topic 7 -- smith charts

21
11/30/2017 1 Topic 7 ‐‐ Smith Charts Slide 1 EE 4347 Applied Electromagnetics Topic #7 Smith Charts These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Lecture Outline Topic 7 ‐‐ Smith Charts Slide 2 Construction of the Smith Chart Admittance and impedance Circuit theory Determining VSWR and Impedance transformation Impedance matching

Upload: others

Post on 19-Jan-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Topic 7 -- Smith Charts

11/30/2017

1

Topic 7 ‐‐ Smith Charts Slide 1

EE 4347 

Applied Electromagnetics

Topic #7

Smith Charts

These notes may contain copyrighted material obtained under fair use rules.  Distribution of these materials is strictly prohibited  

Lecture Outline

Topic 7 ‐‐ Smith Charts Slide 2

• Construction of the Smith Chart

• Admittance and impedance

• Circuit theory

• Determining VSWR and • Impedance transformation

• Impedance matching

Page 2: Topic 7 -- Smith Charts

11/30/2017

2

Construction of the Smith Chart

Page 3: Topic 7 -- Smith Charts

11/30/2017

3

Polar Plot of Reflection Coefficient

Topic 7 ‐‐ Smith Charts 5

The Smith chart is based on a polar plot of the voltage reflection coefficient .  The outer boundary corresponds to || = 1.  The reflection coefficient in any passive system must be|| ≤ 1.

je

radius on Smith chart

angle measured CCW from right side of chart

Normalized Impedance

Topic 7 ‐‐ Smith Charts 6

All impedances are normalized.  This is usually done with respect to the characteristic impedance of the transmission line Z0.

0

ZzZ

Page 4: Topic 7 -- Smith Charts

11/30/2017

4

Normalized Reflection Coefficient

Topic 7 ‐‐ Smith Charts 7

We can write the reflection coefficient in terms of normalized impedances.

0

0 0 0

00

0 0

1

1

L

L L

LL L

ZZZ Z Z Z z

ZZZ Z zZ Z

Derivation of Smith Chart:Solve for Load Impedance

Topic 7 ‐‐ Smith Charts 8

Solving the previous equation for load impedance, we get

1

1

1 1

1

1

1 1

1

1

L

L

L L

L L

L L

L

L

z

z

z z

z z

z z

z

z

1

1Lz

Page 5: Topic 7 -- Smith Charts

11/30/2017

5

Derivation of Smith Chart:Real and imaginary parts

Topic 7 ‐‐ Smith Charts 9

The load impedance and reflection coefficient can be written in terms of real and imaginary parts.

L L L r iz r jx j

1

11

1

1

1

L

r iL L

r i

r iL L

r i

z

jr jx

j

jr jx

j

Substituting these into the load impedance equation yields

Derivation of Smith Chart:Solve for rL and xL

Topic 7 ‐‐ Smith Charts 10

We solve or previous equation for rL and xL by setting the real and imaginary parts equal.

2

2 2

2 2

2 2

2 2

2 2

2 2

2 22 2

1

1

1 1

1 1

1 1 1 1

1

1

1

1 2

1

1 2

1 1

r iL L

r i

r i r i

r i r i

r r r i i r i

r i

r i r i i r i i

r i

r i i

r i

r i i

r i r i

jr jx

j

j j

j j

j j

j j j j

j

j

2 2

2 2

2 2

1

1

2

1

r iL

r i

iL

r i

r

x

Page 6: Topic 7 -- Smith Charts

11/30/2017

6

Derivation of Smith Chart:Rearrange equation for rL

Topic 7 ‐‐ Smith Charts 11

We rearrange the equation for rL so that it has the form of a circle.

2 2

2 2

2 22 2

222 2

222 2

2 2 2 2

2 2

2 2

can be factored

1

1

11

11 0

12 1 0

2 1 0

2 1 1 1 0

21

r iL

r i

r ir i

L

irr i

L L L

irr r i

L L L

L r L r r L i i L

L r L r L i L

L rr i

L

r

r

r r r

r r r

r r r r

r r r r

r

r

10

1L

L

r

r

2 2

2

2 2

2

2 22

2 2

2 2 22

2 2

2

22

10

1 1 1

1

1 1 1

1 1

1 1 1

1

1 1 1

1

1 1

L L Lr i

L L L

L L Lr i

L L L

L LL Lr i

L L L

L L Lr i

L L L

Lr i

L L

r r r

r r r

r r r

r r r

r rr r

r r r

r r r

r r r

r

r r

Derivation of Smith Chart:Rearrange equation for xL

Topic 7 ‐‐ Smith Charts 12

We rearrange the equation for xL so that it has the form of a circle.

