training module 2 temperature m

Upload: tamer-fathy

Post on 06-Jul-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Training Module 2 Temperature m

    1/29

    Instrumentation

    Temperature

  • 8/17/2019 Training Module 2 Temperature m

    2/29

    2

    100°C100°C 0°C0°C

    T jct. Tref.a

    b

    Metal a  b Hot junction or measuring junction Cold junction or reference junction

    Ni-Cr

    Ni-Al

    Thermocouples

    Introduction

    It is the German physicist SEEBECK (1770 - 1!1" #ho disco$ered

    in 121% the thermo-electric e&&ect

    It noted that% in a closed circuit% made up o& t#o di&&erent metal #ire%

     'oined at their ends% there #as irth o& an electric current i& they #ere

    carried t#o end o& this circuit at di&&erent temperatures

  • 8/17/2019 Training Module 2 Temperature m

    3/29

    !

    Thermocouples (cont)"

    Correspondence and thermocouple choice

    T#o metals constitutin* the thermocouples are selected accordin* to

    temperature to e measured

    In a thermocouple% the &irst metal named is al#ays the positi$e one

  • 8/17/2019 Training Module 2 Temperature m

    4/29

    +

    Thermocouple Type Names of Materials Useful Range

    BPlatinum30% Rhodium (+) 2500 -3100F

    Platinum 6% Rhodium (-) 1370-1700C

    CW5Re Tungten 5% Rhenium (+) 3000-!200F

    W26Re Tungten 26% Rhenium

    (-) 1650-2315C

    ECh"omel (+) 200-1650F

    Contantan (-) #5-#00C

    J$"on (+) 200-1!00F

    Contantan (-) #5-760C

    KCh"omel (+) 200-2300F

    lumel (-) #5-1260C

    N

    &i'"oil (+) 1200-2300F

    &iil (-) 650-1260C

    R Platinum 13% Rhodium (+) 1600-26!0F

    Platinum (-) 70-1!50C

    SPlatinum 10% Rhodium (+) 100-26!0F

    Platinum (-) #0-1!50C

    TCoe" (+) -330-660F

    Contantan (-) -200-350C

    Thermocouples Types ( ,uality $s Cost "

  • 8/17/2019 Training Module 2 Temperature m

    5/29

    Thermocouples (cont)"

    Cold #eldin* and compensation #ire

    The thermocouple is composed o& 2 metal #ire o& di&&erent nature

    .ne o& the ends is #elded% it is the 'unction or the hot #eldin*) The

    other end% the 'unction o& re&erence or cold #eldin*% is connected to

    the measurin* circuit

     / di&&erence in temperature et#een the hot #eldin* and the cold#eldin* causes one potential di&&erence (electromoti$e orce"

    &unction o& the $ariation in temperature) Temperature o& the point o&

    measurement is then deduced startin* &rom no#led*e &rom

    temperature o& the 'unction o& re&erence

    It #ill thus e necessary to otain a temperature cold #eldin* as

    constant as possile so to carry out only one correction

  • 8/17/2019 Training Module 2 Temperature m

    6/29

    Thermocouples (cont)"

    To otain this result% #e use cales o& compensation #hich mo$e the#eldin* cold o& the proe head to their end and #e use a corrector

    unit or cold #eldin* to otain the true $alue

    The / and B #ires o& the thermocouple constitute the sensor) The

    connection et#een the 'unction intermediary T2 and the 'unction o&

    re&erence Tre&) is ensured y the cales o& compensation /3 and B3

    respecti$ely associate #ith metals / and B)

  • 8/17/2019 Training Module 2 Temperature m

    7/297

    Thermocouples (cont)"

    Class and precision

    The thermocouples &ollo# the standard CEI + #hich de&ines the

    allo#ed tolerances) There are se$eral types o& thermocouples &or

    $arious ran*es o& temperature% sensiti$ities and characteristics)

    The thermocouple 4 is used &or its hi*h sensiti$ity ut there is a

    possile iron contamination in o5idi6in* atmosphere startin* &rom+00C% #e #ill a$oid to use it)

    The thermocouple T has stron* sensiti$ity and is used &or the

    temperature measurement ne*ati$e)

