time asymmetry in nonequilibrium statistical mechanics pierre gaspard brussels, belgium j. r....

19
TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College Park S. Ciliberto, Lyon T. Gilbert, Brussels N. Garnier, Lyon D. Andrieux, Brussels S. Joubaud, Lyon A. Petrosyan, Lyon • INTRODUCTION: THE BREAKING OF TIME-REVERSAL SYMMETRY • FLUCTUATION THEOREMS FOR CURRENTS & NONLINEAR RESPONSE • ENTROPY PRODUCTION & TIME ASYMMETRY OF NONEQUILIBRIUM FLUCTUATIONS • CONCLUSIONS

Upload: brittney-harrell

Post on 30-Dec-2015

223 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

TIME ASYMMETRY INNONEQUILIBRIUM STATISTICAL MECHANICS

Pierre GASPARDBrussels, Belgium

J. R. Dorfman, College Park S. Ciliberto, Lyon

T. Gilbert, Brussels N. Garnier, Lyon

D. Andrieux, Brussels S. Joubaud, Lyon

A. Petrosyan, Lyon

• INTRODUCTION: THE BREAKING OF TIME-REVERSAL SYMMETRY

• FLUCTUATION THEOREMS FOR CURRENTS & NONLINEAR RESPONSE

• ENTROPY PRODUCTION &

TIME ASYMMETRY OF NONEQUILIBRIUM FLUCTUATIONS

• CONCLUSIONS

Page 2: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

BREAKING OF TIME-REVERSAL SYMMETRY (r,v) = (r,v)

Newton’s equation of mechanics is time-reversal symmetric if the Hamiltonian H is even in the momenta.

Liouville equation of statistical mechanics, ruling the time evolution of the probability density p is also time-reversal symmetric.

The solution of an equation may have a lower symmetry than the equation itself (spontaneous symmetry breaking).

Typical Newtonian trajectories T are different from their time-reversal image T :T ≠ T

Irreversible behavior is obtained by weighting differently the trajectories T and their time-reversal image T with a probability measure.

Spontaneous symmetry breaking: relaxation modes of an autonomous system

Explicit symmetry breaking: nonequilibrium steady state by the boundary conditions

∂p

∂t= H, p{ } = ˆ L p

P. Gaspard, Physica A 369 (2006) 201-246.

Page 3: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

STOCHASTIC DESCRIPTION IN TERMS OF A MASTER EQUATION

d

dtPt (ω) = Pt (ω') Wρ (ω' |ω) − Pt (ω) W−ρ (ω |ω')[ ]

ρ ,ω '(≠ω )

Wρ (ω |ω')

Liouville’s equation of the Hamiltonian dynamics -> reduced description in terms of the coarse-grained states -> master equation for the probability to visit the state by the time t : Pt()

rate of the transition

→ρ

'

ρ =±1,...,±r due to the elementary process

A trajectory is a solution of Hamilton’s equations of motion: (t;r0,p0)

Coarse-graining: cell in the phase space stroboscopic observation of the trajectory with sampling time t : (nt;r0,p0) in cell n

path or history: 012…n1

-> statistical description of the equilibrium and nonequilibrium fluctuations

= 0 steady state

Page 4: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

FLUCTUATION THEOREM FOR THE CURRENTS steady state fluctuation theorem for the currents (2004):

affinities or thermodynamic forces:

fluctuating currents:

thermodynamic entropy production:

diS

dt st

= Aγ Jγ

γ =1

c

∑ ≥ 0

Jγ =1

tjγ (t ')

0

t

∫ dt'

Aγ =ΔGγ

T=

Gγ − Gγeq

T

P Jγ = α γ{ }

P Jγ = −α γ{ }≈ e

t

kB

Aγ α γ

γ

-> Onsager reciprocity relations and their generalizations to nonlinear response

D. Andrieux & P. Gaspard, J. Chem. Phys. 121 (2004) 6167; J. Stat. Phys. 127 (2007) 107.

ex: • electric currents in a nanoscopic conductor • rates of chemical reactions • velocity of a linear molecular motor • rotation rate of a rotary molecular motor

t → +∞

Schnakenberg network theory (Rev. Mod. Phys. 1976): cycles in the graph of the process

Page 5: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

BEYOND LINEAR RESPONSE & ONSAGER RECIPROCITY RELATIONS

q( λ γ ,Aγ{ }) = limt →∞

−1

tln exp − λ γ jγ t '( )dt'

0

t

∫γ

∑ ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

noneq.

