precisión 0.3 deben tener la medida del factor de corriente (RCF) en magnitud y ángulo de fase al 100% de la corriente y cargabilidad nominales cayendo dentro del paralelogramo de 0.3.

Al 10% de la corriente nominal un error de dos veces es permitido. Por lo tanto el RCF y el ángulo de fase al 10% de los valores nominales de corriente y cargabilidad deben caer en el paralelogramo de 0.6.

El paralelogramo de IEEE esta basado en un sistema con factor de

potencia 0.6 en atraso. El rango de cargabilidad de los TC’s debe ser especificado.

Page 36: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

42

Transformadores de Corriente

Cargabilidad “Burden”

La palabra cargabilidad ‘burden’ es usada para describir la carga en el secundario para evitar confusión con el termino de “carga” refiriéndose a los aparatos que están siendo medidos o controlados.

BURDEN en Medida BURDEN en Protecciones

2.5 VA @ 90% PF (0.3B-0.1) 25 VA @ 50% PF (1 ohm) = C100 5.0 VA @ 90% PF (0.3B-0.2) 50 VA @ 50% PF (2 ohms) = C200 12.5 VA @ 90% PF (0.3B-0.5) 100 VA @ 50% PF (4 ohms) = C400 22.5 VA @ 90% PF (0.3B-0.9) 200 VA @ 50% PF (8 ohms) = C800 45.0 VA @ 90% PF (0.3B-1.8)

Estos son los valores normalizados definidos en IEEE C57.13.

La cargabilidad en la medida tiene un factor de potencia de 0,8 a 0.9,

mientras que para protecciones asume un 0.5 el cual es real para aparatos electromecánicos.

Con reles electrónicos de estado sólido o microprocesados los valores y consecuentemente los parámetros del TC cambian.

Page 37: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

43

La curva de la tina Rated 0.3B1.8 & operated @ 1.8 Ohms

Per

cent

Acc

urac

y

Percent Rated Load10521

0.6

0.3

0.1

0.2

Saturation400100

Page 38: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

44

La curva de la tina Rated 0.3B1.8 & operated @ 0.9 Ohms

Per

cent

Acc

urac

y

Percent Rated Load10521

0.6

0.3

0.1

0.2

Saturation400100

0.9 Ohms

1.8 Ohms

Page 39: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

45

La curva de la tina Rated 0.3B1.8 & operated @ 0.2 ohms

Per

cent

Acc

urac

y

Percent Rated Load10521

0.6

0.3

0.1

0.2

Saturation400100

0.9 Ohms

1.8 Ohms

0.2 Ohms

Page 40: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

46

La curva de la tina Rated 0.3B1.8 & operated @ 0.05 ohms

Per

cent

Acc

urac

y

Percent Rated Load10521

0.6

0.3

0.1

0.2

Saturation400100

0.9 Ohms

1.8 Ohms

0.2 Ohms

0.05 Ohms

Page 41: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

47

Definición de la clase 0.15 para Transformadores de Voltaje: Factor de Corrección de Transformación: min=0.9985 & max=1.0015 (0.15%) Definición de la clase 0.15 para Transformadores de Corriente: Prueba a 100% In, Factor de Corrección de Transformación: min = 0.9985 & max = 1.0015 (0.15%) Transformer Correction Factor (TCF) Prueba a 5% In, Factor de Corrección de Transformación: min=0.9970 & max=1.0030 (0.3%) Deficinición de la clase 0.15S para Transformadores de Corriente: Prueba a 100% In, Factor de Corrección de Transformación: min = 0.9985 & max = 1.0015 (0.15%) Transformer Correction Factor (TCF) Prueba a 5% In, Factor de Corrección de Transformación: min=0.9985 & max=1.0015 (0.15%)

Norma IEEE C57.13.6 Transformadores de Medida para aplicaciones de alta precisión

5% 100% RF

0.15%

1% 10% 100% RF

0.3% 0.6%

TCs clase 0.3 TCs clase 0.15s

Porcentaje de Corriente

Page 42: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

48

Transformadores de Corriente

Precisión en Protecciones

Los valores normalizados por IEEE para la precisión en protecciones son: C100, C200, C400 y C800. Están basados en una cargabilidad secundaria de 1, 2, 4, y 8 ohms respectivamente, todos al 50% de pf.