    The thermocouple 8 or K has an e5cellent thermoelectric staility%

    and no prolem o& o5idation at hi*h temperature (ran*e use&ul &rom 0

    to 1000C"

    The thermocouple 9 : S are used &or the hi*h temperatures

  • 8/17/2019 Training Module 2 Temperature m

    8/29

    Thermocouples (cont)"

     /ccuracy Classes)

  • 8/17/2019 Training Module 2 Temperature m

    9/29;

  • 8/17/2019 Training Module 2 Temperature m

    10/2910

    t100

    Introduction

    The principle o& measurement o& these sensors is the resistance

    $ariation o& the metal conductor accordin* to the temperature

    The platinum has a *ood linearity% precision% staility #ith the

    ad$anta*e to e t#ist in $ery &ine #ire) This is #hy% the sensor #ith

    platinum resistance% indicated y >t% is *enerally used in industrialen$ironment

    The #ire used is $ery &ine so #e #ill tae care to use an anti-

    $iratory system to a$oid its dama*e)

  • 8/17/2019 Training Module 2 Temperature m

    11/2911

    >t100 (cont)"

    8orm and standard

    International standard CEI 71% deri$ed &rom ?I8 standard +!)70

    de&ines the $alues nominal as #ell as the acceptale $ariations

    The >t 100 start #ith a resistance o& 100 ohms at 0 C (&rom #here

    the >t100 term") =ith 100C the resistance is o& 1!)1 .hms

    The standard de&ines t#o classes@ Tolerance Classi&ies /A (0)1 0)002 TD" o& - 200C #ith 00C

    @ Tolerance Classi&ies BA (0)!0 0)00 TD" o& - 200C #ith 0C

    The class / *i$es a precision appro5imately 2 times etter than the

    B) In *eneral% the class B is &or industrial use and the class / is &or

    laoratories)

    The ran*e o& use in our installationA -0 +00C

  • 8/17/2019 Training Module 2 Temperature m

    12/2912

    >t100 (cont)"

  • 8/17/2019 Training Module 2 Temperature m

    13/291!

    T#o =ire 9T? connection

    sin* the 2-#ire method% the t#o #ires that pro$ide the 9T? #ith its

    e5citation current and the t#o #ires across #hich the 9T? $olta*e ismeasured are the same) There is inaccuracy in usin* this method

    that i& the lead resistance in the #ires is hi*h% the $olta*e measured

    F.% is si*ni&icantly hi*her than the $olta*e that is present across the

    9T? itsel&)

    @ Simple : Cheap)

    @ Inaccurate

    @ or short distance

    et#een sensor : T5)

  • 8/17/2019 Training Module 2 Temperature m

    14/291+

    IE9H1

    9H2

    9H!9TF.

    Three =ire 9T? connection

    sin* the !-#ire method% there are 2 parallel #ires connected to one

    end o& the $ariale resistance% Fo is tain* the $olta*e drop across

    one o& the #ires only % not oth)

  • 8/17/2019 Training Module 2 Temperature m

    15/291

    our =ire 9T? connection

    The +-#ire method has the ad$anta*e o& not ein* a&&ected y the

    lead resistances ecause they are on a hi*h impedance path *oin*throu*h the de$ice that is per&ormin* the $olta*e measurement

    there&ore% you *et a much more accurate measurement o& the

    $olta*e across the 9T?)

    @ Fery E5pensi$e)

    @ Completely /ccurate)

    @ or lon* distances

    et#een sensor : T5)

  • 8/17/2019 Training Module 2 Temperature m

    16/291

    >t100 (cont)"

    8orm and standard

     /s coe&&) Temp is not constant % hence there is also tale &or >T100)

  • 8/17/2019 Training Module 2 Temperature m

    17/2917

  • 8/17/2019 Training Module 2 Temperature m

    18/291

    .ptical pyrometers

    Introduction

    The optical pyrometer is a method o& measurement o& the

    temperature ased on the relation et#een the temperature o& a

    ody and the optical radiation (in&ra-red or $isile" that it ody emits)

    Het us tae &or e5ample% an electrical resistance% &eed y a po#er

    source) It is started lac% ut it starts to emit heat% it is the in$isile

    thermal radiation called in&ra-red) Then resistance ecomes red andemits a $isile radiation