Jα =∂q

∂λα λα = 0

= Lαβ Aβ

β

∑ + Mαβγ Aβ Aγ

β ,γ

∑ + Nαβγδ Aβ Aγ

β ,γ ,δ

∑ Aδ +L

Mαβγ = 12 Rαβ ,γ + Rαγ ,β( )

Lαβ = Lβα is totally symmetric

Rαβ ,γ = −∂ 3q

∂λα∂λ β∂Aγ

(0;0)

average current:

fluctuation theorem for the currents:

Onsager reciprocity relations:

relations for nonlinear response:

higher-order nonequilibrium coefficients:

generating function of the currents:

linear response coefficients:

Lαβ = −1

2

∂ 2q

∂λα∂λ β

(0;0) =1

2 jα (t) − jα[ ] jβ (0) − jβ[ ]

−∞

+∞

∫ dt

(Schnakenberg network theory)

D. Andrieux & P. Gaspard, J. Chem. Phys. 121 (2004) 6167; J. Stat. Mech. (2007) P02006.

linear response coefficients: (Green-Kubo formulas)

q( λ γ ,Aγ{ }) = q( Aγ − λ γ , Aγ{ })

Page 6: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

Microreversibility: Hamilton’s equations are time-reversal symmetric. If (t;r0,p0) is a solution of Hamilton’s equation, then (t;r0,p0) is also a solution. But, typically, (t;r0,p0) ≠ (t;r0,p0).

Coarse-graining: cell in the phase space stroboscopic observation of the trajectory with sampling time t : (nt;r0,p0) in cell n

path or history: 012…n1

If 012…n1 is a possible path, then Rn1…210 is also a possible path. But, again, ≠ R.

Statistical description: probability of a path or history:

equilibrium steady state: Peq(012…n1) = Peq(n1…210) nonequilibrium steady state: Pneq(012…n1) ≠ Pneq(n1…210)

In a nonequilibrium steady state, and R have different probability weights. Explicit breaking of the time-reversal symmetry by the nonequilibrium boundary conditions

FLUCTUATIONS AND MICROREVERSIBILITY

Page 7: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

DYNAMICAL RANDOMNESS OF TIME-REVERSED PATHS

nonequilibrium steady state: P (0 12 … n1) ≠ P (n1 … 2 1 0)

If the probability of a typical path decays as

P() = P(0 1 2 … n1) ~ exp( h t n )

the probability of the time-reversed path decays as

P(R) = P(n1 … 2 1 0) ~ exp( hR t n ) with hR ≠ h

entropy per unit time: dynamical randomness (temporal disorder)

h = lim n∞ (1/nt) ∑ P() ln P()

time-reversed entropy per unit time: P. Gaspard, J. Stat. Phys. 117 (2004) 599

hR = lim n∞ (1/nt) ∑ P() ln P(R)

The time-reversed entropy per unit time characterizes

the dynamical randomness (temporal disorder) of the time-reversed paths.

Page 8: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

THERMODYNAMIC ENTROPY PRODUCTION

Property: hR ≥ h

(relative entropy)

equality iff P() = P(R) (detailed balance) which holds at equilibrium.

Second law of thermodynamics: entropy S

dS

dt=

deS

dt+

diS

dt with

diS

dt≥ 0

deS

diS ≥ 0

Entropy production:

1

kB

diS

dt= hR − h ≥ 0

P. Gaspard, J. Stat. Phys. 117 (2004) 599

P(ω)

P(ωR )=

P(ω0ω1ω2L ωn−1)

P(ωn−1L ω2ω1ω0)≈ e

nΔt h R −h( ) = enΔt

kB

d i S

dt

1

kB

diS

dt= lim

n →∞

1

nΔtP(ω)

ω

∑ lnP(ω)

P(ωR )≥ 0

entropy flow

entropy production

Page 9: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

PROOF FOR CONTINUOUS-TIME JUMP PROCESSES

Pauli-type master equation:

nonequilibrium steady state:

-entropy per unit time: P. Gaspard & X.-J. Wang, Phys. Reports 235 (1993) 291

time-reversed -entropy per unit time: P. Gaspard, J. Stat. Phys. 117 (2004) 599

thermodynamic entropy production:

d

dtpt (ω') = pt (ω)Wωω ' − pt (ω')Wω 'ω[ ]