Ocasionalmente, valores fuera de norma son requeridos,

tales como C1200. TC’s del tipo devanado (Wound type) con frecuencia usan

una T en lugar de la C

C = Calculado (tipo anillo, eventualmente devanados distribuidos) T = Tested-Probado (tipo devanado, primario y/o sec.). Los devanados no

están distribuidos homogéneamente.

Page 43: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

49

Transformadores de Corriente

TCs para 1A secundario

Las normas IEEE están escritas para TCs con secundarios a 5 A.

Muchos Instrumentos ahora están usando entrada de 0-1A y no de 0-5A.

Entonces, Para un TC con 1 A secundario con una precisión designada de 0.3B2.0, cual es la cargabilidad en ohmios asociada con esta clase de precisión?

Las normas IEEE definen que los VA’s son constantes sin importar la corriente secundaria. El burden B-2.0 son 2 ohmios de impedancia @ 5 amperios de corriente nominal son 50VA.

Por lo tanto, un TC con 1 amperio secundario debería tener 50 ohmios de impedancia con capacidad de mantener los 50VA nominales.

Por eso los TCs a 1 A sec. Vienen de acuerdo a IEC especificando los VA’s y no los ohmios.

Page 44: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

50

Transformadores de Corriente

Peligro!!!

El circuito secundario de un TC nunca debe ser abierto o dejado abierto cuando esta circulando corriente por el primario.

Si el circuito del secundario es abierto, la corriente del

primario llevara el núcleo a la saturación, induciendo altos voltajes anormales que pueden ser letales.

Page 45: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

51

Transformadores de Corriente

Núcleo Magnetizado:

Definición: Un incremento en el voltaje, incrementa la

densidad de flujo a la cual opera el núcleo. Como resultado, la corriente de excitación se aumenta y

la precisión del transformador se ve afectada.

Causas: DC; AC pasando por devanado mientras el otro esta en circuito abierto, o la aplicación de una sobrecorriente alta.

Page 46: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

52

Transformadores de Corriente

Desmagnetización:

Para desmagnetizar un CT, la densidad de flujo debe ser subida hasta la saturación y gradualmente reducirlo a cero.

Método 1: Usando una fuente de voltaje variable conectada en el secundario, se aplica suficiente corriente al secundario hasta saturar el núcleo del transformador, entonces lentamente se reduce la corriente a cero.

No debe excederse la corriente nominal del CT. Método 2: Inserte una resistencia variable en el

secundario (típicamente reóstato de 50 ohmios). circule la corriente nominal por el primario. Incremente la resistencia en el secundario hasta que el núcleo se sature, entonces reduzca lentamente la resistencia hasta cero y desconecte la corriente de fuente.

(Para información adicional consulte, IEEE C57.13 Sección

8.2)

Page 47: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

53

Transformadores de Corriente

Regla de dedo:

Un CT de buje (anillo) con una precisión de protección C400 o mayor con una corriente nominal de 2000 amps o mas, cumplirá la precisión de medida de 0.3B-0.1 a 0.3B-1.8.

Un CT con rating factor (factor nominal de sobrecarga) de

2.0 operará en forma segura con sobrecorrientes de 1.5, 1.33, o cualquier rating factor menor que 2.0, sin incremento en la temperatura.

Page 48: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

54

Transformadores de Voltaje

Page 49: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

55

Transformadores de Voltaje

¿Que se debe saber ?

Interior o Intemperie Línea a línea o línea a tierra Voltaje del sistema y BIL Voltaje(s) primario Voltaje(s) secundario Precisión para medida o reles Cargabilidad nominal Capacidad térmica en VA’s si aplica Frecuencia

Page 50: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

56

Transformadores de Voltaje

Línea a línea o línea a tierra

Línea a Línea – puede ser conectado entre fases o línea a neutro (designación Y)

Línea a Tierra – puede conectarse SOLAMENTE línea a tierra (designación GY)

Línea a Tierra: • (10 kV Interior, 19 kV exterior) • Neutro aterrizado internamente

Page 51: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

57

Transformadores de Voltaje

Voltajes Nominales

2400/4160Y , L - L a 2400 V en sistemas de 2400 V o L - T a 2400 V en sistema de 4160 V.

