topological quantum matter, 7.5 ectsphysics.gu.se/~tfkhj/topo/topologicalquantummatter.pdf ·...

44
Topological Quantum Matter, 7.5 ECTS physics.gu.se/~tfkhj/topomatter.html Part 1: 10 double hour lectures 12/9 - 3/10, 27/10 - 31/10 (tentatively) Part 2: 5 guest lectures 10/11 - 12/12 Examination: homework problems on part 1, project based on one of the guest lectures Literature: Lecture notes downloadable from the course homepage. Additional text/references will be made available during the course. Masters students: To get credit for the course, please contact Bengt-Erik Mellander, [email protected] , after completion of the examination.

Upload: others

Post on 10-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/topomatter.html

Part 1: 10 double hour lectures 12/9 - 3/10, 27/10 - 31/10 (tentatively)Part 2: 5 guest lectures 10/11 - 12/12

Examination: homework problems on part 1, project based on one of the guest lectures

Literature: Lecture notes downloadable from the course homepage.Additional text/references will be made available during the course.

Masters students: To get credit for the course, please contactBengt-Erik Mellander, [email protected], after completion ofthe examination.

Page 2: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Concepts in Topological Quantum Matter, 4.5 ECTSphysics.gu.se/~tfkhj/topomatter/

Part 1: 10 double hour lectures 12/9 - 3/10, 27/10 - 31/10 (tentatively)Part 2: 5 guest lectures 10/11 - 12/12

Examination: homework problems on part 1, project based on one of the guest lectures

Literature: Lecture notes downloadable from the course homepage.Additional text/references will be made available during the course.

Masters students: To get credit for the course, please contactBengt-Erik Mellander, [email protected], after completion ofthe examination.

Page 3: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Before the era of topology in physics...

Standard paradigm of emergent order:spontaneous symmetry breaking

Page 4: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Some examples:

Crystals break the translational and rotational symmetry of free space

Page 5: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Crystals

Liquid crystals break rotational but not translational symmetry

Page 6: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Crystals

Liquid crystals

Magnets break time-reversal symmetry and the rotational symmetry of spin space

Page 7: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Crystals

Liquid crystals

Magnets

Superconductors break a gauge symmetry

Page 8: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Crystals

Liquid crystals

Magnets

Superconductors

... and many more examples

Page 9: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

Crystals

Liquid crystals

Magnets

Superconductors

... and many more examples

At high temperature, entropy dominates and leads to a disordered state.

At low temperature, energy dominates and leads to an ordered state.

Lev Landau http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Landau_Le...

1 av 1 06-01-16 14.40

The ordered state breaks one or more symmetries ”spontaneously”.

Lev Landau

Page 10: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is topological quantum matter & why do we care?

In 1980, the ”Landau paradigm” was challenged by the discovery of the (integer) quantum Hall effect (von Klitzing et al.)

Electrons confined to a plane and in a strong magnetic field show, at low enough temperature, plateaus in the “Hall conductance”:

to a precision of at least 9 decimal places!

There is no symmetry breaking. What type of ordercauses this precise quantization?

TOPOLOGICAL ORDER!

Page 11: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Topological quantum matter

”Symmetry-protected topological matter”

Unique groundstate protected by atopological invariant (Chern number,Z2-index,...), ordinary electron excitations,short-range quantum entanglement:

integer quantum Hall effect,topological insulators,Chern insulators,topological superconductors,...

Groundstate degeneracies on higher-genus manifolds, fractionalized excitations,long-range quantum entanglement:

fractional quantum Hall effect,quantum spin liquids,...

”Topologically ordered matter” (proper)

Page 12: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Topological quantum matter

”Topologically protected matter”

Unique groundstate protected by atopological invariant (Chern number,Z2-index,...), ordinary electron excitations,short-range quantum entanglement:

integer quantum Hall effect,

topological insulators,Chern insulators,topological superconductors,...

Groundstate degeneracies on higher-genus manifolds, fractionalized excitations,long-range quantum entanglement:

fractional quantum Hall effect,quantum spin liquids,...

”Topologically ordered matter” (proper)

Page 13: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

The topological insulatorsprovide the best ”port of entry” to the study of topological quantum matter.This is how we shall go about it in the course!

Page 14: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

”An electrical insulator is a material whose internal electric charges do not flow freely... examples include glass, paper, Teflon, plastics, ceramic materials,... ”

?

Page 15: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Ordinary insulators have nothing to do with topology, but topological insulators do!?