ω

d

dtp(ω') = 0

h(τ ) = lne

τ

⎝ ⎜

⎠ ⎟ p(ω)Wωω '

ω≠ω '

∑ − p(ω)Wωω '

ω≠ω '

∑ lnWωω ' + O(τ )

hR (τ ) = lne

τ

⎝ ⎜

⎠ ⎟ p(ω)Wωω '

ω≠ω '

∑ − p(ω)Wωω '

ω≠ω '

∑ lnWω 'ω + O(τ )

hR (τ ) − h(τ ) =1

2p(ω)Wωω ' − p(ω')Wω 'ω[ ]

ω≠ω '

∑ lnp(ω)Wωω '

p(ω')Wω 'ω

+ O(τ ) ≈1

kB

diS

dt (τ → 0)

Luo Jiu-li, C. Van den Broeck, and G. Nicolis, Z. Phys. B- Cond. Mat. 56 (1984) 165

J. Schnakenberg, Rev. Mod. Phys. 48 (1976) 571

Page 10: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

PROOF FOR THERMOSTATED DYNAMICAL SYSTEMS

entropy per unit time:

time-reversed entropy per unit time:

thermodynamic entropy production:

is the diameter of the phase-space cells

T. Gilbert, P. Gaspard, and J. R. Dorfman (2007)

limδ →0

h = λ j

λ j >0

∑ = hKS

limδ →0

(hR − h) = − λ j

j

∑ =1

kB

diS

dt€

limδ →0

hR = − λ j

λ j <0

Page 11: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

INTERPRETATION

nonequilibrium steady state:

thermodynamic entropy production:

1

kB

diS

dt= hR − h ≥ 0

P(ω) = P(ω0ω1ω2L ωn−1) ≈ exp −n Δt h( )

P(ωR ) = P(ωn−1L ω2ω1ω0) ≈ exp −n Δt hR( ) = exp −n Δt h( ) exp −n Δt

diS

dt

⎝ ⎜

⎠ ⎟

If the probability of a typical path decays as

the probability of the corresponding time-reversed path decays faster as

The thermodynamic entropy production is due to a time asymmetry in dynamical randomness.

entropy production

dynamical randomnessof time-reversed paths

hR

dynamical randomness of paths

h

P. Gaspard, J. Stat. Phys. 117 (2004) 599

Page 12: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

relaxation time:

R = α /k = 3.05 10−3s

DRIVEN BROWNIAN MOTION

trap stiffness:

k = 9.62 10−6 kg s−2

trap velocity:

u = ± 4.24 μm/s

Polystyrene particle of 2 m diameter

in a 20% glycerol-water solution at temperature 298 K, driven by an optical tweezer.

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

Langevin equation:

dx

dt= −

x − ut

τ R

+2kBT

αξ t

dissipated heat:

Qt = −k ˙ x t ' (x t ' − ut') dt'0

t

Qt = α u2t

driving force:

F = −k(x − ut)

position x

friction α

white noise ξ t

mean dissipated heat:

relative position z = x − ut

u < 0

u > 0

Page 13: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

comoving frame of reference:

dz

dt= −

z

τ R

− u +2

αβξ t

z ≡ x − ut

pst (z) =βk

2πexp −

βk

2(z + uτ R )2 ⎡

⎣ ⎢ ⎤ ⎦ ⎥

PATH PROBABILITIES OF NONEQUILIBRIUM FLUCTUATIONS

thermodynamic entropy production:

stationary probability density:

path probability:

Psign u zt[ ]∝ exp −αβ

4dt ' ˙ z t ' + kzt ' + u( )

2

0

t

∫ ⎡

⎣ ⎢

⎦ ⎥

lnP+ zt[ ]

P− ztR

[ ]= −

βk

2(zt

2 − z02) − βk u zt ' dt'

0

t

∫ = βQt

ratio of probabilities for u>0 and u<0:

diS

dt= lim

t →∞

kB

tDzt P+∫ zt[ ] ln

P+ zt[ ]

P− ztR

[ ]

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

β ≡1

kBT

Qt = W t − ΔVt heat generated by dissipation:

Page 14: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

path:

