towardsconstraininghydrologicmodelsusingsatelliteretrieved ... · terception p w p oisture s...

1
Interception P Snow P Soil moisture S Soil moisture ET Direct runoQ Evapo- transp. ET Interflow S Percolation S Routing Q Geology S 0 0.45 2 6 10 14 18 22 26 30 34 38 42 46 50 Inter cep*on rou*ng perco la*on soil moisture storage run off inter cep*on 6. Calibra*on with OF3 using ESACCI soil moisture 2. Study domain and mesoscale Hydrologic Model (mHM) mHM [1] is a distributed model which treats grid cells as hydro logic units. mHM’s key feature is the Mul*scale Parameter Regio naliza*on technique (MPR). 3. Calibra*on objec*ves Towards constraining hydrologic models using satellite retrieved soil moisture 1. Mo*va*on Hydrological models are usually calibrated against observed discharge at the catchment outlet and thus are condi*oned by an integral catchment informa*on. This procedure does not take into account any spa*otemporal variability of fluxes or state variables and can lead to uncertain*es in model internal states as e.g. soil moisture (SM). Satellite data may help to beMer constrain model parameters. The first objec*ve of this study is to calibrate a hydrological model with synthe*c soil moisture data to inves*gate the skill of different objec*ve func*ons (OF) for recovering model parameters. The different approaches aim either for spa*al, for temporal or for spa*otemporal matching of the two paMerns. A second objec*ve is to calibrate the hydrologic model with ESACCI satellite soil moisture using the superior OF. MaIhias Zink, Juliane Mai, Oldrich Rakovec, Mar*n Schrön, Rohini Kumar, David Schäfer, and Luis Samaniego Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany ([email protected]) 7. Conclusions SMsensi*ve parameters should be considered if deciding for an appropriate OF. Objec*ve func*ons aiming on temporal paMerns of SM almost recover SMsensi*ve parameters. SM is not sufficient to constrain model parameters for discharge predic*on. References [1] Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5) www.ufz.de/mhm Two dis*nct European basins a – Neckar (humid climate) b – Guadalquivir (semiarid climate) Euclidian parameter distances Discharge predic*on b – Guadalquivir catchment a – Neckar catchment Q obs Q sim Q re f 2000 2001 2002 2003 2004 0 200 400 600 800 1000 1200 1400 Discharge Q [m 3 s -1 ] NSE = 0.14 1955 1956 1957 1958 1959 0 50 100 150 200 250 300 350 400 Discharge Q [m 3 s -1 ] NSE = 0.33 1.7 2.0 2.3 2.6 Distance for all parameters Distance for all parameters Distance for all parameters Distance for all parameters 0 5000 10000 15000 No. of Iterations 0.0 0.3 0.6 0.9 Distance for SM-sensitive parameters Distance for SM-sensitive parameters Distance for SM-sensitive parameters Distance for SM-sensitive parameters OF 1 OF 2 OF 3 OF 4 1.7 2.0 2.3 2.6 Distance for all parameters Distance for all parameters Distance for all parameters Distance for all parameters 0 5000 10000 15000 No. of Iterations 0.0 0.3 0.6 0.9 Distance for SM-sensitive parameters Distance for SM-sensitive parameters Distance for SM-sensitive parameters Distance for SM-sensitive parameters OF 1 OF 2 OF 3 OF 4 -4 W -3 W reference OF 1 -4 W -3 W 37 N 38 N OF 2 -4 W -3 W OF 3 -4 W -3 W OF 4 -4 W -3 W 0.5 0.6 0.7 [mm mm -1 ] [%] -15 -10 -5 0 5 10 15 48 N 49 N OF 1 9 E 10 E reference OF 2 9 E 10 E 48 N 49 N OF 3 9 E 10 E OF 4 9 E 10 E 9 E 10 E 0.6 0.7 0.8 0.9 [mm mm -1 ] [%] -5 -3 -1 1 3 5 Rel. difference to reference field 0.2 0.5 0.8 0.2 0.5 0.8 G(y) r s =0.99802 0.2 0.5 0.8 r s =0.96456 0.2 0.5 0.8 r s =0.99973 0.2 0.5 0.8 F(x) r s =0.99972 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.5 0.8 F(x) 0.2 0.5 0.8 G(y) r s =0.99973 0.2 0.5 0.8 r s =0.99860 0.2 0.5 0.8 r s =0.99970 0.2 0.5 0.8 r s =0.99979 0.0 0.2 0.4 0.6 0.8 1.0 Copula between reference field and OFs OF1 – KGE of catchment average SM (spa*otemporal paMern) OF2 – paMern similarity (spa*al paMern) OF3 – sum squared errors of SM anomaly (temporal paMern) OF4 – spa*al average of temporal corre la*on (temporal paMern) -1 6 5 13 7 14 11 10 11 12 Pattern A 7 9 13 7 5 12 11 13 11 Pattern B A·B+1= 12 -1 1 0 2 -1 -1 -1 -1 1 1 1 -1 1 1 1 1 -1 2 2 0 2 2 16 2 Æ 0.75 SM SON 1997 The model parameters which are sensi*ve to soil moisture are determined due to a sensi*vity analysis. 5. Determining the appropriate objec*ve func*on (synthe*c dataset) 4. SMsensi*ve parameters Sobol index S i S Ti - S i

