towards a noc/afdx avionics architecture with heterogeneous ows · 2017-09-08 · avionics...

67
Towards a NoC/AFDX avionics architecture with heterogeneous flows Jean-Luc Scharbarg Universit´ e de Toulouse - IRIT/ENSEEIHT/INPT [email protected] ETR 2017 - Paris Jean-Luc Scharbarg Universit´ e de Toulouse - IRIT/ENSEEIHT/INPT [email protected] Towards a NoC/AFDX avionics architecture with heterogeneous flows ETR 2017 - Paris 1 / 67

Upload: others

Post on 12-Mar-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Towards a NoC/AFDX avionics architecture withheterogeneous flows

Jean-Luc ScharbargUniversite de Toulouse - IRIT/ENSEEIHT/INPT

[email protected]

ETR 2017 - Paris

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 1 / 67

Avionics architecture evolution

1 module = 1 manycore ⇒ mapping of avionics functions on thesedistributed manycore architectures

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 2 / 67

Avionics communication evolution

− Dedicated one way links

−Max 100 Kbs

− Shared bus

− Max 2 Mbs

− Full duplex switched Ethernet

− Max 100 Mbs

Switch Switch

ARINC 429 ARINC 629 ARINC 664

Under utilisation of the network ⇒ QoS facilities to leverage sparebandwidth for the transmission of non avionic flows

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 3 / 67

Summary

1 From classical avionics to IMA

2 Distributed manycore architectures

3 Avionics and non avionics flows on the same network

4 Conclusion

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 4 / 67

Summary

1 From classical avionics to IMA

2 Distributed manycore architectures

3 Avionics and non avionics flows on the same network

4 Conclusion

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 5 / 67

Civilian aircraft communications

Ground Information System (Airlines, Airbus,…)

Con

nect

ivity

Pla

tform

(s)

Con

nect

ivity

Pla

tform

(s)

A I R L I N E

………

Avionics ARINC 429 - 664

IFE

HF/VHF/SATCOM

A/C Ops & CABIN ARINC 429- Ethernet

A340

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 6 / 67

Avionics systems characteristicsAvionics: electronic systems installed in an aircraft

I Calculators and their software, sensors and actuatorsI Communication links between these elements

Example of avionic systems: autopilot, navigation, flight control, . . .Constraints on the avionics systems

I Volume and weight limitationsI Correct behavior in severe conditions: heat, vibrations, electromagnetic

interferences, . . .I Safety level required, depending on the system (ARP 4754):

catastrophic (failure = loss of the aircraft), hazardous, major, minor,no effect

I Segregation between critical functions

Aeronautical Radio INCorporated (ARINC): leadership in thedevelopment of specifications and standards for avionics equipment

Airlines Electronic Engineering Committee (AEEC): development andmaintenance of specifications and standards (airlines, governments,ARINC)

ADN: Aircraft Data NetworkJean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 7 / 67

Classical avionics architecture (up to A340)Each equipment (LRU) dedicated to a system function (braking,flight computers, . . .): sensors, actuators, calculators . . .natural segregation between the equipments

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 8 / 67

Data transmission in classical avionics

A network of equipments

G1 G2

F1

F2

F3

Each data is transmitted from its source to every equipment thatneeds the data

One dedicated line for each data

Repetitive transmission of the data on each line

Each line: a mono-emitter ARINC 429 data bus

Each data individually identified by a label

Low bit rate: 12 Kbits/s to 100 Kbits/s

At most 20 receivers per line

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 9 / 67

90% of the avionic

  A310 (1983) A320 (1988) A340 (1993)

Avionic Volume 745 litres 760 litres 830 litres

Number of equipment 77 102 115

Embedding Software 4 Mo 10 Mo 20 Mo

Number of ARINC 429 136 253 368

Computing Power 60 Mips 160 Mips 250 Mips

Avionic repartition

A380 (2005)

147

100 Mo

1000 (AFDX)

Classic avionics evolution

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 10 / 67

IMA architecture (ARINC 651)

Aircraft data bus

APEX

Function 1

Function 2

Backplane databus

APEX

Function 3

Function 1

LRM Core

APEX

Function 2

Function 3

Function 1

LRM GatewayLRM I/O

Rack 1

ARINC 429 Equipment

LRU

API

Function 1

LRU

APIEquipment

(function 1)

Equipment

APEX

Function 1

LRM Core

...