4200/4200Y, L - L o L - G en sistema de 4200 V. 2400/4160GY , L - G SOLAMENTE a 2400 V en sistema de

4160 V o sistema de 2400 V . 4200/4200GY , L - G SOLAMENTE en sistema de 4200 V. Sencillo o múltiple valor nominal primario. Sencillo, dual o triple devanado secundario con voltaje

nominal sencillo o dual por devanado.

Page 52: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

58

Transformadores de Voltaje

Interpretando los valores nominales 2400/4160Y (GY)

Numero a la izquierda del “/” es el máximo voltaje nominal

Numero a la derecha del “/” = Máximo Voltaje del

sistema “Y” indica que puede ser usado para Línea a Línea o

Línea a Tierra “GY” indica para uso solamente Línea a Tierra.

Page 53: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

59

Transformadores de Voltaje - BIL

BIL – Nivel Básico de Impulso (kV) BIL nominal para interior algunas veces mas bajo que para

uso exterior (95 kV versus 110 kV) Dado el BIL, las otras pruebas de aislamiento son

conocidas – prueba Tensión Aplicada, etc. En condiciones extremas de contaminación mas distancia

de fuga puede ser requerida para mantener el nivel del BIL El BIL se debe corregir por altitud usando la tabla 1 de la

norma C57.13-1993

Page 54: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

60

C57.13-1993

Page 55: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

61

Correccion por altura del BIL

Page 56: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

62

Transformadores de Voltaje

Voltaje de precisión

Voltaje de Precisión – Es el voltaje nominal del transformador para el cual la precisión nominal aplica.

VT’s pueden operar a otro voltaje distinto del nominal de

precisión. Si la unidad tiene capacidad para sobrevoltajes, la

precisión puede o no ser mantenida en todos los voltajes en ese rango.

Los VT’s ABB cumplirán con la precisión abajo del 40%

del voltaje nominal.

Page 57: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

63

Transformadores de Voltaje

Rated Voltage Factor (RVF)

Factor de Sobrevoltaje – Es el multiplicador de veces el voltaje nominal para el cual el VT puede operar continuamente sin daño.

Valores Típicos: 1.1 (unidades línea a línea), 1.9 (unidades línea a tierra). 1.9 = 1.1 x √3

Page 58: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

64

Transformadores de Voltaje

Precisión de Medición

Cargabilidad Normalizada y Limites de Error Cargabilidad – medida de la carga conectada al

transformador de Instrumentos Llamada ‘burden’ (cargabilidad) para diferenciarlo de la

carga que esta siendo medida. Burden esta representado por los aparatos conectados

(instrumentos, contadores de energía etc.) MAS los cables, etc. que conectan el (los) aparato(s) al transformador.

Page 59: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

65

Transformadores de Voltaje

IEEE Precisión de Medición

Cargabilidad Normalizada: 12.5VA = W, 25VA = X, 35VA = M, 75VA = Y, 200VA =Z, 400VA = ZZ

Clase de Precisión (% de error) IEEE = 0.15, 0.3, 0.6, 1.2 (paralelogramo)

Clases mas comunes 0.3% @ Y y Z burdens (75 y 200 VA)

Page 60: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

66

Transformadores de Voltaje

IEEE versus IEC Precisión de Medición

Cargabilidad Normalizada (VA) IEEE = 12.5, 25, 35, 75, 200, 400 VA IEC = 5, 10, 15, 30 VA

Clase de precisión (% error) IEEE = 0.15, 0.3, 0.6, 1.2 (paralelogramo) IEC = 0.2, 0.5, 1.0 (rectangular)

Clases mas comunes

IEEE - 0.3 @ 75 y 200 VA (Y y Z) IEC - 0.5 @ 30 VA (máximos VA normalizados)

Page 61: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

67

Transformadores de Voltaje

Capacidad Térmica en VA’s

Los VT’s normalmente tienen una cargabilidad para la precisión dada en VA ej. Z burden es 200 VA.