Upload: others

Post on 15-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Towardsconstraininghydrologicmodelsusingsatelliteretrieved ... · terception P w P oisture S oisture ET Direct runo! Q o transp - ET . w S ercolation S Routing Q Geology S 0 0 .45

Interception

P

SnowP

Soil

moistu

reS

Soilmoist

ure

ETDirectruno↵Q

Evapo-transp.ET

InterflowS

Perc

ola

tion

S

Routing

Q

Geolog

yS

0

0.45

2

61014

1822

2630

3438

42

4650

Sobol indexSi ST i � Si

Inter-­‐  cep*on  

rou*

ng  

perco-­‐  

la*on  

soil  moisture  

storage  

run-­‐  off  

inter-­‐  cep*on  

6.  Calibra*on  with  OF3  using  ESA-­‐CCI  soil  moisture  

2.  Study  domain  and  mesoscale  Hydrologic  Model  (mHM)  mHM   [1]   is   a   distributed  model  which   treats   grid   cells   as  hydro-­‐logic  units.  mHM’s  key  feature  is  the  Mul*scale  Parameter  Regio-­‐naliza*on  technique  (MPR).    

3.  Calibra*on  objec*ves      

Towards  constraining  hydrologic  models  using  satellite  retrieved  soil  moisture  

1.  Mo*va*on  Hydrological  models  are  usually  calibrated  against  observed  discharge  at   the  catchment  outlet   and   thus   are   condi*oned   by   an   integral   catchment   informa*on.   This   procedure  does  not  take  into  account  any  spa*o-­‐temporal  variability  of  fluxes  or  state  variables  and  can  lead  to  uncertain*es  in  model  internal  states  as  e.g.  soil  moisture  (SM).  Satellite  data  may  help  to  beMer  constrain  model  parameters.    The   first   objec*ve   of   this   study   is   to   calibrate   a   hydrological  model   with   synthe*c   soil  moisture  data  to   inves*gate  the  skill  of  different  objec*ve  func*ons   (OF)   for   recovering  model   parameters.   The   different   approaches   aim   either   for   spa*al,   for   temporal   or   for  spa*o-­‐temporal   matching   of   the   two   paMerns.   A   second   objec*ve   is   to   calibrate   the  hydrologic  model  with  ESA-­‐CCI  satellite  soil  moisture  using  the  superior  OF.  

MaIhias  Zink,  Juliane  Mai,  Oldrich  Rakovec,  Mar*n  Schrön,  Rohini  Kumar,  David  Schäfer,  and  Luis  Samaniego    

Helmholtz  Centre  for  Environmental  Research  –  UFZ,  Leipzig,  Germany  ([email protected])  

7.  Conclusions  •  SM-­‐sensi*ve  parameters  should  be  considered  if  deciding  for  an  appropriate  OF.  •  Objec*ve  func*ons  aiming  on  temporal  paMerns  of  SM  almost  recover  SM-­‐sensi*ve  parameters.  •  SM  is  not  sufficient  to  constrain  model  parameters  for  discharge  predic*on.  