(function 2) Function 3 (function 3)

ARINC 429

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 11 / 67

IMA characteristicsHardware components

I LRM (Line Replaceable modules): resources in common cabinetsF Core modules for the execution of the applicationsF Input/output modules for communications with non-IMA equipmentsF Gateway modules for communications between cabinets

I LRU (Line Replaceable Unit): existing non-IMA equipmentsI Backplane databus: ARINC 659

Sharing of execution resourcesI An avionics subsystem: a partition with an assigned time window to

execute its application on a shared moduleI Guarantee isolation between subsystems ⇒ robust partitioning concept

F Spatial isolation: limitation and protection of the address space of eachpartition, e.g. by a MMU

F Temporal isolation: static allocation of a time slice for the execution ofeach partition, based on WCET

I Communications between partitions via ports (APEX: APplicationEXecutive)

F Sampling ports: only the last value of data is storedF Queueing ports: all the values of data are stored

I Logical channel: multicast link between ports, independent of thecommunication technology

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 12 / 67

Today avionics architecture

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 13 / 67

The reasons for the AFDX

ARINC 429 is no more sufficient: too many buses are needed

ARINC 629 is too expensive

Why Ethernet technology ?I High throughput offered to the connected units (100 Mbits/s)I High connectivity offered by the network structureI A mature industrial standardI Low connection cost

But Ethernet CSMA/CD is not deterministicI Potential collision on the physical mediumI Binary Exponential Back off retransmission algorithm

The solution adopted for ARINC 664I switched Ethernet technology: units directly connected by

point-to-point links to Ethernet switches ⇒ possible collision domain =single link between two elements

I Full duplex links ⇒ no more collisions

The problem is shifted to the switch level

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 14 / 67

Full duplex switched Ethernet example

I/O Processing Unit

Forwarding Table

Rx

Buffer

Tx

Buffer

Rx

Buffer

Tx

Buffer

Rx

Buffer

Tx

Buffer

End

System

End

System

End

System

Heads−up

Display

Other

system

Full Duplex

Links

Avionics

Subsystems

Switch

Memory Bus

Autopilot

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 15 / 67

Full duplex switched Ethernet is not deterministicTemporary congestion on an output port

I Increase of the waiting delay of frames in the Tx bufferI Frame loss by overflow of the Tx buffer

An illustrative examplef1

f2

f3

f4

f5

f6

f7

f8

f9

f10

Switch

f1,f2,f3,f4,f5,f6,f7,f8,f9,f10

I Five frames at the same time ⇒ one frame waits until the transmissionof the four other ones

I More than five frames at the same time ⇒ at least one frame is lost

Addition of dedicated mechanisms to classical full duplex switchedEthernet in order to guarantee the determinism of an AFDX network

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 16 / 67

The AFDX key characteristicsStatic full duplex Switched Ethernet: no CSMA/CD, no spanningtree, static 802.1D tablesOne FIFO buffer per output portTraffic characterization based on the Virtual Link (VL) concept

I Static definition of the flows which enter the networkI Multicast path with deterministic routingI Mono transmitter assumptionI Sporadic flows (BAG : Bandwidth Allocation Gap)

F Discrete values: 1, 2, 4, 8, 16, 32, 64, 128 msF Traffic shaping on each emitting end system

I Minimum (Smin) and maximum (Smax) frame lengths for each VLI BAG and Smax define the maximum bandwidth allocated to a VL

F Example: BAG = 16 ms and Smax = 128 bytes ⇒ 64000 bits/sI Scheduling of VLs on end systems ⇒ (bounded) jitter

S1

S4e3

e4

vx,v1

v2,v3

S3

e1v6,v8

e2v7,v9

S2

vx,v2

v5

v6,v7

S5

e5

vx,v6,v7

e7

e8

e9v2,v5

v1,v3

e6v4

v1,v3,v4e10

v6,v8,v9v6,v8,v9

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 17 / 67

AFDX VL integration

source UDP port +

source IP address

APEXAPEXport 1APEX

port 2 port 3APEXport 2port 1

APEX

UDP1IP1

UDP2IP3

UDP1IP3

UDP2IP3

UDP3IP1

APEXAPEXport 1APEX

port 2 port 3APEXport 2port 1

APEX

part1 part2

source APEX port

source MAC addressMAC1 MAC2

MA

C3

UDP1 UDP2 UDP3IP20 IP20 IP20IP10

UDP2IP10

UDP1

part1 part2

MAC1 MAC3

part1

APEXport 1APEX

port 2APEXport 2port 1

APEX

UDP1 UDP2IP3

UDP1IP3

UDP2IP2 IP2

part2

MAC3 MAC2

dest APEX port

dest UDP port +

dest IP address

dest MAC address

end system 1

end system 2

end system 3

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 18 / 67

The redundancy management in the AFDXFrames transmitted on two independent networks

