topic 2 balancing of rotating masses

16
UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering _________________________________________________________________ BDA 27201 - Edition III/2011 DEPARTMENT OF ENGINEERING MECHANICS MECHANICS OF MACHINES LABORATORY LAPORAN MAKMAL/LABORATORY REPORT Kod M/Pelajaran/ Subject Code ENGINEERING LABORATORY IV BDA 27201 Kod & Tajuk Ujikaji/ Code & Title of Experiment Kod Kursus/ Course Code Seksyen /Section Kumpulan/Group No. K.P / I.C No. Nama Pelajar/Name of Student No. Matrik Lecturer/Instructor/Tutor’s Name 1. 2. Nama Ahli Kumpulan/ Group Members No. Matrik Penilaian / Assesment 1. Teori / Theory 10 % 2. Keputusan / Results 15 % 3. Pemerhatian /Observation 20 % 4. Pengiraan / Calculation 10 % 5. Perbincangan / Discussions 25 % Tarikh Ujikaji / Date of Experiment Kesimpulan / Conclusion 15 % Tarikh Hantar / Date of Submission Rujukan / References 5 % JUMLAH / TOTAL 100% COP DITERIMA/APPROVED STAMP ULASAN PEMERIKSA/COMMENTS

Upload: sin-soon-kiat

Post on 24-Oct-2015

359 views

Category:

Documents


1 download

DESCRIPTION

zxZXX

TRANSCRIPT

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

DEPARTMENT OF ENGINEERING MECHANICS

MECHANICS OF MACHINES LABORATORY

LAPORAN MAKMAL/LABORATORY REPORT

Kod M/Pelajaran/ Subject Code

ENGINEERING LABORATORY IV BDA 27201

Kod & Tajuk Ujikaji/ Code & Title of Experiment

Kod Kursus/ Course Code Seksyen /Section

Kumpulan/Group No. K.P / I.C No.

Nama Pelajar/Name of Student No. Matrik

Lecturer/Instructor/Tutor’s Name

1. 2.

Nama Ahli Kumpulan/ Group Members

No. Matrik Penilaian / Assesment

1. Teori / Theory 10 %

2. Keputusan /

Results 15 %

3. Pemerhatian /Observation 20 %

4. Pengiraan / Calculation 10 %

5. Perbincangan / Discussions 25 %

Tarikh Ujikaji / Date of Experiment Kesimpulan /

Conclusion 15 %

Tarikh Hantar / Date of Submission Rujukan /

References 5 %

JUMLAH / TOTAL 100%

COP DITERIMA/APPROVED STAMP

ULASAN PEMERIKSA/COMMENTS

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

2

COURSE INFORMATION

COURSE TITLE: ENGINEERING LABORATORY IV (BDA 27201) TOPIC 2: BALANCING OF ROTATING MASSES 1. OBJECTIVE The objectives of this experiment is to study the different balancing of the following body

1.1 Body at single plane and multiple-plane. 1.2 Body at static and dynamic state for the multiple plane

2. LEARNING OUTCOME At the end of this experiment, student should be able to 2.1 Understand the concept of balancing for the single and multiple plane 2.2 Implement and analyze the required data collectively within member of

group. 2.3 Produce good technical report according to the required standard

3. THEORY This experiment is to prove on the basic principle of balancing. Before implementing the experiment (5.1) and (5.2), sector plate B5 and C5 need to be installed at the internal position of disc by using the short screw (5/8) as shown in Figure 1.

Figure 1: Disc of Balancing of Rotating Masses

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

3

3.1 ADDITIONAL THEORY

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….……………………………………………………………………………………...…………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

4

4. EQUIPMENTS

Table 1: Apparatus

Quantity Apparatus Label

1 Dynamic balancing apparatus

Set of weight Refer procedure Screw/Nut Refer procedure

1 Toolbox

5. PROCEDURES 5.1. BALANCING IN A SINGLE PLANE OF REVOLUTION

a. Place m1 = 30 at , r1 = 60mm where m1 – mass at the single plane r1 – distance m1 from centre of gravity and plane of rotation Therefore, m1 x r1 = 30 x 60 = 1800 (not zero) OR m1r1 = m1r1 This situation will contribute to the imbalance observe oscillations.

b. Place m1 = 30 at , r1 = 60mm and m2 = 30 at , r2 = 60mm where m1 – mass at the single plane r1 – distance m1 from centre of gravity and plane of rotation Therefore, m1r1 + m2r2 = (30 x 60 ) – (30 x 60) = 0 ( zero)

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

5

m2r2 OR m1r1 + m2r2= m1r1 This situation will contribute to the balance observe no oscillations. c. Place m1 = 30 at , r1 = 60mm and m2 = 60 at , r2 = 30mm where Therefore, m1r1 + m2r2 = (30 x 60 ) – (60 x 30) = 0 ( zero) m2r2 OR m1r1 + m2r2= m1r1 This situation will contribute to the balance observe no oscillations. d. Place m1 = 30 at , r1 = 60mm and m2 = 30 at , r2 = 30mm m3 = 15 at , r3 = 60mm where Therefore, m1r1 + m2r2 + m3r3 = (30 x 60 ) – (30 x30) – (15 x 60) = 0 m3r3 m2r2 OR m1r1 + m2r2 + m3r3= m1r1 This situation will contribute to the balance observe no oscillations.

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

6

e. Place m1 = 30 at , r1 = 60mm and m2 = 30 at , r2 = 60mm m3 = 30 at , r3 = 60mm where m1 located at the slot centre and therefore , angle 1 = 0° 2 =12 0°, and 3 = 240° Therefore, m1r1 + m2r2 + m3r3 = This situation will contribute to the balance observe no oscillations. If m1 located at the end slot, the total of vector as follows; m1r1 + m2r2 + m3r3 = This situation will contribute to the imbalance observe no oscillations.

f. Place m1 = 30 at , r1 = 60mm and m2 = 40 at , r2 = 45mm m3 = 60 at , r3 = 30mm where angle 1 = 0°, 2 =12 0° and 3 = 240° Therefore, m1r1 + m2r2 + m3r3 = This situation will contribute to the balance observe no oscillations.

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

7

5.2 BALANCING IN SEPARATE PLANE OF REVOLUTION a.) Locate the mass, m1 = 30 at r1 = 60mm on plane B m2 = 30 at r2 = 60mm on plane C m3 = 60 at r3 = 60mm on plane D where position m3 is in opposite of the radius m1 and m2 Get the plane A as the reference plane. Therefore, distance L1 =X, L2 = 2X and L3 = 3X The total of (m1r1 + m2r2 + m3r3) = ( 30 x 60 ) + ( 30 x 60 ) - ( 60 x 60 ) = 0 Vector equation : m1r1 + m2r2 + m3r3 = This situation will contribute to the balancing plane during static state But, total m1r1L1 + m2r2L2 + m3r3L3 = ( 30 x 60 x X ) + ( 30 x 60 x 2X ) - ( 60 x 60 x 3X ) = - 5400 X (not zero) Vector equation : m1r1L1 + m2r2L2 + m3r3L3 = This situation will contribute to the imbalance plane during dynamic state

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

8

b.) Locate the mass, m1 = 30 at r1 = 60mm on plane B m2 = 30 at r2 = 60mm on plane C m3 = 30 at r3 = 60mm on plane D m4 = 30 at r4 = 60mm on plane A where position m3 and m4 is in opposite of the radius m1 and m2 Get the plane A as the reference plane. Therefore, distance L1 =X, L2 = 2X and L3 = 3X and L4 = 0 The total of (m1r1 + m2r2 + m3r3 + m4r4) = ( 30 x 60 ) + ( 30 x 60 ) - ( 30 x 60 ) – (30 x 60)= 0

Vector equation : m1r1 + m2r2 + m3r3 + m4r4 =

This situation will contribute to the balancing plane during static state

But, total m1r1L1 + m2r2L2 + m3r3L3 + m4r4L4 = ( 30 x 60 x X ) + ( 30 x 60 x 2X ) - ( 30 x 60 x 3X ) + 0 = 0 (zero) Vector equation : m1r1L1 + m2r2L2 + m3r3L3 + m4r4L4 = This situation will contribute to the balancing plane during dynamic state

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

9

c.) Locate the mass, m1 = 60 at r1 = 60mm on plane B m2 = 60 at r2 = 60mm on plane C m3 = 20 at r3 = 60mm on plane D m4 = 20 at r4 = 60mm on plane A where position m2 and m4 is in opposite of the radius m1 and m3 Get the plane A as the reference plane. Therefore, distance L1 =X, L2 = 2X and L3 = 3X and L4 = 0 The total of (m1r1 + m2r2 + m3r3 + m4r4) = ( 60 x 60 ) - ( 60 x 60 ) +( 20 x 60 ) – (20 x 60)= 0 Vector equation : m1r1 + m2r2 + m3r3 + m4r4 = This situation will contribute to the balancing plane during static state But, total m1r1L1 + m2r2L2 + m3r3L3 + m4r4L4 = ( 60 x 60 x X ) - ( 60 x 60 x 2X ) + ( 20 x 60 x 3X ) - 0 = 0 (zero) Vector equation : m1r1L1 + m2r2L2 + m3r3L3 + m4r4L4 = This situation will contribute to the balancing plane during dynamic state

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

10

d.) Locate the mass, m1 = 60 at r1 = 60mm on plane B m2 = 20 at r2 = 60mm on plane D m3 = 40 at r3 = 60mm on plane A where position m2 and m3 is in opposite of the radius m1 Get the plane A as the reference plane. Therefore, distance L1 =X, L2 = 3X and L3 = 0 The total of (m1r1 + m2r2 + m3r3) = ( 60 x 60 ) - ( 20 x 60 ) - ( 40 x 60 ) = 0 Vector equation : m1r1 + m2r2 + m3r3 + = This situation will contribute to the balancing plane during static state But, total m1r1L1 + m2r2L2 + m3r3L3 = ( 60 x 60 x X ) - ( 20 x 60 x 3X ) - 0 = 0 (zero) Vector equation : m1r1L1 + m2r2L2 + m3r3L3 + m4r4L4 = This situation will contribute to the balancing plane during dynamic state

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

11

6. RESULTS 6.1 BALANCING IN A SINGLE PLANE OF REVOLUTION

Table 2: Experiment 1 Results

EXPERIMENTS THEORETICAL

CONDITION EXPERIMENTAL

CONDITION 5.1 a Imbalance 5.1 b Balance 5.1 c Balance 5.1 d Balance 5.1 e Balance 5.1 f Balance

6.2 BALANCING IN SEPARATE PLANE OF REVOLUTION

Table 3: Experiment 2 Results

EXPERIMENTS THEORETICAL

CONDITION EXPERIMENTAL

CONDITION Static Dynamic Static Dynamic

5.2 a Balance Imbalance 5.2 b Balance Balance 5.2 c Balance Balance 5.2 d Balance Balance

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

12

7. OBSERVATIONS The observations shall be conducted throughout the experiment especially during static and dynamic state of rotating masses. ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

13

8. CALCULATIONS

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

14

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

15

9. DISCUSSIONS 9.1 Explain the results obtained from the balancing of rotating masses for

single plane. ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………… 9.2 Explain the results obtained from the balancing of rotating masses for

multiple plane ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………… 9.3 Give an example on the application of balancing of rotating masses in real

time world and describe why balancing of rotating masses is important. ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

UNIVERSITI TUN HUSSEIN ONN MALAYSIA Faculty of Mechanical and Manufacturing Engineering

_________________________________________________________________

BDA 27201 - Edition III/2011

16

……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… 10. CONCLUSION Deduce conclusions from the experiment. Please comment on your experimental work in terms of achievement, problems faced throughout the experiment and suggest recommendation for improvements. ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………………………………………………………………………… 11. REFERENCES ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… ………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………