Page 16: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

2D topological insulators... taking off from the quantum Hall effect

Page 17: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

no channel for backscattering

B“skipping current”

quantization

chiral edge states

perfect conductance along the edge

2D topological insulators... taking off from quantum Hall effect

Page 18: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

B

perfect conductance along the edge von Klitzing et al., PRL (1980)

2D topological insulators... taking off from quantum Hall effect

Page 19: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Is this kind of physics possible without a magnetic field?

a bulk insulator with perfectlyconducting edge states

Duncan Haldane

Well..., at least one doesn’t need anet magnetic field... PRL, 1988

Charlie Kane Gene Mele

In fact, one can do away with themagnetic field altogether! PRLs, 2005

Page 20: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

To see how this is possible, consider a Gedanken experiment... Bernevig & Zhang, PRL (2006)

Page 21: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

spin-orbit interaction

1

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

with vi and K functions of g1τ , g2τ , g3τ (11)

compare with an integer quantum Hall system

Lorentz force

1

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

with vi and K functions of g1τ , g2τ , g3τ (11)

1

B = ∇×A

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

To see how this is possible, consider a Gedanken experiment...

Page 22: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

spin-orbit interaction

1

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

with vi and K functions of g1τ , g2τ , g3τ (11)

compare with an integer quantum Hall system

Lorentz force

1

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

with vi and K functions of g1τ , g2τ , g3τ (11)

1

B = ∇×A

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

H =

�dx [Hc +Hs]

Hi =vi

2[(∂xϕi)

2+(∂xϑi)

2]−

mi

πacos(

�2πKiϕi), (1)

∆R = γ1 sin(q0a)

with vi and Ki functions of g1τ , g2τ and g4τ

Λ ∼ bandwidth (2)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (3)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (4)

R†τ and L

†τ create excitations at the Fermi points of the

right- and left-moving branches with spin projection τ

(5)

L+

vF = 2a

�t2 + γ

20 and ∆R = γ1 sin(q0a)

Hτ =−ivF

�:R

†τ (x)∂xRτ (x) ::L

†τ (x)∂xLτ (x) :

−2∆R cos(Qx)�e−2ik0

F (x+a/2)R

†τ (x)Lτ (x)+H.c.

�,(6)

τ = ±

q0

HR =−i

n,µ,ν

(γ0 + γ1 cos (Qna))

�c†n,µσ

yµνcn+1,ν−H.c.

γj = αja−1

(j = 0, 1)

ϕc ≡ (ϕ+ + ϕ−)/

√2 (7)

ϕs ≡ (ϕ+ − ϕ−)/

√2 (8)

Hint = g1− :R†τLτL

†−τR−τ : + g2τ :R

†+R+L

†τLτ :

+g4τ

2(:R

†+R+R

†τRτ : +R↔ L) (9)

g2τ ≡g2τ − δτ+g1τ (10)

| >

| >

To see how this is possible, consider a Gedanken experiment...

Page 23: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

| >

| >

Two copies of a quantum Hall system, bulk insulator with helical edge states

2D topological insulator

single Kramers pair

Page 24: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

x

How does Nature do it?Also by spin-orbit interactions!

x

”s-band”

”p-band”

EF

ordinary insulator

local band structure

Page 25: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

x

How does Nature do it?Strong atomic spin-orbit interactions!

x

topological insulatorordinary insulator ordinary insulator

EF

”s-band”

”p-band”

conducting edge stateslocal band structure

Page 26: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

x

How does Nature do it?Strong atomic spin-orbit interactions!

x

topological insulator

EFconducting edge states

local band structure

Page 27: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

First proposed by Kane and Mele for graphene (2005)C. L. Kane and E. J. Mele, PRL 95, 226801 (2005)

Bernevig et al. proposal for HgTe quantum wells (2006)B. A. Bernevig, T. A. Hughes, and S. C. Zhang, Science 314, 1757 (2006)

Experimental observation by König et al. (2007)M. König et al., Science 318, 766 (2007)

Experimental realizations...

