topology in mathematics a molecular structure of...

17
Title Topology in Mathematics A MOLECULAR STRUCTURE OF MANIFOLDS Author(s) Nagamine, Yasunobu Citation 沖大論叢.人文科学・社会科学・自然科学・英語英文学 = OKIDAI REVIEW OF ENGLISH AND GENERAL EDUCATION, 1(1): 21-36 Issue Date 1975-03-31 URL http://hdl.handle.net/20.500.12001/10603 Rights 沖縄大学英語科・教養部

Upload: others

Post on 04-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

Title Topology in Mathematics A MOLECULAR STRUCTURE OFMANIFOLDS

Author(s) Nagamine, Yasunobu

Citation沖大論叢.人文科学・社会科学・自然科学・英語英文学 =OKIDAI REVIEW OF ENGLISH AND GENERALEDUCATION, 1(1): 21-36

Issue Date 1975-03-31

URL http://hdl.handle.net/20.500.12001/10603

Rights 沖縄大学英語科・教養部

Page 2: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

Topology in Mathematics

A MoLECULAR STRUCTURE oF MANIFOLDS

Yasunobu. Nagamine

Preface

Previously, the theory of topology has been practic­

ed ~y Prof. P. Alexandvoff, [Bi 14], I. S. Pontrjagin

[8]. Recently it has been developped by Professors Whi­

tehead [4], Steenrod [6], R: Them, J. Milnor [5]. But, I think that homology, homotopy and groups are

an electronic theory of manifolds. Hence, we can not

exactly express all character of manifolds.

Recently, I have tried to express a weight of mani­

folds and complexes. I suppose that there exists an

aspect·, a form and a charactuer in it. There exists a

molecular weight of it.

If we put a vertex on the other face and we try

similarly many times, at last, it becomes to a minimam

charactristic complex. And we shall call it "the mole­

cular complex." ·There exists a molecular weight:

·* {F=!.-2x(P)}

Also, it is invariant for the topological maps. I think

that it will be applicational in all categories.

-21-

Page 3: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

§I A weight of Complex

In the space E~ we well know that the inner angle of

n-palygon is given by the following:

f=mr-2x(P)Tr

(xis the Euler's characteristic).

f is invariant as topological maps. Now, dividing F by

TI, we have the next:

F=n-2x(P)

we can define that F is a weight of a complex. As

[m]-rolling palygon, we can get a weight the next form:

F=/..-2m

In the space E; we shall represent the sum of a facal

angle of a palyhedron. Now on a vertex, we can draw a

sphere and the normal unit vector.

Similer to the Legendre's proof, we can prove

f=2/..TI-2x(P)TI

Dividing by TI, we ~et F=2/..-2x(P) or 2/..-4m.

(m is the degree of normal vector on P ).

Therefore we can have the next theovem:

(Theovem I) "In the space E; all complexes have a wei­

ght of itself and it is given by the form:

F=2/..-4m

(/..: number of ventex, m: the degree of the

normal vector)"

-22-

Page 4: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

[For example, the case of a palyhedron m=l, trus: m=O]

Next, in the space E; we shall consider a complex insc­

ribing in a manifold. When we run over on the above

complex, there arises the complexity of this complex.

It is a weight of this complex.

Then, we can determine in the following: . 7rT

J =<. l- 2 X) F( -i-). a"T Deviding it by rc -r>.

we can unify in the next form:

F=(A.-2x)

Hence, we can have the next theorem:

(Theorem II) "In the space E; all complex have a weight

of itself.

It is given by the next:

F=A.-2x

(A~n+l)"

§II A Molecular Weight of Manifolds

In the space E; on the (n-1)-complex, if we shall

push a vertex (al) on the face (a2, a3··········an+l),

it's weight reduce 1 from F(A-2x)

-23-

Page 5: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

This moving act is one of the moving groups, and it is

the lie group. We can easily prove that 'Vi deforms a

group. (§III)

If we continue to push a1 on a 2 ; a 2 on a 3 ; ••••••• ,

at last we arrive to the minimum character complex.

The number of a weight reduces little by little.

It unifies a molecular weight which is simmilar to a

molecular of all matters. We shall call it "amolecular

weight of manifolds". Hence we can assume the next

theorem:

(Theoren III) "All manifolds in the space E"have a mol­

ecular weight of itself. It is expressed by the form:

* * F=A-2x(P)".

(A contains a dimmension, x(P) co11tains a form and a

character of manifold.)

§III Lie Group and Lie Ring of a Floating Group

('V; ' /1;)

In the space V(n)', ~e have already seen that the

inner points are expressed by the barycentric coordena­

te. Where a simplex M(n) is denoted the next form:

P=lliVI+llaV2+ •••• +lln+l v n+I

Moreover, a complex in the space V(n) is expressed by

the barycentric coordinate in the fallowing:

P=ll1Vl+ll2V2+ ••••

If we will fix A-vectors (v1 v 2 ••••• v,) (A>n+l) in

-24-

Page 6: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

the space V(n), it is expressed by a matrix in the next

form:

•• •• 0 ]'. (I:JII=l) . .. }lA

All points in A.-complex are unified by a variation of

~i • The above matrix space is represented by a A.-dime­

nsional vector space.

