time-dependent picture for trapping of an anomalous massive system into a metastable well jing-dong...

22
Time-dependent picture for trapp ing of an anomalous massive syst em into a metastable well Jing-Dong B ao ([email protected] n) Department of Physics, Beijing Normal Univer sity 2005. 8. 19 – 21 Beijing

Upload: trevon-cawthorne

Post on 15-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Time-dependent picture for trapping of an anomalous massive system

into a metastable well

Jing-Dong Bao ([email protected])

Department of Physics, Beijing Normal University

2005. 8. 19 – 21 Beijing

1. The scale theory

2. Barrier passage dynamics

3. Overshooting and backflow

4. Survival probability in a

metastable well

1. The model (anomalous diffusion)

ground state

saddle

exit0x

bx

scx

A metastable potential:

2

220 1

2

1)(

bl

xxmxU

What is an anomalous massive system?

(i) The generalized Langevin equation

Here we consider non-Ohmic model (    )

(ii) the fractional Langevin equation

)()(')()(1

1

txUtxt

mtxm

).()()(,0)(

),()(')()()(0

stTkstt

txUdssxsttxm

B

t

)(J

Jing-Dong Bao, Yi-Zhong Zhuo: Phys. Rev. C 67, 064606 (2003).

J. D. Bao, Y. Z. Zhuo: Phys. Rev. Lett. 91, 138104 (2003).

memory effect, underdamped

),(),()('),(

2

21

0 txPx

txPxUx

Dt

txPt

(iii) Fractional Fokker-Planck equation

这里  是一个

x

a

xa axdyyfyxxfD )(,)()()(

1)( 1

    分数导数,即黎曼积分10 tD

Jing-Dong Bao: Europhys. Lett. 67, 1050 (2004).Jing-Dong Bao: J. Stat. Phys. 114, 503 (2004).

Jing-Dong Bao, Yan Zhou: Phys. Rev. Lett. 94, 188901 (2005).

Normal Brownian motion

Fractional

Brownian motion

•Here we add an inverse and anomalous Kramers problem and report some analytical results, i.e., a particle with an initial velocity passing over a saddle point, trapping in the metastable well and then escape out the barrier.

•The potential applications:

(a) Fusion-fission of massive nuclei;

(b) Collision of molecular systems;

(c) Atomic clusters;

(d) Stability of metastable state, etc.

•The scale theory

(1) At beginning time: the potential is approximated to be an inverse harmonic potential, i.e., a linear GLE;

(2) In the scale region (descent from saddle point to ground state) , the noise is neglected, i.e., a deterministic equation;

(3) Finally, the escape region, the potential around the ground state and saddle point are considered to be two linking harmonic potentials, (also linear GLE).

2. Barrier passage process

 

)()()(2)(

)(')'(1)(

)(2

)()(exp

)(2

1),(

2

1)(

2121

0

2

0

12

00

0

2

2

2

22

1

ttttttdtdtTmkt

vtxdtttx

t

txtx

ttxW

xmxU

tt

Bx

t

b

xx

b

J. D. Bao, D. Boilley, Nucl. Phys. A 707, 47 (2002).D. Boilley, Y. Abe, J. D. Bao, Eur. Phys. J. A 18, 627 (2004).

The response function is given by

0

01

211

21

1

22

0222

0),(

1),(~2

)exp(

;1,)exp()exp(

21,~2

)exp(

)(

andwith

)(cos~2~

)exp(sin~)(

t

taa

ta

tataaa

aa

ta

tR

r

tRr

drtrrt

MM

M

MM

M

b

Where is the anomalous fractional constant ;

0~s

equation theofroot positivelargesttheis22 b

M

s

a

The effective friction constant is written as

)2(sin~ 11

r

The passing probability (fusion probability) over the saddle point is defined by

)(2

)(erfc

2

1

),(),,(000pass

t

tx

dxtxWtvxP

x

It is also called the characteristic function ),,( 00 tvx

0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

1.2

(x 0,v

0,t)

t

(a) v0=6.0

0 2 4 6 8 100.0

0.1

0.2

0.3

0.4

0.5

(x 0,v

0,t)

t

(b) v0=3.0

subdiffusion

normal diffusion

Passing

Probability

3. Overshooting and backflow

J. D. Bao, P. Hanggi, to be appeared in Phys. Rev. Lett. (2005)

)(2

)()(where

)()()()(

)()(

)(2)()(

)(2

))(exp(

),,()(

2121

21

0

2

0

1002

2

0pass

1

t

txtz

tttttttt

ttdtdtt

tTzmkvtxt

t

tz

dt

tvxdPtj

x

tt

x

Bb

x

b

* For instance, quasi-fission mechanism

0.1 1-5

0

5

10

15

20

25

30

35

j(t)

t

(b)

0v

0 2 4 6 8 10-2

0

2

4

6

8

10(a)

x(t)

<x(t

)>

t

180 190 200 210 220 230 240 250 2600.00.10.20.30.40.50.60.70.80.91.01.1

Pfu

s

Ecm

/MeV

(a) 100Mo+100Mo

200 210 220 230 240 2500.00.10.20.30.40.50.60.70.80.91.01.1

Pfu

s

Ecm

/MeV

(b) 86Kr+123Sb

210 220 230 240 250 260 270 2800.00.10.20.30.40.50.60.70.80.91.01.1

Pfu

s

Ecm

/MeV

(c) 96Zr+124Sn

210 220 230 240 250 260 270 2800.00.10.20.30.40.50.60.70.80.91.01.1

(d) 100Mo+110Pd

1D

2D

Pfu

s

Ecm

/MeV

4. Survival probability in a metastable well

We use Langevin Monte Carlo method to simulate the complete process of trapping of a particle into a metastable well

.),exp()(

;),(),0()(

0sur

trktrpass

trpass

tttrtP

tttP

N

txNtP

0x

10-1 100 101 102 103

0.0

0.1

0.2

0.3

0.4

0.5

(a) v0=0.3

Ps

ur(t

)

t

10-1 100 101 102

0.0

0.2

0.4

0.6

0.8

1.0

(b) v0=2.0

Psu

r(t)

t

J.D. Bao et. al., to be appeared in PRE (2005).

Summary

1. The passage barrier is a slow process, which can be described by a subdiffusion;

2. When a system has passed the saddle point, anomalous diffusion makes a part of the distribution back out the barrier again, a negative current is formed;

3. Thermal fluctuation helps the system pass over the saddle point, but it is harmful to the survival of the system in the metastable well.

Thank you !