Page 28: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

The helical edge states are stable against time-reversal invariant perturbations,no disorder backscattering

edge states

HgTe quantum well | >–

+| >

1

G =2e

2

h

L ∼ 1µm

L ∼ 20µm

g

g ∼ 1/2v

ξ < L

α(±2kF )

±2kF

z⊥ ≡ 2g

√CK

z� ≡ 4K − 2

γ = (α(2kF ) + α(−2kF ))/2

∂xθ

ψ↑ = η↑ exp�i√

π[φ + θ]�/

√2πκ

ψ↓ = η↓ exp�−i√

π[φ− θ]�/

√2πκ

H0 + Hd + Hf + HR

O(α2)

α(x) = �α(x)�+

n

α(kn)eikxn

Ψ↑↓(x)=ψ↑↓(x)e±ikF x

Ψ↓(x)=ψ↓(x)e−ikF x

HR = α(x)(z × k) · σ

B = ∇×A

E = E(x, y, 0)

(E × k) · σ = Eσz(kyx− kxy)

A =B

2(y,−x, 0)

A · k ∼ eB(kyx− kxy)

G = νe2

h

Mc ≈ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.

Rev. B 65, 085104 (2002)

�α0 � 2× 10−11

eV m

Λ � 0.5 eV

vF � 1× 106

m/s

Kc + Ks � 1.8

HR

ballistic transport

”symmetry

-protecte

d”

topologic

al phase

Page 29: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

König et al. (2007)

normal band gap

large samples(inelastic scatteringfrom the bulk)

Fermi level notinside the inverted gap

Page 30: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

What is ”topological” about a topological insulator?

Warm up... Gauss-Bonnet theorem

1

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Pierre Ossian Bonnet, 1819-1892

Page 31: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

MKdS = 2(1− g)

K = κmin · κmax

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

What is ”topological” about a topological insulator?

Warm up... Gauss-Bonnet theorem

1

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

Page 32: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

What is ”topological” about a topological insulator? 1

1

MKdS = 2(1− g)

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Page 33: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Generalized Gauss-Bonnet theorem

”Chern theorem”

Berry curvature

Chern numberShiing-Shen Chern, 1911-2004

What is ”topological” about a topological insulator?

1

H = −t

n,α

c†n,αcn+1,α +

µ

2

n,α

c†n,αcn,α −i

n,α,β

c†n,α

�γD σx

αβ+γR σyαβ

�cn+1,β (1)

− iγ�R

n,α,β

cos(Qna)c†n,ασyαβcn+1,β +

µ�

2

n,α

cos(Qna)c†n,αcn,α (2)

+�

n,n�;α,β

V (n− n�)c†n,αc

†n�,βcn�,βcn,α + h. c. (3)

SA(n,N)− SA(n− 1, N − 1) = Simp

whereJK = J1 = J2 = Kondo couplingn = number of sites in A incl. the impurity siteN = total number of sites in A+B

HRashba = αkxσy

EF

HZeeman = (µBgB/2)σx

SA(JK , n,NL, NR)− SA(1, n− 1, NL, NR) = Simp

whereNL and NR are the number of sites in the left and right blue block, respectively

1

MF · dS = C

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Berry curvature

Chern number

un,k(r) = � r |un,k �

Page 34: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

band index

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Brillouin zone (BZ)

Electron wave function in a crystal

1

H = −t

n,α

c†n,αcn+1,α +

µ

2

n,α

c†n,αcn,α −i

n,α,β

c†n,α

�γD σx

αβ+γR σyαβ

�cn+1,β (1)

− iγ�R

n,α,β

cos(Qna)c†n,ασyαβcn+1,β +

µ�

2

n,α

cos(Qna)c†n,αcn,α (2)

+�

n,n�;α,β

V (n− n�)c†n,αc

†n�,βcn�,βcn,α + h. c. (3)

SA(n,N)− SA(n− 1, N − 1) = Simp

whereJK = J1 = J2 = Kondo couplingn = number of sites in A incl. the impurity siteN = total number of sites in A+B

HRashba = αkxσy

EF

HZeeman = (µBgB/2)σx

SA(JK , n,NL, NR)− SA(1, n− 1, NL, NR) = Simp

whereNL and NR are the number of sites in the left and right blue block, respectively

1

MF · dS = C

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Berry curvature

Chern number

un,k(r) = � r |un,k �

Page 35: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Electron wave function in a crystal

Michael Berry

1

H = −t

n,α

c†n,αcn+1,α +

µ

2

n,α

c†n,αcn,α −i

n,α,β

c†n,α

�γD σx

αβ+γR σyαβ

�cn+1,β (1)

− iγ�R

n,α,β

cos(Qna)c†n,ασyαβcn+1,β +

µ�

2

n,α

cos(Qna)c†n,αcn,α (2)

+�

n,n�;α,β

V (n− n�)c†n,αc

†n�,βcn�,βcn,α + h. c. (3)