Namelly A.-complexis equivalent ·to a matrix space

[ ~1,. •.•. ~i. ]( A.~n+l).

Next, we can define the folowing as addition of two

matrixes:

[~1· ·. ~). ]+[ v1 .•. v .. J=[~1+v1 •.• ,~. +v,].

As multiplication of two matrixes, moreover, we can

define in the following:

(JII) X (Vi) = (JIJVu JlzV2. ••• ···, J1 AvA).

(where : I:Jii=1, I:vi= 1, I:JIIvi < 1).

Now, we shall study a property of matrix. And we

can represent a exponention (eA) of matrix (A) which is

expressed in the next:

-25-

Page 7: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

0

0 ··· ...

If we try to use determination of ( expA), we can

have the next calculation:

det ( expA) =e.., . e"' ...... e" 1

=exp(~l+ ....... +~

=e .

Hence, we have the next theorem:

(Theorem IV) det (expA) =e

By multiplication of (expA) and (expB), we can have the

next various farmula:

(Theorem V) i) det (expA) 2 =e 2

ii) det (expA)n=en

iii) tre (A) >tre A2 > ... >tre An> ....

Next, we shall study Lie group and Lie ring of the

floating groups (V; , ~; ).

We can unifty an infinitive minute map in the follow­

ing:

-26-

Page 8: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

dA at-

0

0

J.lA

(Note: ~~+~2+ ..... +~.=0)

Thus, ~; beccmes at least negative. If we use 'the

motion [V; (~;+0)], we eaasily see that ~;reduces little

by little.

The point (P) keeps a distance from V; and it comes

near the face (v2 v3·····Vm ):

vil. ,

When ~ moves in various values, P is floating in

whole poins of the complex (v 1v 2 •••• v. ). They are flo­

ating groups.

Now, we can see a local structure of neighborhood (U)

-27-

Page 9: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

in a complex (M). We can exactly denote it by lie ring

(exptX). Here, we call it "Lie ring of the floating

groups". And we can prove the next thorem (The continu­

ous groups [10] L.S. Pontrijagin):

(Theorem VI) i) (A(t)+B(t)) '=A' (t)+B' (t)

ii) (A·B) '=A' ·B+A·B'

By the continuous group [10] we have the next theorem:

(Theorem VII) i) X,Y is finite

ii) (expX)· (expY)=ex+y +0( X Y )

iii) log{(expX)(expY)}=X+Y+O( X Y ).

When X or Y is a infinitive minute map, we have var­

ious formulas the next:

(Theorem VIII) i) det (expX·expY)=l

ii) det (expX)n =1

Moreover, we have:

(Theorem IX) As a infinitive minute map (X,Y)

We should have the next limiting:

( X y )" Lim exp - · exp -....... n n

= exp (X + Y).

§IV A Sequence of Equvalence

If two manifolds is homomorphism, we can have the

next homological form:

-28-

Page 10: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

* ~:H(Pr);;;H(Pr) But, it is not always realize the next form:

~:F(P);;,F(P)

In order to be equvalent, We need the next equalities:

X.=A.'

x=x'

Now, pushing many times, there arise the equvalent seq­

uence in the form:

F( P r+ 1 )_]2".,... ....

VlY 'F(Pr) 'F(Pr-1) 0

I ... I I (A.-2x)

' (T+ 1) A- 2 X? (r

(p- 2 x) ~o ( r-'- 1 l

* In each dimensional space, F (weight) and homology is

invariant to topological maps (§:P P). Then, we shall

obtiain the next equvalence.

IJ:Fr(P};;Fr(P}

~:Fr(P};;Fr(P)

Here, we can have the next sequence of homologies and a

weights.

-29-

Page 11: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

00 00

II: HOMOLOGY vJj~ v t l~ ~: A WEIGHT (p") (p")

F: A I"DLECULAR WE I GHT '0 V .], t ~ \ '0 V ~ 1 ~ \

~ FCP') \ ~ F(p') \ v I 1\!:::. \ I 1") v ~ 1 ~ \ \

* * .V I ' ' ,~ * ' ' V ~ F~~l ', ~ FC~) , ' v F~~l ,,' ~,'. 0 ' ~ t '\ ~ i ' 'H(p) c a > ',II~P) (i) a ~ ' HCP) ~

f,;jr+1 * f,; f,;\r * f,; f,;~r-1 . . _ a* a*

*Fe-) ,,-fJC~l (~ /~l(i5) i-~--~/ ,~(p) ~ ~ p r v * ,. / r V * _ ,.' , r-1

r+1 F(p) l 1 F(p) , 1 11 0

~!:::. v vfJ~ / ,~vf1~ /',' ~ ~(p') ,' FCi'') /

111 J~ / ./ vj t~ /

f,;

(p") FCi'")

v1t~ vir 00 00

0 tv:>

Page 12: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

§V A Molecular Formula and a Structural Formula of Complexes,

On the aboye chapter, we have expressed a molecular

weight. But now, we shall unify a weight of all comple­

xes. In the theory (§I,II,III) we can collect the next

theorem:

(Theorem X) "In the space E; n-polygon has a weight

(n-2) _, (n'-"'3)

* m-rolling polygon has a weight (n-l).

