trabajo superficies (paraboloide)

Upload: pedrocarro

Post on 07-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    1/17

     

    AMPLIACIÓN DE MATEMÁTICAS

    Ejercicio de superficies

    PEDRO CARRO ALLEGUE

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    2/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas2

    ÍNDICE:

    1. Parametrización de la superficie. .............................................................................. 31.1. Comprobación de la regularidad de la parametrización. ................................ 3

    2. Cálculo del área de la superficie. ............................................................................... 4

    3. Cálculo de la Primera Forma Fundamental. ........................................................... 5

    3.1 Comprobación del área con la primera forma fundamental. ........................... 5

    4. Aplicación de Gauss. .................................................................................................. 6

    5. Segunda Forma Fundamental. .................................................................................. 6

    6. Diferencial de la aplicación de Gauss. ...................................................................... 7

    7. Cálculo de curvaturas. ............................................................................................... 8

    7.1 Propiedades derivadas de las curvaturas. ........................................................ 10

    8. Símbolos de Christoffel y geodésicas. ..................................................................... 11

    9. INTERÉS CULTURAL: Aplicaciones de los paraboloides. ................................. 14

    10. BIBLIOGRAFÍA. ................................................................................................... 17

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    3/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas3

    1. Parametrización de la superficie.

    La ecuación general de un paraboloide circular es la siguiente:

    +

     

     Nos fijamos en el plano XY, y lo que tenemos es una circunferencia:

    La parametrización de esta curva la podemos expresar

    de la siguiente manera:

    cos ,  

    Ahora esta parametrización calculada nos sirve para determinar la componente z de la

    superficie.

    Simplemente sustituyendo lo calculado en la ecuación del paraboloide, obtenemos:

    , , ,  1.1. Comprobación de la regularidad de la parametrización.

    Para comprobar la regularidad de la parametrización tomada, primero debemos calcular

    los vectores siguientes, los cuales son tangentes a la superficie:

    = − , cos , 0 

      = cos , sen , 2 Si ahora realizamos el producto Tu x Tv, obtendremos el vector normal a la

    superficie(⃗).⃗ 2 cos , 2 , − − c o s  

    ⃗ , ,− 

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    4/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas4

    La parametrización será regular en toda la superficie, excepto en los puntos en los que el

    vector normal sea nulo

    Podemos observar, que en nuestro caso, será regular en todos los puntos excepto en:

    v = 0

    2. Cálculo del área de la superficie.

    El área de la superficie la podemos obtener resolviendo la siguiente integral,

    Á ∬‖ ‖  Debemos acotar los valores de las variables. Por ejemplo, acotaremos entre los valores:

    u ϵ [0 , 2π) ; v ϵ [0 , 1]

    Por tanto:

    Á ∫ ∫ ‖ ‖

     

    Primero calculamos ‖Tu x Tv‖:

    ‖ ‖ ‖⃗‖  4 cos + 4 +  ‖ ‖  4 + 1 

    Por tanto:

    Á ∫ ∫  4 + 1

     

    Á ∫  4 + · ]

    ∫ 2 4 +

    4 + 1√ 4 + 6

    5√ 56  

    Á √   

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    5/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas5

    3. Cálculo de la Primera Forma Fundamental. 

    La primera fórmula fundamental, será una matriz similar a la siguiente, en la que

    tendremos que calcular los coeficientes:

      < , > + cos   < , > − cos + cos 0  < , > cos + + 4 4 + 1 La matriz queda de la siguiente forma:

    +  3.1 Comprobación del área con la primera forma fundamental.

    Con los coeficientes de la matriz de la primera forma fundamental podemos hacer una

    comprobación del área anteriormente calculada.

    Lo haremos de la siguiente forma:

    Á ∬   −  Acotamos la integral en los mismos valores que en apartado anterior en el que

    calculábamos el área:

    u ϵ [0 , 2π) ; v ϵ [0 , 1]

    Á ∫ ∫  4 +

     

    Efectivamente, de esta manera obtenemos la misma integral que en el apartado anterior,

     por lo tanto el valor del área será el mismo.

    Á√ 

     

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    6/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas6

    4. Aplicación de Gauss.

    Primero calculamos un vector, que llamaremos N y que es unitario:

    ‖ ‖  2 cos , 2 , −  4 + 1 2 cos , 2 , −1√4 + 1  Así estamos construyendo una aplicación N : S = φ(D) → R 3 que a cada punto de la

    superficie le asocia un vector normal unitario.