A Network

B Network

Per Virtual Link

End System

Per Virtual Link

End System

Transmit Receive

Identification of replicas via a sequence numberSequence

numberEthernet Header IP Header UDP Header Avionics Subsystem messages FCS

14 bytes 20 bytes 8 bytes 17..1472 bytes 1 byte 4 bytes

UDP Header and payload

IP Header and payload

Ethernet frame

Elimination of the second received frame

Integrity Checking

invalid frames

Detect and eliminate

Integrity Checking

invalid frames

Detect and eliminateB Network

Redundancy

Management

Eliminate

invalid frames

A Network

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 19 / 67

The packet regulation of Virtual Links

Jitter < 0.5 ms

BAG = 16

Virtual Link

Scheduler

Redundancy

Management

Physical

Link

Physical

Link

Replicate

Ethernet frames

1

BAG BAG BAG

432

1

BAG BAG BAG

2 43 1

BAG BAG

3

BAG

42

1 2 3

BAG BAG BAG

4

Virtual Link 100

Regulator

Regulator

BAG = 32

BAG = 4

Virtual Link 200

Virtual Link 300

Regulator input Regulator output

for transmission

Select frames

Regulator

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 20 / 67

End-to-end delay on an AFDX network

Three parts in the delayI Transmission times on links (known): link bandwidth, frame sizeI Switching latency (known)I Waiting time in FIFO queues (unknown)

mi3

mi4

v3

v4

mi1

mi2v2

v3,v4

mi5v5

v2

mi6

mi7

v1v1 v1,v2 ,v3,v4,v5

Best-case delay: no waiting time in FIFO queues

Worst-case delay: maximum overall waiting time in FIFO queues

Distribution of the delay: distribution of the waiting time in FIFOqueues

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 21 / 67

AFDX worst-case e2e delay analysis

Mandatory for certification

Different methods have been consideredI Network calculus, used for the certification of Airbus aircraft, thanks to

Confgen toolF Based on (min,+) algebraF Traffic is over-approximatedF Service is under-approximatedF Sure (pessimistic) upper-bound of end-to-end delaysF Sure (pessimistic) upper-bound on buffer occupation

I Trajectory approachF Worst-case interference for a frame on its trajectoryF Some pessimistic over estimation

I Model checkingF Exhibit the worst-case scenarioF Combinatorial explosion problem

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 22 / 67

A typical avionics architecture

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 23 / 67

Summary

1 From classical avionics to IMA

2 Distributed manycore architectures

3 Avionics and non avionics flows on the same network

4 Conclusion

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 24 / 67

Envisioned avionics architecture

AFDX switch

VL1

VL2

VL3

CSA

CSA

CSA

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 25 / 67

Envisioned avionics architecture

Each manycore replaces several avionics computers

A manycore: simple cores interconnected by a NoC

Mapping of avionics applications on these manycores

Data exchangesI between functions within a manycoreI between functions on different manycores

ProblemFind a mapping which minimizes communication latencies and jitters

within manycores

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 26 / 67

The Tilera Tile64 manycore

Eth

Eth

Eth

DDR

DDR

X-Y wormhole switching with flow control in each router

very small buffers in routers

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 27 / 67

The Tilera Tile64 router

To south

to processor

engine

CrossbarTo eastTo west

To north

Round robin arbitration between input ports

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 28 / 67

Wormhole switching

Three flows, three flit packets

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 29 / 67

Wormhole switching

Red flow: first flit in first router on its path

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 30 / 67

Wormhole switching

Red flow: two first flits in two first routers on its path

Blue flow: First flit in first router on its path

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 31 / 67

Wormhole switching

Red flow directly blocked by blue flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 32 / 67

Wormhole switching

blue flow progresses to next router on its path

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 33 / 67

Wormhole switching

blue flow directly blocked by yellow flow ⇒ red flow indirectly blockedby yellow flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 34 / 67