In the space E] all complexes have a

weight:

F=2A.-4m All manifolds have a molecular weight:

* * F=2A.-4x(M).

In the space En~ all complex have a weight:

F=A.-2x(M)

All manifolds have a molecular weight:

* * F=A.-2x(M).

Thus, we can see that all complexes result from a mole­

cular complex of all manifolds by streching groups ~~­

Now, we can unify a structure formula and a molecular

formula of all complexes.

-31-

Page 13: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

complex a molecular formla

~ J 4-polyhedrom • s4 a sphene =4

[4] 6-polyhedrom S4U2

8-pol,Y.hedrom

12-polyhedrom

20-polyhedrom

(. t S, B: body) no e; H : horn

=12

* F

-32-

a structure. formla·

! * <!) F

Page 14: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

6-polygon

7-polygon

T-T 2-trus

T-T-T ~-trus

( T( (T)) *T1a<T1a) (T have a child T) =36

( in the belly . (note: * a molecular weight)

of manifold

1 2 3 i T(T(T( ••• (T) .•• )))

1 2 3 i Tl8(Tl8(Tl8( •.. (Tl8) •.• )))

= 181 (a weight)

-33-

Page 15: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

、‘,,、‘,,

E

J

&

L

n,』

ζ』

H

RIMFE』

nヨ

6

・1

n

u

T

O

r

L

W

E」

'S1

ζE3

ζ内

ζ

EUHHH噌

l

n

q

F

O

r'Lno

am刷目司,

a-

P

、M=

,,‘、

〔有孔虫目

破靖介亜局

たまうきがい科〕

まりうきがい

本種の殻は球形で細長い練が外表面IC密生している。殻室は最後の室を除いてタマ

ウキガイ属 Globigerinaの種のかく螺旋状に配列しているが、最後の室だけは

いちじるしく発達して他のすべての室を包み球形である。乙のような殻の特異な発育

のために最後の室の殻はときに数層となっている乙とがある。殻の無数の細孔はその

大きさがいろいろで、たの浮遊性有孔虫類に比して大型のものが見られる。口孔はな

くとれらの大型の細孔が口孔の役目を代行しているものと考えられる。殻径は1.0棚

11::達するものが報告されている。本種も暖海産のプランクトンで、本邦近海では黒潮

流域からまれに採集される.底質中からは太平洋側では金華山沖、日本海側では男鹿

半島以南から報告されている。I?周回]

1 78.

〔単孔目

アカンソデスミア科〕

可」

'2

94HHH

FEEL

可E

ζ

マ'H

M

H

FZE』

エウコロニス・チャレンジェリ

[2] [7] [3] [3]

T16H2Hj T14 =178 (weight)

-34-

241.

Page 16: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

Bibliography

[l] G. M. Smmons;

Introduction to topology and modern a­

nalysis. New York (1967) pp 279-334.

[2] S. Mac Lane;

Homology. New York (1967) pp 147-250

[3] Veblen, 0. and Whitehead;

The fondation of differential Geometry.

Cambnidge Uni. Press. (1932) pp 50

[4] G. W. Whitehead;

Generalized homology theories, Trans.

Amer. Math. Soc. (1962) pp 227-250

[5] Milnor;

The theory of Morse. Annals of mathe-

matics studies. Priceton Uni.

(1963) pp 10-100

[6] N. Steenrod;

press

The topology of fiber bundles. Priceton

Uni. Press (1951) pp 210-320

[7] L. S. Pontrijagin;

Foundation of combinatorial topology.

Rochester (1952) pp 50-14

[8] P. 7v~-!)-:..tl-"o7;

t'l:#l~fiiJ~ I. II. III. (1954) II pp 104-142

[ 9] J-~ • 7-].,. ~?}~~f*o ( 197 4) pp 83-106

-35-

Page 17: Topology in Mathematics A MOLECULAR STRUCTURE OF ...okinawa-repo.lib.u-ryukyu.ac.jp/.../10603/1/Vol1No1p21.pdfTopology in Mathematics A MoLECULAR STRUCTURE oF MANIFOLDS Yasunobu. Nagamine

[工0]ポン卜 Jレヤーギン

連続群論上下。

[11] ヒルツエプJレフ

代数幾何における位相的方法 (1970)

(工972,)

[12] アヒエゼル グラスマン

ヒJレベルト空間論上下。 (1973)

po qo

pp 147-250

pp 12工-208

p ~ 2 - 5