tiax llc 15 acorn park cambridge, ma 02140-2390 www. tiaxllc.com © 2006 tiax llc david clatterbuck...

25
TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www.TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems in Industry workshop Reference No.: Modeling battery electrode properties

Upload: zane-hebron

Post on 16-Dec-2015

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

TIAX LLC15 Acorn Park

Cambridge, MA02140-2390

www.TIAXLLC.com

© 2006 TIAX LLC

David ClatterbuckJacqueline Ashmore

6/16/08

Presentation to:

Math Problems in Industry workshop

Reference No.:

Modeling battery electrode properties

Page 2: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

2MPI workshop, WPI, 2008

Overview

Introduction to TIAXIntroduction to TIAX

Batteries & electrodesBatteries & electrodes

MPI workshop project descriptionMPI workshop project description

Page 3: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

3MPI workshop, WPI, 2008

Overview

Batteries & electrodesBatteries & electrodes

Introduction to TIAXIntroduction to TIAX

MPI workshop project descriptionMPI workshop project description

Page 4: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

4MPI workshop, WPI, 2008

Ideas & Technologies Market Impact

Reach of ResearchReach of ResearchReach of ResearchReach of Research Reach of CompaniesReach of CompaniesReach of CompaniesReach of Companies

Hospitals

Universities

National Labs

Corporate R&D

Inventors

Start-ups • Internal laboratories• Development tools• 150+ technologists• Surround technologies

StartEnd

Implementation Focus

Company A

Company B

Company C

Company …

TIAX implements innovations, accelerating the transformation of ideas and technologies into significant and sustainable business growth for our clients.

Introduction to TIAX Focus

Page 5: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

5MPI workshop, WPI, 2008

We incorporate several important elements into our approach, making TIAX unique in its ability to create value for our clients.

Leveraging investments by accessing and incorporating the most appropriate IP from all available sourcesIP Blending

Creating a team that really works—reliably accelerating development while building capabilitiesCollaboration

Integrating deep technical expertise within a multidisciplinary business contextLinked Diversity

Adapting proven solutions and insights from one industry to resolve issues and create opportunities in anotherContext Shifting

Delivering tangible results using our people, tools, and infrastructureHands-On

Approach:

Implementation Focus

Introduction to TIAX Approach

Page 6: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

6MPI workshop, WPI, 2008

TIAX is a new, independent company that builds on the 116-year legacy of Arthur D. Little, Inc.

• Founded in May 2002 by Dr. Kenan Sahin

• Acquired assets of the ADL Technology & Innovation business

• Dr. Charles Vest, MIT President Emeritus, chairs our Advisory Board

• More than 150 scientists, engineers, and technicians, with PhD and MS degrees from top universities

• More than 40,000ft2 of laboratory space

• Extensive ties to research and industry

• Headquartered in Cambridge, MA, with a West Coast presence in Silicon Valley, CA

• An ISO 9001-registered and secure facility

Introduction to TIAX Overview

Page 7: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

7MPI workshop, WPI, 2008

TIAX advances a century-long track record of breakthrough innovation.

Nonflammable motion picture film (sold to Eastman Kodak)

Patented technology leads to development of Fiberglas

First iso-octane (later adopted as antiknock gas standard)

Developed SABRE with IBM

Commercialized & patented synthetic penicillin

Flavor Profile method

Sent five experiments on first moon mission

Formulated Slim Fast line of drinks

Commercialized scroll technology for automotive applications

Developed and sold advanced lithium ion battery technology to major Japanese firm

Advanced protective clothing used by industrial & agricultural workers

APTAC chemical reactor measures process risk

Non-CFC aerosol device

TIAX LLC founded (May 2002)

Non-toxic foam neutralizes chemical & biological agents

1920’s40’s

50’s60’s

70’s80’s

90’s

Today

Heat-pump water heater has 60% more efficiency

New line of cooking appliances for SubZero/Wolf

2002

Griffin & Little established 1886

Developed reformer technology— enabling fuel-cell vehicles to use gasoline & alternative fuels

MIT Holds Controlling Interest

Pioneered commercial cryogenics applications, founded HELIX

Introduction to TIAX History

1886

Page 8: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

8MPI workshop, WPI, 2008

TIAX’s mission is to help clients create an impact in the market and a difference in people’s lives across four interconnected themes:

Health & Wellness

HumanSafety & Security

Lifestyle Comfort &

Convenience

Energy Efficiency &

Sustainability

Introduction to TIAX Mission

Enhancing people’s safety and security at rest or while performing functions and missions

Enabling people be more effective in daily chores and make their time more enjoyable, satisfying and fulfilling

New ways to deliver care as well as improve wellness through the air we breath, our food and personal care products

Delivering energy/power efficiently, subject to cost effective resource and environmental constraints