    La aplicación de Gauss será:

    ∶ → √  + , √  + , − √  +  

    5. Segunda Forma Fundamental.

    La segunda forma fundamental la podemos definir como una matriz 2x2 como la

    siguiente:

       Primero calculamos Tuu, Tuv, Tvu y Tvv:

    − , − , 0 

    − , cos , 0 

    − , cos , 0  0 , 0 , 2  

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    7/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas7

    Ahora ya podemos definir los coeficientes de la matriz de la segunda forma

    fundamental:

    < ,>−2 cos −2

    √ 4 + 1 − 2

    √ 4 + 1  < ,> −2 + 2 cos √ 4 + 1 0  < , > − 2√ 4 + 1

    La matriz asociada a la segunda forma fundamental queda de la siguiente manera:

    (

    − √  + − √  + )

     

    6. Diferencial de la aplicación de Gauss.

    La matriz asociada a la diferencial de la aplicación de Gauss (dNp) verifica que:

    −    Por tanto:

    − 1 −   −−  De donde obtenemos:

    1 −   − − − −  

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    8/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas8

    En donde podemos definir los coeficientes de la matriz diferencial de Gauss (d(N(p)):

    (

    √  +

    + ) 

    En donde los autovalores son los elementos de su diagonal principal, ya que tenemos la

    matriz diagonalizada.

      √  +  

    +  

    7. Cálculo de curvaturas.

    Curvaturas principales (k 1 y k 2)

    Las curvaturas principales serán los autovalores obtenidos en la diferencial de la

    aplicación de Gauss.

    2√ 4 + 1  24 + 1 

    Curvatura de Gauss (K)

    Para calcular la curvatura de Gauss basta con realizar el determinante de la matriz

    diferencial, al ser diagonal, multiplicando sus autovalores:

    · 2√ 4 + 1 24 + 1 4√ 4 + 1 √ 4 + 14 + 1 

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    9/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas9

    +  Podemos observar que este cálculo equivale a dividir la segunda forma fundamental

    entre la primera forma fundamental de este modo:

    − −  

    −2√ 4 + 1 − 2√ 4 + 14 + 1  

    +  

    Curvatura media (H):

    Para calcular la curvatura media, realizamos la traza de la matriz y la multiplicamos por

    ½ , es decir, sumando sus autovalores y multiplicando por ½:

    + 2  

    2√ 4 + 1 + 24 + 12 1√ 4 + 1 + 14 + 1

    √ 4 +14 + 1 + √ 4 + 1√ 4 + 1 √ 4 + 14 + 1 √ 4 + 14 + 1 + 14 + 1  

    √  + + +  

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    10/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas10

    7.1 Propiedades derivadas de las curvaturas.

    Podemos definir así los puntos umbílicos como los puntos que se caracterizan por tener

    ambas curvaturas principales iguales. (k 1 = k 2)

    2√4 + 1 24 + 1  4 + 1 4 + 1  4 + 1 · 4 + 1 

    4 + 1 1 

    Luego todos los puntos de la superficie que cumplan lo siguiente serán puntos

    umbílicos:

    , ,  El único punto umbílico es el (0,0,0) que es el que verifica v=0, y que coincide donde la

     parametrización no es regular.

    Atendiendo a la curvatura de Gauss existen distintos tipos de puntos en la superficie. A

    saber:

    - Elíptico, cuando es positiva la curvatura de Gauss en el punto.

    - Hiperbólico cuando esta es negativa en el punto.

    - Parabólico si es nula y los coeficientes de la 2ª forma fundamental no nulos. Cuando

    estos coeficientes son nulos, serán planos.

    En nuestra superficie podemos observar que la curvatura de Gauss será positiva en

    todos los puntos, por lo tanto serán elípticos.

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    11/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas11

    8. Símbolos de Christoffel y geodésicas.

    Lo primero que haremos será cambiar nuestra nomenclatura para la primera forma

    fundamental, de la siguiente manera:

    E = g11 = v2

    F = g21 = g12 = 0

    G = g22 = 4v2 +1

    Los símbolos de Christoffel los podemos obtener de la siguiente expresión:

    12

    ·

    Los valores de x serán u o v en relación al superíndice que lo acompañe en cada

    momento, de la siguiente manera:

    x1 = u

    x2 = v

    El superíndice β, en notación de Einstein, nos indica un sumatorio en β. Tomando β los

    valores 1 y 2.