    The interest o& the optical pyrometer is to allo# the determination o& a

    temperature #ithout contact #ith the o'ectA it is thus an adapted

    method #hen the conditions installations do not allo# the use a

    traditional thermometric sensors

    @ Fery hi*h temperature (J 1200C"

    @ art mo$in*

    @ Hocali6ation o& the hot spots)

  • 8/17/2019 Training Module 2 Temperature m

    19/29

    1;

    Pyrometer* o" "adiation the"momete"* i a non-'onta't int"ument that dete't ano,e't u".a'e teme"atu"e / meau"ing the teme"atu"e o. theele't"omagneti' "adiation (in."a"ed o" iile) emitted ."om the o,e't

    P/"omete" a"e eentiall/ hoto dete'to" hi'h a"e 'aale o. ao"ing ene"g/* o"meau"ing the 4 ae intenit/* at a a"ti'ula" aelength o" ithin a 'e"tain "ange o.aelength

    Typical Broadand Pyrometer 

    http://www.efunda.com/DesignStandards/sensors/pyrometers/pyrometers_theory.cfmhttp://www.efunda.com/DesignStandards/sensors/pyrometers/pyrometers_theory.cfm

  • 8/17/2019 Training Module 2 Temperature m

    20/29

    20

    The Electromagnetic Radiation Spectrum

    Courtesy o& the /d$anced Hi*ht Source% Bereley Ha

    (Ernest .rlando Ha#rence Bereley 8ational Haoratory"

    http://www-als.lbl.gov/als/http://www.lbl.gov/http://www.lbl.gov/http://www.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.htmlhttp://www.lbl.gov/http://www-als.lbl.gov/als/

  • 8/17/2019 Training Module 2 Temperature m

    21/29

    21

    Instruments &or Scanner 

    1) Kiln I9 Scanner)

    2) Kiln position Encoder)

    !) Kiln rotation sensor ( >ulse S#itch")

    +) Tire yrometers &or Tires)

  • 8/17/2019 Training Module 2 Temperature m

    22/29

    22

  • 8/17/2019 Training Module 2 Temperature m

    23/29

    2!

    9esolution &or T Scanner 

    @  Scannin* &reuency L 20 re$Msec@  Kiln diameter L meters@  Kiln speed L ! re$M min hence 1 re$ L 1)7metres in 20 sec@  Scanner measures 20 lines in one sec)@  Nence the scanner trace +00 lines in the #hole circum&erence o& iln

    @  Scanner can read line o& 170M(20 O 20" D L !);2 cms@  ?ata &or one scan is coded in 12 it oMp &or !0 de*)@  .F L 120 % hence #e use 1M! o& the +0;units)@ 

  • 8/17/2019 Training Module 2 Temperature m

    24/29

    2+

    .F and Kiln Geometry

    9euested data A@ .F an*le

    @ T#o >ass points in terms o& an*les and len*th &rom iln re&erence@ Girth Gear place &rom Kiln re&erence)@ Tires place &rom iln re&erence)@ Kiln ?iameter @ Kiln Hen*th

  • 8/17/2019 Training Module 2 Temperature m

    25/29

    2

    Kiln >ulse Sensor 

    Inducti$e pro5imity s#itch M

  • 8/17/2019 Training Module 2 Temperature m

    26/29

    2

    Hi$e Scan cycle ( 9a# Scan "

  • 8/17/2019 Training Module 2 Temperature m

    27/29

    27

    Scanner Inter&ace pro*ram

    @  P /5is Fie# % Temperature #ise ( >ea %

  • 8/17/2019 Training Module 2 Temperature m

    28/29

    2

    Internal temperature% used to de&ine the internal iln temperature pro&ile)

    The internal temperature pro&ile is used

    &or calculatin* the ric M coatin* thicness) /s many temperature points

    can e added as needed) The position o& the &irst and last temperature

    point cannot e modi&ied) =hen ad'ustin* the position and temperature

    &or a temperature point% the current ric and coatin* thicness are sho#n

    to the ri*ht)

  • 8/17/2019 Training Module 2 Temperature m

    29/29

    9e&ractory >ro*ram

    Nistorical ?ase &or Kiln riin*