VT’s pueden operar a cargas mas altas sin

sobrecalentamiento - Max VA’s son la capacidad Térmica en VA’s La precisión en la medición no es garantizada Típicamente basado en 30 grados C de ambiente. Max Aumento de temperatura para la capacidad térmica con 30 C de

ambiente) IEEE = 55 grados C IEC = 60 grados C

Page 62: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

68

Transformadores de Voltaje

Clases de Voltaje IEEE Los BIL IEEE mas comunes a las diferentes clases de voltaje

60kV BIL para instalaciones hasta 5,000 V 75kV BIL para instalaciones de 8.7kV 95 o 110kV BIL para instalaciones de 15kV 125 o 150kV BIL para instalaciones de 25kV 150 o 200kV BIL para instalaciones de 36kV

El BIL puede variar si la instalación es interior o exterior así como el sistema de protección.

Page 63: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

69

IEEE versus IEC Clases de Voltaje

IEEE versus IEC – Clases de Voltaje Clase de Voltaje mas común a BIL dado (kV):

IEEE BIL IEC BIL 5: 60 7.2: 60 8.7: 75 12: 75 15: 95 or 110 17.5: 95 25: 125 or 150 25: 125 34.5: 150 or 200 36: 170

El BIL puede variar si la instalación es interior o exterior así como el sistema de protección.

Page 64: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

70

Como trabaja un VT

Como trabaja un VT

Núcleo – Acopla magnéticamente el primario con el secundario

Voltios/Vueltas primarias = Voltios/Vueltas secundarias El voltaje primario induce flujo magnético en el núcleo y

este induce los voltios en el secundario de acuerdo con las vueltas

No es ideal – hay pérdidas

Page 65: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

71

Transformadores de Voltaje

Como afecta el RVF en la precisión

RVF alto = Densidad de flujo bajo a voltaje nominal Mas vueltas requeridas para mantener la densidad de

flujo baja Espacio Fijo + Mas vueltas = alambre mas delgado Alambre menor = resistencia mas alta Resistencia mas alta = Mas pérdidas

Mas pérdidas (1) Menos precisión (bajo Burden baja capacidad) (2) Menos capacidad térmica

Page 66: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

72

Transformadores de Voltaje

Relación y Voltajes

IEEE Ejemplos Un Sec: 120:1, 14400:120 Sec Dual : 120 & 120:1, 14400:120 & 120 Un Sec con derivación: 120/208:1, 14400:120/69

IEC Ejemplos Un Sec: 120/1 o 14400/120 Sec Dual : 120-120/1 o 14400/120-120 Un Sec con derivación : 120/208/1 o 14400/120/69

Page 67: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

73

Transformadores de Voltaje

Frecuencia

50 Hz VT – puede ser usado a 60 Hz al mismo voltaje 60 Hz VT – no puede ser usado nunca a 50 Hz al mismo

voltaje y mantener la misma capacidad de sobrevoltaje Se puede usar un VT de 60 Hz en 50 Hz teniendo un

RVF de 60 Hz > 1.2. Hay que considerar que la capacidad de soportar

sobrevoltajes del VT se reduce en 20%.

Page 68: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

74

Transformadores de Voltaje

Electromecánicos versus Electrónicos

Aparatos electrónicos – Cargas MUCHO mas pequeñas Especificaciones viejas deberían ser revisadas para

asegurarse que son válidas Cargabilidad menor = transformador mas económico Cambios en las aplicaciones de los CT’s y VT’s por los

requerimientos bajos de cargabilidad.

Page 69: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

75

VOZ-11 15kV 110kV BIL VT para intemperie

KON-11 15kV 110kV CT para intemperie

Transformadores de Instrumento: Ejemplos

Page 70: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

76

CMF 600V 10kV BIL CT para interior/exterior

PPM 600V 10kV BIL VT para interior/exterior

Transformadores de Instrumento: Ejemplos

Page 71: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

77

CVC 15kV, 25kV 110kV, 150kV BIL Unidad de medida combinada

Transformadores de Instrumento: Ejemplos

Page 72: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

78

Transformadores de Instrumento: Panel de medición

Page 73: Transformadores de Instrumentos · 2018. 10. 28. · Transformadores de Corriente Los Transformadores de Corriente se usan para reducir los valores de corriente primarios en un sistema

79

TI: Unidad de Medición Primaria