Wormhole switching

One step for yellow flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 35 / 67

Wormhole switching

One step for yellow flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 36 / 67

Wormhole switching

One step for yellow flow

One step for blue flow (no more blocked)

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 37 / 67

Wormhole switching

One step for blue flow

One step for red flow (no more blocked)

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 38 / 67

Wormhole switching

One step for red flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 39 / 67

Wormhole switching

One step for red flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 40 / 67

Wormhole switching

One step for red flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 41 / 67

Wormhole switching

One step for red flow

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 42 / 67

Worst-case delay analysis for Tilera-like NoCs

Two sets of impactI Direct blocking

F Red flow can be directly blocked by blue oneF Blue flow can be directly blocked by yellow one

I Indirect blockingF Red flow can be indirectly blocked by yellow one

A state-of-the-art worst-case analysis: Recursive CalculusI Identify all the flows which share an output port with the flow under

studyI For each identified flow, compute its worst-case delay to reach its

destination

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 43 / 67

Typical avionics applications

th5

Critical application

tf0 tf1

tf2

tf3tf4

tf5

tf6

Health Monitoring (HM)

Non critical application

th0 th1

th2

th3th4

Full Authority Digital Engine (FADEC)

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 44 / 67

Mapping of avionics applications on manycore

Eth

Eth

Eth

DDR

DDR

tf0 tf1

tf2

tf3 tf4

tf5

tf6

th0

th1

th2

th3

th4

th5

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 45 / 67

Inter manycore communications

Eth

1

2

3

4

5

6

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

AFDX

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 46 / 67

VL transmission

d2

VLt1 VLt1VLt2

BAGWCTT t1 −> DDR

t1

t2

DDR Controler

Eth. Interface

Jitter Jitter

d1

Jitter for the DDR → Ethernet part

Guaranteed upper bound of 500 µs for this jitter (certificationconstraints)

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 47 / 67

State-of-the-art mapping strategies

SHiC: reduces contentions on the core-to-core communicationsI Application allocation: Search for regions which size = size of the

application ⇒ no fragmented regionsI Tasks allocation: minimum distance between communicating tasksI Inter manycore communications not taken into account

MAPio : Take into account input flowsI Allocates primarily critical applications in a region close to memory and

Ethernet controllersI Minimize contentions on the paths of input flows

No strategy takes into account output flows

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 48 / 67

Additional rules to minimize contentions for an output flow

. . .

Outgoing I/O flow

DDR flow

Other inter−core flows

Legend

Core

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Minimize DDR flow impact ⇒I source task of output flows in columns with minimum DDR usageI Map tasks in order to minimize inter-core flows in the same direction as

DDR ones

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 49 / 67

Additional rules to minimize contentions for an output flow

switch

Outgoing I/O flow

DDR flow

Other inter−core flows

Legend

Core

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .Minimize DDR flow impact ⇒

I source task of output flows in columns with minimum DDR usageI Map tasks in order to minimize inter-core flows in the same direction as

DDR ones

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 50 / 67

Additional rules to minimize contentions for an output flow

. . .

Outgoing I/O flow

DDR flow

Other inter−core flows

Legend

Core

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Minimize inter-core flow impact ⇒I Map tasks in order to minimize inter-core flows in the same direction as

output ones

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 51 / 67

Additional rules to minimize contentions for an output flow

switch

Outgoing I/O flow

DDR flow

Other inter−core flows

Legend

Core

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Minimize inter-core flow impact ⇒I Map tasks in order to minimize inter-core flows in the same direction as

output ones

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 52 / 67

Additional rules to minimize contentions for an output flow

. . .

Outgoing I/O flow

DDR flow

Other inter−core flows

Legend

Core

Eth

DDR

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Minimize inter-core flow impact ⇒I Map tasks in order to minimize inter-core flows in the same direction as

output ones

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 53 / 67

Results

Worst-case analysis using state-of-the-art Real-Time Calculus

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

WCTT in n

s

Applications

Fadec11 Fadec13 HM11 HM16 HM12 HM10 HM9Fadec7

SHiC MapIO ex_MapIO

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 54 / 67

Summary

1 From classical avionics to IMA

2 Distributed manycore architectures

3 Avionics and non avionics flows on the same network

4 Conclusion

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 55 / 67

Motivation

Certification constraintsI No missed deadline for any flowI No frame loss due to buffer overflow

Suppliers are allocated VLs which over-provision their needs

⇒ The AFDX network is lightly loaded

Other technolgies are used to transmit non avionics flowsI Audio for the crewI Video (cameras for parking guidance, monitoring system)I . . .