2 2

2 2

2 2

swap termscan be factored

22

2

2

1

21

21 0

1 11 0

iL

r i

ir i

L

r i iL

r iL L

x

x

x

x x

Page 7: Topic 7 -- Smith Charts

11/30/2017

7

Derivation of Smith Chart:Two families of circles

Topic 7 ‐‐ Smith Charts 13

Constant Resistance Circles

2 2

2 1

1 1L

r iL L

r

r r

Constant Reactance Circles

2 2

2 1 11r i

L Lx x

These have centers at These have centers at

01

Lr i

L

r

r

1

1 r iLx

Radii Radii

1

1 Lr1

Lx

Derivation of Smith Chart:Putting it all together

Topic 7 ‐‐ Smith Charts 14

+ + =

Lines of constant resistance

Lines of constant inductive reactance

Lines of constant capacitive reactance

Superposition

We ignore what is outside the || = 1 circle.

We don’t draw the constant || circles.

This is the Smith chart!

Lines of constant reflection coefficient

Page 8: Topic 7 -- Smith Charts

11/30/2017

8

Alternate Way of Visualizing the Smith Chart

Topic 7 ‐‐ Smith Charts 15

Lines of constant reactanceLines of constant resistance Reactance Regions

L

C

opencircuit

shortcircuit

3D Smith Chart

Topic 7 ‐‐ Smith Charts

The 3D Smith Chart unifies passive and active circuit design.

2D 3D

16

Page 9: Topic 7 -- Smith Charts

11/30/2017

9

Summary of Smith Chart

Topic 7 ‐‐ Smith Charts 17

Impedanceand

Admittance

Page 10: Topic 7 -- Smith Charts

11/30/2017

10

Admittance Coordinates

Topic 7 ‐‐ Smith Charts 19

We could have derived the Smith chart in terms of admittance.

You can make an admittance Smithchart by rotating the standardSmith chart by 180.

Impedance/AdmittanceConversion

Topic 7 ‐‐ Smith Charts 20

The Smith chart is just a plot of complex numbers. These could be admittance as well as impedance.

To determine admittance from impedance (or the other way around)…

1. Plot the impedance point on the Smith chart.2. Draw a circle centered on the Smith chart that passes through the point (i.e.

constant VSWR).3. Draw a line from the impedance point, through the center, and to the other side of

the circle.4. The intersection at the other side is the admittance.

impedance admittance

Page 11: Topic 7 -- Smith Charts

11/30/2017

11

Visualizing Impedance/Admittance Conversion

Topic 7 ‐‐ Smith Charts 21

Example #1 – Step 1Plot the impedance on the chart

Topic 7 ‐‐ Smith Charts 22

0.2 0.4z j

Page 12: Topic 7 -- Smith Charts

11/30/2017

12

Example #1 – Step 2Draw a constant VSWR circle

Topic 7 ‐‐ Smith Charts 23

0.2 0.4z j

Example #1 – Step 3Draw line through center of chart

Topic 7 ‐‐ Smith Charts 24

0.2 0.4z j

Page 13: Topic 7 -- Smith Charts

11/30/2017

13

Example #1 – Step 4Read off admittance

Topic 7 ‐‐ Smith Charts 25

0.2 0.4z j

1.0 2.0y j

Example #2 – Step 1Plot the impedance on the chart

Topic 7 ‐‐ Smith Charts 26

0.5 0.3z j

Page 14: Topic 7 -- Smith Charts

11/30/2017

14

Example #1 – Step 2Draw a constant VSWR circle

Topic 7 ‐‐ Smith Charts 27

0.5 0.3z j

Example #2 – Step 3Draw line through center of chart

Topic 7 ‐‐ Smith Charts 28

0.5 0.3z j

Page 15: Topic 7 -- Smith Charts

11/30/2017

15

Example #2 – Step 4Read off admittance

Topic 7 ‐‐ Smith Charts 29

1.0 2.0y j

0.5 0.3z j

DeterminingVSWR and 

Page 16: Topic 7 -- Smith Charts

11/30/2017

16

Determining VSWR

Topic 7 ‐‐ Smith Charts 31

1. Plot the normalized load impedance on the Smith chart.2. Draw a circuit centered on the Smith chart that intersections this point.3. The VSWR is read where the circle crosses the real axis on right side.