    Una vez hecho los cálculos los símbolos de Christoffel son los siguientes:

     

      − +      

     

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    12/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas12

      − + −  

    Una curva geodésica de la superficie cumplirá lo siguiente:

    Si tomamos una curva c(t):

    ,  Será una curva geodésica si cumple lo siguiente:

    ′′ + ′ + 2 ′′ + ′ 0 ′′ + ′ + 2 ′′ + ′ 0 Si sustituimos los símbolos por sus valores que ya conocemos, obtenemos que una

    geodésica cumple:

    ′′  ′′ + − − ′ + − + − ′  

    De la primera de las condiciones resulta que u(t) = cte o que u(t) =  λt +  μ, siendo  μ y  λ 

    números reales.

    En el primero de los casos, si u(t) = cte, u’  = 0 resulta:

    ’’+128 −16 +32 − 4 ′ 0 

    - Comprobación de si un paralelo de la superficie es una geodésica:

    A modo de ejemplo, comprobaremos a continuación si un paralelo de nuestra superficie

    cumple con las condiciones establecidas y por consiguiente se pueden considerar curvas

    geodésicas de la misma.

    Un paralelo de un paraboloide viene dado cuando, dada nuestra parametrización,

    tenemos v = cte.

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    13/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas13

     Nuestra parametrización es :

    , cos , ,  Si mantenemos v = A siendo A una cte que nos indica la altura a la que se encuentra la

    curva, tendremos una ecuación de una curva c(t), que corresponderá con un paralelo de

    nuestra superficie:

      cos , , ;  Ahora veremos si esta curva cumple con las dos condiciones anteriormente establecidas:

    ′′ 0 Vemos que cumple la primera condición.

    Ahora vamos a comprobar la segunda condición establecida:

    ′′ + −4 − ′ + 128 −16 +32 − 4′ 0 Como hemos establecido que v = A = cte, podemos simplificar la expresión como

    sigue:

    −4 − ′ 0 De esta expresión podemos deducir que no cumple esta condición en todos los puntos

    de la curva contenida en la superficie.

    Por lo que podemos concluir que los paralelos de un paraboloide no se

    corresponden con una curva geodésica de la superficie.

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    14/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas14

    9. INTERÉS CULTURAL: Aplicaciones de los paraboloides.

    La superficie engendrada al girar una parábola alrededor de su eje es una superficie

     parabólica. Dichas superficies tienen la propiedad de ser reflectoras. Situado un punto

    luminoso en el foco, los rayos se proyectan paralelos al eje, y recíprocamente, los rayosque inciden paralelos al eje, se concentran en el foco. Estas superficies son las únicas

    que gozan de esta propiedad.

    Las aplicaciones de los paraboloides elípticos son básicamente aquellos fenómenos en

    donde nos interesa hacer converger o divergir un haz de luz y sonido principalmente.

    Las principales aplicaciones de los paraboloides pueden ser:

    - Focos de coches, lámparas etc. : Los paraboloides tienen una propiedad. Si se coloca

    una bombilla encendida en el foco, algunos haces de luz serán reflejados por la

    superficie y todos estos rayos serán perpendiculares a la directriz.

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    15/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas15

    - Antenas parabólicas:  es un tipo de antena que se caracteriza por llevar un reflector

     parabólico, cuya superficie es en realidad un paraboloide de revolución 

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    16/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas16

    - Hornos solares: La temperatura en el punto focal puede alcanzar los 3.500 °C, y este

    calor puede ser usado para generar electricidad, fundir acero, fabricar combustible de

    hidrógeno o nanomateriales.

  • 8/18/2019 Trabajo Superficies (Paraboloide)

    17/17

    Trabajo superficie: Paraboloide Pedro Carro Allegue

    Ampliación de matemáticas17

    10. BIBLIOGRAFÍA.

    - “Geometría diferencial”, Antonio López de la Rica y Agustín de la Villa Cuenca.

    - Apuntes asignatura “Ampliación de matemáticas” , Miguel Brozos Vazquez (UDC)

    - Apuntes facultad de matemáticas (USC)

    - www.prezi.com 

    - www.monografías.com 

    - Imágenes sacadas del buscador de Google.

    http://www.prezi.com/http://www.prezi.com/http://www.prezi.com/http://www.xn--monografas-r8a.com/http://www.xn--monografas-r8a.com/http://www.xn--monografas-r8a.com/http://www.xn--monografas-r8a.com/http://www.prezi.com/