Increase weight, cabling, . . .

Use spare AFDX bandwidth to transmit part or all of these nonavionics flows

Guarantee flow constraints

Constraints depend on flow classes ⇒ Differentiated treatment offlows ⇒ Quality of Service facilities

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 56 / 67

Quality of Service facilities

Many existing service discipline (not exhaustive)I First In First Out

F Frames treated in their order of arrival

I Static Priority QueueingF Each flow is assigned a priorityF Frames scheduled in each output port, strictly following these priorities

I Round RobinF Each flow is assigned a classF Classes are polled in round robin order in each output portF Each class is allocated a credit: number of frames (e.g. Weighted

Round Robin) or number of bytes (e.g. Deficit Round Robin)

I Fair QueueingF Each flow is allocated a classF Each class is allocated a percentage of the bandwidthF Scheduling should be as close as possible as a perfect sharingF WFQ, WF2Q, . . .

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 57 / 67

Real time Ethernet technologies

TTEthernetI Three types of traffic

F Time-Triggered: reserved slotsF Rate Constrainted: AFDX-likeF Best effort

I Global synchronization

Ethernet-AVBI Priority queueingI Credit Based Shapers for 2 highest priorities, to avoid starvation

problems

Time Sensitive NetworkingI Extension of AVB for control data trafficI A higher priority class with reserved slotsI Based on Time Aware Shapers

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 58 / 67

Illustration of Credit Based Shaper

Three classes of traffic: a (high priority), b (average priority), be (lowpriority)

A Credit Based Shaper associated with class a

a 0

idleslopesendslope

t0 t1 t3t2 t4 t5 t6 t7

Credit

In1

In2

In3

Out In1

In2

In3

Out

be−1

a−1 a−3

a−2 b−1

be−1 a−1 a−2 b−1 a−3

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 59 / 67

Synthesis of potential QoS facilities in a switch output port

WFQ,WRR

...

WFQ,WRR

...

Priority 1

Priority i

...

...

...

Priority i+1 ...

Priority n

Time Aware Shaper Credit Based Shaper

Sta

tic

Pri

ori

ty

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 60 / 67

Candidate solution 1

WRR/

Priority 3

Priority 2

Priority 1

...

Sta

tic

Pri

ori

ty

Priority 4

Priority 5DRR

4 highest priorities for avionic flows

Priority 5 shared by non avionic flows

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 61 / 67

Candidate solution 2

Priority 2

Priority 3

Priority 1

Time Aware Shaper Credit Based Shaper

Sta

tic

Pri

ori

ty

Priority 4

...Priority 5 WRR/DRR

Highest priority for critical control flows

Priority 2, 3, 4 for other avionics flows

Priority 5 shared by non avionic flows

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 62 / 67

Temporal analysis

Hard constraints for avionic flows

Soft constraints for non avionic flowsI e.g. Quality of Experience for videoI Average behavior, probabilistic guarantees

Worst-case analysis is mandatory for avionic flowsI Existing analysis for different QoS facilities, more or less pessimistic

Worst-case analysis is most of the time not the right solution for nonavionics flows

Simulation is often sufficient

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 63 / 67

Summary

1 From classical avionics to IMA

2 Distributed manycore architectures

3 Avionics and non avionics flows on the same network

4 Conclusion

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 64 / 67

Conclusion

Two main evolution of avionics architecture consideredI Integration of manycores in an AFDX architectureI Transmission of additional non avionic flows on the AFDX

Enhanced mapping strategy in order to take into accountinter-manycore flows and jitter constraints

Candidate QoS solutions

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 65 / 67

Some next steps

End-to-end analysis (NoC + AFDX)

Consider other options such as a core dedicated to input/output flowmanagement

Mapping of flows on QoS facilities

Tuning of QoS facilities

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 66 / 67

Thank you for your attention!

Jean-Luc Scharbarg Universite de Toulouse - IRIT/ENSEEIHT/INPT [email protected] a NoC/AFDX avionics architecture with heterogeneous flowsETR 2017 - Paris 67 / 67