tidal influence on orbital dynamics dan fabrycky ([email protected]) 4 feb, 2010...

20
Tidal Influence on Orbital Dynamics Dan Fabrycky ([email protected] ) 4 Feb, 2010 Collaborators: Scott Tremaine Eric Johnson Jeremy Goodman Josh Winn Photo: Stefen Seip, apod/ap040611

Upload: alaina-montgomery

Post on 18-Dec-2015

228 views

Category:

Documents


0 download

TRANSCRIPT

Tidal Influence on Orbital Dynamics

Dan Fabrycky

([email protected])

4 Feb, 2010

Collaborators:Scott TremaineEric Johnson Jeremy Goodman Josh Winn

Photo: Stefen Seip, apod/ap040611

Orbital Distribution

Cumming+08

Hot Jupiters are a Sub-class

remain aligned

get misaligned

Inclination to stellar equator?

Spin-orbit evolutionLorb

Hot Jupiters are spinning, gaseous bodies with oblate rotational bulges

In the star’s tidal gravitational field:

The spin vector precesses about the orbit normal

A prolate tidal bulge is raised, which tracks the star’s position

Lorb

Dissipating the energy of the tidal bulge:

the spinning planet drags prolate bulge “downstream”

i) Parallelization; || ≈105 yr

ii) Spin synchronization; s=||/2

iii) Eccentricity damping; ≈109 yr

While i, ii, or iii are ongoing, tidal heat is generated in the planet

• Now suppose the orbital angular momentum (Lorb) precesses due to a stellar rotational bulge or another planet that is non-coplanar

• Then: tidal damping on timescale ||

produces a stable equilibrium obliquity th 0, called a Cassini state.

Cassini States

Lorb

?

I

orbit precession rate

spin precession rate

J

Moon’s spin

Lunation: Cassini's Laws

1) Protate = Porbit

2) constant

3) , Lorb , and J are coplanar

Lorb

?

I

J

Settling into Cassini state 2

Lorb

Oblique Pseudo-synch(Levrard et al. 2007)

Breaking of Cassini state 2

Tidal heating ends

Lorb

[Gyr]

‘606

Naef+01

Laughlin+09

Planets in Binaries

On long timescales (secular approx.):

• Semimajor axis a is conserved

• e oscillates dramatically if icrit<i<180- icrit

icrit=cos-1[(3/5)1/2]=39.2

• and both vary as well

i

pericenter

~40 systems known

Orbital inclination relative to stellar equator (a.k.a. stellar obliquity):

• varies for distant planets

• constant for hot Jupiters

Kozai Cycles

Holman, Touma, Tremaine 1997, on 16 Cyg B

Citations to Kozai 1962, a paper on asteroids

Kozai Cycles with Tidal FrictionAdding…

• tidal effects:

time-shifted eq’m bulges

• spins:

rotational oblateness

• GR precession

Equations from:

Eggleton & Kiseleva-Eggleton, 2001

HD 80606b:

Theory of Secular Resonance

frequency g

frequency

i

HD 80606:

Secular Resonance during Kozai cycles with tidal friction

Theoretical Predictions

• Disk migration

• Kozai cycles with tidal friction

• Planet-planet scattering with tidal friction

Fabrycky & Tremaine 07

Nagasawa+08

e.g., Cresswell+07

Also, resonant-pumping (Yu & Tremaine 01, Thommes & Lissauer 03)

Do Tides Realign the Star?

Barker & Ogilvie 2009

Only if the planet is in the run-away process of being tidally consumed.

Winn et al. 2006 HD189733b

Gaudi & Winn 2006Measuring

stellar obliquity

towards observer

Spin-orbit observations…

(excluding WASP-3b: =1510°; Kepler-8b: =-275°)

distributions

Two migration mechanisms? Fabrycky & Winn 2009

1-f

f

= 39 +9-6

= 0.19 +0.18-0.07

E=1.1x10-5E=34

Topics• Spin states stabilized dynamically• Origin of hot Jupiters• Spin-orbit misalignment• Didn’t touch on:

– Tides and mean-motion resonances• Theory (Terquem & Papaloizou 2007)• 55 Cnc b-c (Novak et al. 2003)• HD 40307 (Lin et al. in prep)

– Tides and apsidal alignment• Mardling 2007, 2010• Batygin et al. 2009ab - particular systems

Eggleton equations

hin

qin

ein

Dissipative: Non-Dissipative: