time-resolved thermoreflectance imaging for thermal testing and analysis

20
Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis Dr. Mo Shakouri Chairman Microsanj, LLC., Silicon Valley USA info@ microsanj.com

Upload: katima

Post on 25-Feb-2016

161 views

Category:

Documents


2 download

DESCRIPTION

Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis . Dr. Mo Shakouri Chairman Microsanj , LLC., Silicon Valley USA. info@ microsanj.com. Applications. Outline. Motivation Instrumentation Lock-in mechanism Imaging through silicon (near IR) Diffusion length - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Dr. Mo ShakouriChairman

Microsanj, LLC., Silicon Valley USA

[email protected]

Page 2: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Applications

SEMICON JAPAN 2013 - MICROSANJ

Page 3: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Outline

1. Motivation2. Instrumentation3. Lock-in mechanism4. Imaging through silicon (near IR)5. Diffusion length6. Examples

Small hotspot / Logic circuitry / Emission /Depth in metal layers

7. Summary

SEMICON JAPAN 2013 - MICROSANJ

Page 4: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Challenges on thermal characterization

General challenges for electronics devices• Small features: 10s nm – 100s microns – difficult to contact• High speed response due to the small thermal mass• Highly non-uniform

Additional challenges for photonics and power devices• Light emission (photonics)• High heat density• Heat sinks requirement (power devices)

SEMICON JAPAN 2013 - MICROSANJ

Page 5: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Thermoreflectance imaging setupMicroscope setupConsole box

DUT

LED

CCD

Objective lens

Sig. gen.

Control box.

Temp. contl.

SEMICON JAPAN 2013 - MICROSANJ

Page 6: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Beam splitter

Computer

Thermal bed

Device

DetectorCCD, InGaAs

Pulse generator & power amp

GP-IB

How it works - thermoreflectance

System diagram

I 1R

Thermoreflectance coefficient

LED driverGP-IB

Power LED

PC

DetectorCCD, InGaAs

Pulse generator & power amp

MicroscopeObjective

DeviceThermal bed

Light

TTTR

RRR

1

SEMICON JAPAN 2013 - MICROSANJ

Page 7: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Lock-in signalsTiming chart

Temperature data point along the bias cycle

Acquisition timing (shifting by cycle)

SEMICON JAPAN 2013 - MICROSANJ

4ms @ 25% Duty Cycle

1ms

33ms @ 30Hz

t0

t0 100ms delay

Device Excitation

CCD exposure

LED pulse

Temperature

t1 t1

Page 8: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Through silicon and emissionTop view

InGaAs CCD

1300 nmLED

ObjectiveSubstrate

Flip Chip DUT

Bottom view(Image from http://www.janis.com)

Transmittance vs Wavelength, Si

% T

rans

mitt

ance

Wavelength, mm1.0 10.0

resolution

SEMICON JAPAN 2013 - MICROSANJ

Page 9: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Defects and signature of potential failure

Transient irregular timing - potential of logic/operation failure

Thermal foot print irregular local energy spot

Arrhenius's law RTEaneTTAk /ref/

Emission – sign of high density of electron collisions

Thermal hotspot – location of potential long-term reliability

Near Infrared (NIR) wavelength provide a capability of both thermal signal and emission simultaneously.

LED options: 1050, 1200, 1300, and 1500 nm

SEMICON JAPAN 2013 - MICROSANJ

Page 10: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Resolution and sensitivity

nSNRTemperature

Spatial resolution

sin2 n

d

d ≈ /2

Visible wavelengths, d ≈ 250-300 nm NIR d ≈ 500 nm

Time resolution202.0xt

Emission InGaAs uncooled camera effective sensitivity of one pixel for emission ~ 30 mW/mm2

n : number of averagingdue to the weak signal (Cth ~ 10-4 order)

As scaling smaller, time resolution must be smaller due to thermal diffusion.t : 100ns for our setup.

(for 1% error in temperature)

SEMICON JAPAN 2013 - MICROSANJ

Page 11: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Examples - Small hotspota)

b)

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

Tem

pera

ture

(a.u

.)

Distance (μm)

1.4 mm gate on MOSFET1.4 mm gate on MOSFET

Distance (mm)

010203040405060

Tem

pera

ture

(a.u

.)

2 4 6 8 10 120

SEMICON JAPAN 2013 - MICROSANJ

Page 12: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Transient Behavior of IC Latch-Up

XY

75

37.5

0

- Potential timing failure -

0.5 ms 0.7 ms 0.9 ms

1.0 ms 3.0 ms

Movie1

The latch-up location is circled in yellow

SEMICON JAPAN 2013 - MICROSANJ

Page 13: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Thermal and emission overlay imagesThrough silicon substrate, 450 mm thick.

LED = 1300nm and InGaAs camera (640 x 512)

25µm

5x

50x

Thermal signals

Emission signals44 mW

SEMICON JAPAN 2013 - MICROSANJ

Page 14: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Diffusion time/depth estimations

Diffusion time estimations SiO2 Si Cu Al Ag AuThermal diffusivity: α (m²/s) 8.30E-07 8.80E-05 1.11E-04 8.42E-05 1.55E-04 1.27E-04thickness (µm)

1 0.301 0.003 0.002 0.003 0.002 0.0025 7.53 0.07 0.06 0.07 0.040 0.05

10 30.1 0.3 0.2 0.3 0.162 0.225 188 1.8 1.4 1.9 1.011 1.250 753 7.1 5.6 7.4 4.045 4.9

100 3,012 28.4 22.5 29.7 16.181 19.7

diffusion time (µs)

Si)(for 31254

22

m

mt

tm 2 : thermal diffusivity [m2/s]m: depth of heat source

t: time to reach observing surface

SEMICON JAPAN 2013 - MICROSANJ

Page 15: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Examples - Through silicon, deep under the 6th metal layer

M7M1

Flip chip side view

Thermal imaging

2.0 msec

0.97V, ~12mA, ~12mW 20% duty cycle10 minutes of averaging (repeating)

Movie2

SEMICON JAPAN 2013 - MICROSANJ

Page 16: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Time delay to reach to the surface

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600

Nor

mal

ized T

empe

ratu

re

Time (µs)

Poly Resistor140 Ohm Short

~75 µs delay Poly resistor (top layer)

Short (under 6 layers)

Precise time resolution is a key to find the response.

SEMICON JAPAN 2013 - MICROSANJ

Page 17: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Microsanj, a technology leader inthermal imaging field

Founded by a team of PhDs from CalTech, Stanford, and UCSC in 2007 More than 30 papers published to date

Collaborative Research Activities A*Star Singapore Altera Corporation Birck Nanotechnology Center at Purdue

University Nvidia Philips Electronics Qualcomm Silicon Frontline Si-Ware Systems ST Microelectronics Texas Instruments (National

Semiconductor) University of California at Santa Cruz

Major Customers Chip Test Solutions Design Engineering Inc. (DEI) Infinera Instituto de Microelectronica de

Barcelona (CSIC) Intel Corporation Nanyang Technological University Purdue University Raytheon Silicon Image University of California Santa Barbara

SEMICON JAPAN 2013 - MICROSANJ

Page 18: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Summary

High speed time-resolved thermoreflectance imaging is introduced.

NIR illumination provides a through Si and electron emission

Lock-in thermography and EMMI are compared. Examples demonstrated:

Hotspots ~ 1mm, emission and thermal overlay, and a hotspot underneath 6 metal layers

SEMICON JAPAN 2013 - MICROSANJ

Page 19: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Microsanj 社の 開発した熱画像解析装置、 Nanotherm シリーズは、これまでの IR によるサーモグラフィー装置とは 全く異なった温度測定技術を用いたシステムです。測定物の IR 放射を測定するのではなく、 測定物に非常に短時間の光を照射し、その反射光を計測することにより温度分布を測定するため、 測定物に全く影響を与えること無く、 IR では難しかった広い温度範囲を非接触にて測定することが 可能となりました。測定は金属を含むあらゆるものが可能で、測定物を熱したり、表面に特別な処理を 行う必要が有りません。また、薄いシリコン基板は光を透過することから、 flip-chip 等の、シリコン基板上の 半導体の熱画像を裏面から観測することが可能です。また、 Nanotherm システムの最大の特徴として、 オプションにてバイアス電源と信号源を追加することにより、熱画像の過渡特性を、最速では 0.8nsec 間隔で 測定することができます。Nanotherm システムにより、温度上昇、熱集中の状況をリアルタイムに観察することで、 半導体そのものや半導体回路の最適な熱設計を行うこと、また故障解析、不良解析を行うことが可能です。 測定物の大きさは最小 300nm 、温度分解能は最小 0.2℃ 、測定温度範囲 -265 ~ 500℃に対応します。

ATN Japan1-35-16 Nakagawa-Chuo

Tsuzuki, Yokohama, Kanagawa, 224-0003 JAPANWebsite: www.atnjapan.comE-mail: [email protected] JAPAN 2013 - MICROSANJ

Page 20: Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis

Transient thermal/emission imaging

MethodResolution

Imag-ing? Notesx(mm) T (K) t (sec)

m Thermocouple 50 0.01 0.1-10 No Contact method

IR Thermography 3-10 0.02-1 1m Yes Emissivity dependent

Lock-in Thermog. 3-10 1m NA Yes Need cycling

Liquid Crystal Thermography 2-5 0.5 100 Yes

Only near phase transition (aging

issues)Thermo-reflectance

0.3- 0.5 0.08 800p-

0.1m Yes Need cycling

Optical scanningInterferometry 0.5 100m 6n-

0.1m Scan Indirect measurement (expansion)

Micro Raman 0.5 1 10n Scan 3D T-distributionScanning thermal microscopy (SThM)

0.05 0.1 10-100m Scan Contact method

surface morphologyEmission Microscopy (EMMI)

0.25 s.im.lens - Op

lock-in Yes Emitted Photon density

SEMICON JAPAN 2013 - MICROSANJ