SA(n,N)− SA(n− 1, N − 1) = Simp

whereJK = J1 = J2 = Kondo couplingn = number of sites in A incl. the impurity siteN = total number of sites in A+B

HRashba = αkxσy

EF

HZeeman = (µBgB/2)σx

SA(JK , n,NL, NR)− SA(1, n− 1, NL, NR) = Simp

whereNL and NR are the number of sites in the left and right blue block, respectively

1

MF · dS = C

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Berry curvature

Chern number

un,k(r) = � r |un,k �

Berry curvature Berry, RSPSA (1984)

Page 36: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Electron wave function in a crystal

1

H = −t

n,α

c†n,αcn+1,α +

µ

2

n,α

c†n,αcn,α −i

n,α,β

c†n,α

�γD σx

αβ+γR σyαβ

�cn+1,β (1)

− iγ�R

n,α,β

cos(Qna)c†n,ασyαβcn+1,β +

µ�

2

n,α

cos(Qna)c†n,αcn,α (2)

+�

n,n�;α,β

V (n− n�)c†n,αc

†n�,βcn�,βcn,α + h. c. (3)

SA(n,N)− SA(n− 1, N − 1) = Simp

whereJK = J1 = J2 = Kondo couplingn = number of sites in A incl. the impurity siteN = total number of sites in A+B

HRashba = αkxσy

EF

HZeeman = (µBgB/2)σx

SA(JK , n,NL, NR)− SA(1, n− 1, NL, NR) = Simp

whereNL and NR are the number of sites in the left and right blue block, respectively

1

MF · dS = C

K = κmin · κmax

radius =1

κ

g = 0 g = 1 g = 2 g = 3

⊂ M

Berry curvature

Chern number

un,k(r) = � r |un,k �

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n=1

� filled bands

M=BZFn(k) · dk = C, C ∈ Z

1

� filled bands�

n=1

M=BZFn,z(k) dkx dky = C

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Berry curvature Berry, RSPSA (1984)

Page 37: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

vanishing Chern number

odd undertime reversal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Electron wave function in a crystal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n=1

� filled bands

M=BZFn(k) · dk = C, C ∈ Z

1

� filled bands�

n=1

M=BZFn,z(k) dkx dky = C

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Berry curvature Berry, RSPSA (1984)

Page 38: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

odd undertime reversal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Electron wave function in a crystal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n=1

� filled bands

M=BZFn(k) · dk = C, C ∈ Z

1

� filled bands�

n=1

M=BZFn,z(k) dkx dky = C

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

broken time-reversal

symmetry (like in the

quantum Hall effect)

David Thouless

integer quantum Hall effect: ”TKNN invariant”Thouless et al., PRL (1982)

Berry curvature Berry, RSPSA (1984)

Page 39: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

odd undertime reversal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

EBZFn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Electron wave function in a crystal

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n=1

� filled bands

M=BZFn(k) · dk = C, C ∈ Z

1

� filled bands�

n=1

M=BZFn,z(k) dkx dky = C

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

Berry curvature Berry, RSPSA (1984)

What if we identify time-reversed points in the BZ?

Page 40: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = ∇k ×An(k)

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

The parity of the Chern number is unique!

1

ψn,k(r) = un,k(r)eik·r

Γ A B C

An(k) = −i�un,k | ∇k | un,k�

Fn(k) = −i∇k × �un,k | ∇k | un,k�

1

n=1

M=BZFn(k) · dk = C, C ∈ Z

1

n

BZFn(k) · dk = C, C ∈ Z

1

n

�Fn(k) · dk = C

C =

�0 mod 2 ordinary insulator1 mod 2 topological insulator

”Z2 topological invariant”,counts the number of Kramers pairs at the edge of the topological insulator(bulk-boundary correspondence)

Kane & Mele, PRL (2005)

Page 41: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Why all the hoopla?

https://www.youtube.com/watch?v=HBuLMrzgbgM

Page 42: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

• Future electronics/spintronics:

• New physics in hybrid structures: Majorana fermions, magnetic monopoles, ”dyons”,...

• An inroad to the general study of topological quantum matter

Why all the hoopla?

Page 43: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

An inroad to the general study of topological quantum matter...

2D topological insulator

”Periodic tables” for symmetry-protected topological matter:

Page 44: Topological Quantum Matter, 7.5 ECTSphysics.gu.se/~tfkhj/TOPO/TopologicalQuantumMatter.pdf · 2014-09-18 · Topological quantum matter ”Topologically protected matter” Unique

Now for some serious work on the blackboard!