Page 9: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

9MPI workshop, WPI, 2008

Overview

Introduction to TIAXIntroduction to TIAX

Batteries & electrodesBatteries & electrodes

MPI workshop project descriptionMPI workshop project description

Page 10: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

10MPI workshop, WPI, 2008

Advanced Li-ion battery technology is one of TIAX’s key market areas

TIAX has the largest independent Li-ion battery research group in the US

Our research spans the Li-ion field: cathode, anode, electrolyte, separator, battery safety modeling, material synthesis, characterization, performance testing

Applications:

Hybrid electric vehicles (HEVs) – Toyota Prius

Plug-in hybrid electric vehicles (PHEVs) – Chevy Volt

Batteries & electrodes Li-ion batteries Applications

Power ToolsPortable electronicsLaptops

Page 11: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

11MPI workshop, WPI, 2008

MicrokineticsTransport phenomena

Battery engineering

Device engineering

M

O

M

OC3H7

H

C3H8

$ ¥ €–

Market Model

Value - in - Use Model

Customer Model

New Products & Processes

New Products & Processes

QuantumChemistry

Ef

Batteries & electrodes Modeling

Cost model

We use a wide range of linked models which span the range from atomistic calculations, to cost models for entire systems.

Examples

Quantum Chemistry: Designing new cathode materials with improved cycle life (stability).

Battery Engineering: Determining the role of internal short circuits in battery safety incidents.

Cost Modeling: Evaluating the impact of different cathode materials on the cost of PHEV battery systems.

Page 12: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

12MPI workshop, WPI, 2008

Li–ion batteries must meet a range of performance criteria which vary in importance depending on the application.

• Energy Density: Total amount of energy that can be stored per unit mass or volume. How long will your laptop run before it must be recharged?

• Power Density: Maximum rate of energy discharge per unit mass or volume. Low power: laptop, i-pod. High power: power tools.

• Low-Temperature Energy Density: The amount of energy that can be recovered decreases at low temperatures due to slower charge and mass transfer.

• Safety: At high temperatures, certain battery components will breakdown and can undergo exothermic reactions.

• Life: Stability of energy density and power density with repeated cycling is needed for the long life required in many applications.

• Cost: Must compete with other energy storage technologies.

Key Battery Attributes

Batteries & electrodes Key Battery Attributes

Page 13: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

13MPI workshop, WPI, 2008

A Li-ion battery is a electrochemical device which converts stored chemical energy directly into electricity.

• During charging an external voltage source pulls electrons from the cathode through an external circuit to the anode and causes Li-ions to move from the cathode to the anode by transport through an liquid electrolyte.

• During discharge the processes are reversed. Li-ions move from the anode to the cathode through the electrolyte while electrons flow through the external circuit from the anode to the cathode and produce power.

To a large extent, the cathode material limits the performance of current Li-ion batteries

LiMO2

Cathode

Graphite

Anode

+ -

Li Li Li LiLi

Non-aqueous electrolyte

Separator

V

Li Li Li Li LiLi Li

Batteries & electrodes Li-ion battery chemistry/physics

Page 14: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

14MPI workshop, WPI, 2008

More details on the transport of Li-ions.

• Both the anode and cathode are made from a collection of powder particles which are bonded together into a 3-D porous body (electrode).

• During discharge, ion transport in the electrode occurs as follows (green line)

1. Li-ion starts in the bulk of a cathode particle.

2. It undergoes solid state diffusion in the particle.

3. At the surface it disassociates from the e- and enters the electrolyte which occupies the pores of the electrode.

4. The ion is transported through the electrolyte (liquid phase diffusion) to the anode.

5. In enters the anode.

6. It undergoes solid state diffusion in the anode.

• At the same time, the electron must pass through the collection of solid particles to a metal current collector where it can be extracted from the cell and used to power a device (red line). It can not travel in the electrolyte.

Batteries & electrodes Li-ion battery chemistry/physics

Cathode Current Collector

Electrolyte

Anode Current Collector

2 1

4

4

4

5

6

3

Page 15: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

15MPI workshop, WPI, 2008

Real electrodes are more complex.

• Electrodes typically contain high surface area carbon to increase the electrical conductivity between particles.

• A small amount of polymer binder is used to hold the particles in place.

• Typical particle size ~10um.

• Typical electrode thickness 50-75um.

Batteries & electrodes Battery Electrodes

Cathode Current Collector

Page 16: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

16MPI workshop, WPI, 2008

Real powder particles can have different morphologies and surface roughness.

Batteries & electrodes Particle size distribution

10m

10m

1m

Page 17: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

17MPI workshop, WPI, 2008

The internal structure of the electrode plays an important role in the performance of a battery.

Energy vs. Power

• For a given battery chemistry, the energy stored in the battery is proportional to the amount of active materials (i.e. anode + cathode powder).

– For a cell of a given size, the higher the packing fraction of the powders, the more energy the battery can store and the longer your device can run before it needs recharging.