 References [1] Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5)

www.ufz.de/mhm  

Two  dis*nct  European  basins  a  –  Neckar  (humid  climate)  b  –  Guadalquivir  (semi-­‐arid  climate)  

Euclidian  parameter  distances  

Discharge  predic*on    

b  –  Guadalquivir  catchment    a  –  Neckar  catchment    

2000 2001 2002 2003 20040200400600800

100012001400

Dis

char

geQ

[m3

s�1 ]

Qobs

Qsim

Qre f

NSE = 0.14

2000 2001 2002 2003 20040200400600800

100012001400

Dis

char

geQ

[m3

s�1 ]

NSE = 0.14

1955 1956 1957 1958 1959050

100150200250300350400

Dis

char

geQ

[m3

s�1 ]

NSE = 0.33

1.72.02.32.6

Distance for all parametersDistance for all parametersDistance for all parametersDistance for all parameters

0 5000 10000 15000No. of Iterations

0.00.30.60.9 Distance for SM-sensitive parametersDistance for SM-sensitive parametersDistance for SM-sensitive parametersDistance for SM-sensitive parameters

OF1 OF2 OF3 OF4

1.72.02.32.6

Distance for all parametersDistance for all parametersDistance for all parametersDistance for all parameters

0 5000 10000 15000No. of Iterations

0.00.30.60.9 Distance for SM-sensitive parametersDistance for SM-sensitive parametersDistance for SM-sensitive parametersDistance for SM-sensitive parameters

OF1 OF2 OF3 OF4

�4�W �3�W37�N

38�N

reference OF1

�4�W �3�W37�N

38�N

OF2

�4�W �3�W

OF3

�4�W �3�W

OF4

�4�W �3�W

0.5 0.6 0.7 [mm mm�1]

[%]�15�10 �5 0 5 10 15

48�N

49�N

OF1

9�E 10�E

referenceOF2

9�E 10�E48�N

49�N

OF3

9�E 10�E

OF4

9�E 10�E 9�E 10�E

0.6 0.7 0.8 0.9 [mm mm�1]

[%]�5 �3 �1 1 3 5

Rel.  difference  to  reference  

field    

0.2 0.5 0.8

0.20.50.8

G(y

)

rs=0.99802

0.2 0.5 0.8

rs=0.96456

0.2 0.5 0.8

rs=0.99973

0.2 0.5 0.8F(x)

rs=0.99972

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.5 0.8F(x)

0.20.50.8

G(y

)

rs=0.99973

0.2 0.5 0.8

rs=0.99860

0.2 0.5 0.8

rs=0.99970

0.2 0.5 0.8

rs=0.99979

0.0 0.2 0.4 0.6 0.8 1.0

Copula  between  reference  field  

and  OFs    

OF1  –  KGE  of  catchment  average  SM      (spa*o-­‐temporal  paMern)  

 

OF2  –  paMern  similarity      (spa*al  paMern)    

             OF3  –  sum  squared  errors  of  SM  anomaly  

 (temporal  paMern)    

OF4  –  spa*al  average  of  temporal  corre-­‐  la*on  (temporal  paMern)  

   

-1 6 5

13 7 14

11 10 11 12

Pattern A

7 9

13 7 5

12 11 13 11

Pattern B

A·B+1= 12

-1 1

0

2

-1 -1 -1 -1

1 1

1

-1 1 1 1

1 -1 2 2

0 2

2 16 2

Æ 0.75

SM  SON  1997  

The   model   parameters   which   are  sensi*ve  to  soil  moisture  are  determined  due  to  a  sensi*vity  analysis.  

5.  Determining  the  appropriate  objec*ve  func*on  (synthe*c  dataset)  

4.  SM-­‐sensi*ve  parameters  

Sobol indexSi ST i � Si