Example: 50 line connected to 75+j10 load impedance.

0

75 101.5 0.2

50LZ j

z jZ

impedance

VSWR = 1.55

1

VSWR

Example #1 –What is the VSWR?

Topic 7 ‐‐ Smith Charts 32

50

3.3157 nH

1.9894 pF

in

inin

0

0.4 0.

20 40

20 40

0 8

5

Z j

Z jz

Zj

VSWR 4.3

Page 17: Topic 7 -- Smith Charts

11/30/2017

17

Example #1 –What is the reflection coefficient?

Topic 7 ‐‐ Smith Charts 33

0.62

Impedance  Transformation

Page 18: Topic 7 -- Smith Charts

11/30/2017

18

Normalized Impedance Transformation Formula

Topic 7 ‐‐ Smith Charts 35

Our impedance transformation formula was

0in 0

0

tan

tanL

L

Z jZZ Z

Z jZ

We can write this in terms of the reflection coefficient.

00in 0 0

0 0

0 00 00 0

0 0 0

0.5 0.5cos sin

cos sin 0.5 0.5

j j j jLL

j j j jL Z

j jj j j jL LL L

j j j j jL L L L

Z e e Z e eZ jZZ Z Z

Z jZ Z e e Z e e

Z Z e Z Z eZ e Z e Z e Z eZ ZZ e Z e Z e Z e Z Z e Z

0

0

20

0 0 20

0

11

11

j

jL

j jL

j jL

jL

Z e

Z Z e

Z Z e eZ Z

Z Z e e

Z Z e

We normalize by dividing by Z0.

2

in 2

1

1

j

j

ez

e

Interpreting the Formula

Topic 7 ‐‐ Smith Charts 36

The normalized impedance transformation formula was

2

in 2

1

1

j

j

ez

e

Recognizing that  = ||ej, this equation can be written as

22

in 2 2

1 1

1 1

jj j

j j j

e e ez

e e e

Thus we see that traversing along the transmission line simply changes the phase of the reflection coefficient.

As we move away from the load and toward the source, we subtract phase from .  On the  Smith chart, we rotate clockwise (CW) around the constant VSWR circle by an amount 2l.  A complete rotation corresponds to /2.

Page 19: Topic 7 -- Smith Charts

11/30/2017

19

Impedance Transformationon the Smith chart

Topic 7 ‐‐ Smith Charts 37

1. Plot the normalized load impedance on the Smith chart.2. Move clockwise around the middle of the Smith chart as we move away from the

load (toward generator). One rotation is /2 in the transmission line.3. The final point is the input impedance of the line.

Example #2 – Impedance Trans. Normalize the parameters

Topic 7 ‐‐ Smith Charts 38

0 50 Z 50 25 LZ j

0.67

1 0.5 Lz j

0.67

in

1 0.5 tan 2 0.67tan1.299 0.485

1 tan 1 1 0.5 tan 2 0.67L

L

j jz jz j

jz j j

Page 20: Topic 7 -- Smith Charts

11/30/2017

20

Example #2 – Impedance Trans. Plot load impedance

Topic 7 ‐‐ Smith Charts 39

0.67

1 0.5 Lz j

Example #2 – Impedance Trans. Walk away from load 0.67

Topic 7 ‐‐ Smith Charts 40

0.67

1 0.5 Lz j

Since the Smith chart repeats every 0.5, traversing 0.67 is the same as traversing 0.17.

Here we start at 0.145 on the Smith chart.

We traverse around the chart to 0.145 + 0.17 = 0.315.

0.145

Page 21: Topic 7 -- Smith Charts

11/30/2017

21

Example #2 – Impedance Trans. Determine input impedance

Topic 7 ‐‐ Smith Charts 41

0.67

1 0.5 Lz j

Reflection at the load will be the same regardless of the length of line.

Therefore the VSWR will the same.

The input impedance must lie on the same VSWR plane.

inZ

in 1.3 0.5z j

Example #2 – Impedance Trans. Denormalize

Topic 7 ‐‐ Smith Charts 42

0.67

1 0.5 Lz j

To determine the actual input impedance, we denormalize.

inZ

in 0 in 50 1.3 0.5 65 25 Z Z z j j