• The power (rate of energy delivery) depends on having sufficient mass and electrical transport throughout the electrodes. In theory, higher power can be achieved with:

– smaller particles

– higher surface area

– larger fraction of porosity (i.e. more electrolyte)

– thinner electrodes

• Careful design of electrodes is required in order to produce electrodes with the desired balance between high power and high energy.

• Commercial electrode design is currently dominated by empirical experimental approaches.

Batteries & electrodes Impact of electrode structure

Page 18: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

18MPI workshop, WPI, 2008

NCM

LiFePO4

LiMn2O4

NCA

CAM-7

1500

2500

3500

4500

5500

6500

100 120 140 160 180

Energy Density of High Power Cell / Wh kg -1

Sp

ec

ific

Po

we

r /

W k

g-1

For a given cathode material, you can vary the electrode morphology to gain power at the expense of energy density.

Different applications require different combinations of properties (laptop vs. cordless drill).

Power and energy from a high-power cell design

Batteries & electrodes Property trade-offs

Page 19: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

19MPI workshop, WPI, 2008

Electrodes for cathodes with slow solid state diffusion

• Some cathode materials suffer from poor kinetics (slow solid state diffusion)

• Some success has been achieved by using very small cathode particles (~100nm) because the average diffusion distance a Li-ion must travel in the particle is much smaller.

• However, these nano-powders typically have a low tap density and are difficult to tightly pack due to surface effects. This causes the batteries to have lower energy densities.

• Selecting a the best particle size will involve a trade-off between energy density and rate behavior.

Batteries & electrodes Impact of electrode structure

The internal structure of the electrode plays an important role in the performance of a battery.

Page 20: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

20MPI workshop, WPI, 2008

Overview

Introduction to TIAXIntroduction to TIAX

MPI workshop project descriptionMPI workshop project description

Batteries & electrodesBatteries & electrodes

Page 21: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

21MPI workshop, WPI, 2008

TIAX would benefit from algorithms, methods, models, scaling relations, or frameworks to analyze the effect of different particle characteristics on electrode properties.

MPI workshop problem description Overview

• Knowledge of qualitative and/or quantitative relationships between electrode structure and performance will be useful in:

– Isolating which features of current electrode structures are critical in achieving good performance,

– Predicting improvements to current empirically determined relationships,

– Identifying tradeoffs in structural features and performance.

• The inputs for the problem for the MPI workshop are particle properties; the outputs are electrode properties.

• TIAX can link the predicted electrode properties to key parameters quantifying electrode performance, such as energy density.

Page 22: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

22MPI workshop, WPI, 2008

The inputs for the problem for this workshop are particle properties.

• Some particle characteristics to consider might include:

– Size of monodisperse spheres

– Roughness of monodisperse spheres

– Radii of bidisperse spheres

– Particle sizes with more realistic distributions of sizes (i.e. Gaussian distribution)

– Deviations from sphericity, e.g., ellipsoidal particles

MPI workshop problem description Input variables

(Za

mp

on

i, N

atu

re,

20

08

)

Page 23: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

23MPI workshop, WPI, 2008

The outputs for the problem for this workshop are electrode properties.

MPI workshop problem description Output variables

• Some electrode properties of interest include:

– Packing fraction or void volume

– Total surface area

– Average path lengths for transport through the individual solid particles to the particle surface

– Average path length for diffusion through the void volume from the surface of a particle to the surface of a collection of particles (electrode) of a certain thickness.

– Effective cross-sectional area for this type of mass transport.

– Average path length to travel through the collection of particles of a certain thickness, if you must travel only through the particles (passing from particle to particle only at points where they meet). Effective cross-sectional area for this type of transport.

Page 24: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

24MPI workshop, WPI, 2008

Determining all of the electrode properties for all possible combinations of particle characteristics is probably not a manageable task!

MPI workshop problem description Problem scope

• It may be useful to consider some of the more complex electrode properties for the case of simple particle size distributions (i.e., monodisperse spheres).

• For more complex particles, determining the packing fraction may be a sufficiently challenging problem.

• We would also like to increase our understanding of the literature in this area; any information you can provide on relevant references will be useful.

htt

p:/

/ww

w.p

hys

ics.

nyu

.ed

u/

~p

c86

/pa

ckin

g.h

tml

Finally, experiments involving M&Ms may contribute to understanding the packing fraction of different shaped particles.

Page 25: TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390 www. TIAXLLC.com © 2006 TIAX LLC David Clatterbuck Jacqueline Ashmore 6/16/08 Presentation to: Math Problems

25MPI workshop, WPI, 2008

David and Jacquie will be a “tag team” at the workshop part-time.

MPI workshop problem description Contact information

• When we are not here you can reach either of us in the following way:

– Jacquie mobile tel. 617 899-8935

– David office tel. 617 498-6088 (mobile tel. 510 290-0982)

• We look forward to seeing the results, and thank you in advance for your efforts!