Zm = z(mτ ),...,z(mτ + nτ − τ )[ ]

H(ε,τ ,n) = −1

Mln P+ Zm[ ]

m=1

M

RELATIONSHIP TO DYNAMICAL RANDOMNESS

thermodynamic entropy production:

()-entropy per unit time:

path probability:

diS

dt= kB lim

ε ,τ →∞hR (ε,τ ) − h(ε,τ )[ ]

P+ Zm[ ] = P z(mτ ) − z( jτ ) < ε,..., z(mτ + nτ − τ ) − z( jτ + nτ − τ ) < ε[ ]

H R (ε,τ ,n) = −1

Mln P− Zm

R[ ]

m=1

M

h(ε,τ ) = limn →∞

1

τH(ε,τ ,n +1) − H(ε,τ ,n)[ ]

hR (ε,τ ) = limn →∞

1

τH R (ε,τ ,n +1) − H R (ε,τ ,n)[ ]time-reversed ()-entropy per unit time:

time-reversed ()-entropy:

()-entropy:

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

algorithm of time series analysis by Grassberger & Procaccia (1980’s)

Page 15: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

DRIVEN BROWNIAN MOTION

thermodynamic entropy production:

=k 0.558 nm k =1- 20

sampling frequency: 8192 Hz

resolution:

()-entropy

time-reversed ()-entropy

time series:

2 107

diS

dt=

1

T

d Qt

dt=

α u2

T

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud,

and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

diS

dt= kB lim

ε ,τ →∞hR (ε,τ ) − h(ε,τ )[ ]

Page 16: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

DRIVEN BROWNIAN PARTICLE

=k 0.558 nm k =11- 20

resolution:

dissipated heat along the random path zt

potentiel velocity:

u = ± 4.24 μm/s

lnP+ zt[ ]

P− ztR

[ ]= βQt

ratio of probabilities for u>0 and u<0:

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud,

and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

Page 17: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

RC circuit:

R = 9.22 MΩ C = 278 pF τ R = RC = 2.56 ms

DRIVEN ELECTRIC CIRCUIT

thermodynamic entropy production

diS

dt=

R I2

TJoule law:

D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier, S. Joubaud, and A. Petrosyan, Phys. Rev. Lett. 98 (2007) 150601

Page 18: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

CONCLUSIONSBreaking of time-reversal symmetry in the statistical description

Nonequilibrium work fluctuation theorem: systems driven by an external forcing

Wdiss

kBT= −ln pR (−W)[ ] − −ln pF(W)[ ]

Dk2 ≈ −Re sk = λ (DH) −h(DH)

DH

Nonequilibrium modes of diffusion: relaxation rate sk, Pollicott-Ruelle resonance

D π /L( )2

≈ γ = λ i

λ i >0

∑ − hKS

⎝ ⎜ ⎜

⎠ ⎟ ⎟L

Nonequilibrium transients: escape-rate formalism: fractal repeller

diffusion D : (1990)

viscosity : (1995)

π /χ( )2

≈ γ = λ i

λ i >0

∑ − hKS

⎝ ⎜ ⎜

⎠ ⎟ ⎟L

Page 19: TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS Pierre GASPARD Brussels, Belgium J. R. Dorfman, College ParkS. Ciliberto, Lyon T. Gilbert, BrusselsN

CONCLUSIONS (cont’d)

thermodynamic entropy production = temporal disorder of time-reversed paths hR temporal disorder of paths h= time asymmetry in dynamical randomness

Theorem of nonequilibrium temporal ordering as a corollary of the second law:In nonequilibrium steady states, the typical paths are more ordered in time than the corresponding time-reversed paths.

Boltzmann’s interpretation of the second law:Out of equilibrium, the spatial disorder increases in time.

1

kB

diS

dt= hR − h ≥ 0

Nonequilibrium steady states:

Explicit breaking of time-reversal symmetry by the nonequilibrium conditions.

Fluctuation theorem for the currents:

1

kB

Aγα γγ∑ = −lim

t →∞

1

tlnP Jγ = −α γ{ }

⎡ ⎣ ⎢

⎤ ⎦ ⎥− −lim

t →∞

1

tln P Jγ = α γ{ }

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Entropy production and temporal disorder:

Toward a statistical thermodynamics for out-of-equilibrium nanosystems

http://homepages.ulb.ac.be/~gaspard