thruster and power processing unit development for an advanced electric propulsion (ep) system...

83
Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics and Space Administration www.nasa.gov

Upload: giles-eaton

Post on 28-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Industry Day

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 2: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

• Sign-in sheets at the counter when you entered• Refreshments• Internet (nasaguest)• Restrooms• Emergency Procedures• Badge Turn In

• Lunch

• One-on-one meetings• Facility and in-house hardware tours• Small Business Officer Meetings

• Microphones

Welcome and Logistics

2

Page 3: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Lunch (11:30-12:30)

3

Page 4: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Agenda (1 of 3)

4

 8:00 – Welcome/Logistics/Review of Agenda Mike Meyer

 8:15 – Comments from Space Technology Mission Directorate Andy Petro

 8:30 – Comments from the Solar Electric Propulsion Mike Barrett  Technology Demonstration Project Leadership

 8:45 – Comments from GRC Center Director  James Free 9:00 – Industry Day Objectives/Guidance for Meeting  Leahmarie Koury

9:15 – Draft RFP Overview

Overview of hardware deliverables Mike MeyerContract schedule – Base and Option Periods

 9:20 Overview of Hardware Technical Requirements  Steve Snyder

Dan HermanWalter Santiago

Page 5: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Agenda (2 of 3)

5

9:50 Contracting Officer’s Overview Leahmarie KouryPricing Heather Linden

 EVM/IPMR Bob Sefcik 

 10:20-10:30 Break

10:30 Overview of related NASA in-House technology maturation activities anddocumentation provided with Draft RFP

    10:30  Power Processing Unit Walter Santiago    10:55  Thruster Rich Hofer 11:20 NASA Facilities and Analytical Tools Mike Meyer

Rich HoferIoannis Mikeledes

11:30 Lunch – GRC Cafeteria 

 

Page 6: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Agenda (2 of 3)

6

12:30 – 4:30 One-on-one meetings (Side Room off Lobby)Tour of Facilities (Bus pick-up in front of main entrance)Small Business Officer Table (Back of the display area)

 

4:30-5:00 Closing Session  Leahmarie Koury and Mike Meyer 

• Review of the specific draft feedback requested • Answers to question cards• Review Procurement Schedule• CO Guidance• Communications plan from Industry day to final RFP

• Points of Contact

 

Page 7: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Programmatic Perspectives

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 8: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

8

Page 9: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Industry Day- Opening Ground Rules

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 10: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Purpose• To give Project/Center context to the procurement

• To give insight in to requirements and DRFP/RFP specific items

• To introduce primary points of contact

• To relay information about in-house work and available facilities

• To make our Office of Small Business Programs available for consultation

• To gather feedback/questions

• This is your day – make the best of it!

10

Page 11: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Notecards and Q&A

• Notecards are available in the welcome area

• If you would like to ask a question and cannot find a good opportunity to do so, please fill out a card and drop it in the designated box.

• Questions will be anonymous, from the notecards, one-on-ones, and general sessions.

11

Page 12: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

****Disclosure****

Whatever you hear today – no matter who said it – the final RFP is the controlling document, period.

12

Page 13: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Draft RFP Overview

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 14: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Contract Schedule

14

Three year total contract duration broken into a base and option period

NASA Notional Schedule for Base and Option Period• 26 month base

• Critical Design Review (CDR) at 20 months is decision gate to exercise Option• Base continues 6 months after CDR to closeout CDR actions and to

conduct/continue thruster wear test• 16 month Option with 6 months overlap

Offerors will propose optimal durations for their Base and Option.

CY16 CY17 CY18 CY19

Contract Effective Date

CDR Final EP String Delivery

Page 15: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Scope by Performance Period

• Base Period: • Engineering Development Unit (EDU): one complete EP string

• Note: EP String: The combination of the thruster, PPU, low-pressure Xenon Flow Controller, and electrical harnesses (or power cables and command & data handling cables in the case of the EDU) integrated.

• A second EDU thruster for wear testing; 2 additional cathodes for wear testing, 1 additional discharge channel for embedded probe measurements

• Spares • Long-lead materials required to meet schedule in the Option phase

• Option Period:• 5 flight EP strings (1 qualification string, 4 flight strings)

• Note: EP String: The combination of the thruster, PPU, low-pressure Xenon Flow Controller, and electrical harnesses integrated.

• Thruster spares• PPU spares

Hardware Deliverables by Performance Period

15

Page 16: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Requirements Overview

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 17: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

****Disclosure****

Whatever you hear today – no matter who said it – the final RFP is the controlling document, period.

17

Page 18: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

EP String Definition

Page 19: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Procurement Requirements

• EP String will be developed to support ARRM, but it is also intended to be used for additional future missions

• Complete requirements are found in attachment J.1(c) Performance Environmental Design Operational Interface

• Draft requirements contain 6 TBDs (5 document references, 1 crew-safe interface definition) 29 TBRs

Page 20: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

EP String Requirements

• Total Input Power Range 6.67 to 13.33 kW

• System Operational Lifetime 8 years

• Thruster Lifetime 108 N-s total impulse

• PPU Input Voltage 95 V to 140 V

• Xenon Flow Controller Independent control and metering of

anode and cathode flows

Page 21: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

EP String Performance Requirements

• Beginning-of-life string performance• System shall be continuously throttleable in discharge current at

each discharge voltage, between the input powers shown

EP String Total Input Power (kW)

Discharge Voltage (V) Thrust (mN)1

Mass Flow Rate (mg/s)2

System Efficiency3

13.33 400 686 30.64 0.58

13.33 600 589 22.81 0.57

13.33 700 553 20.36 0.56

13.33 800 526 18.52 0.56

10.00 300 562 29.69 0.53

10.00 400 521 24.30 0.56

10.00 500 482 20.89 0.56

10.00 600 446 18.31 0.54

10.00 700 413 16.17 0.53

10.00 800 342 12.88 0.45

6.67 300 386 21.65 0.52

6.67 400 342 17.55 0.50

6.67 500 311 14.83 0.49

6.67 600 254 11.45 0.42

6.67 700 242 9.99 0.44

1 Thrust shown here is Current Best Estimate minus experimental uncertainty.2 Mass flow rate shown here is Current Best Estimate plus experimental uncertainty.3 System Efficiency is shown here for information only (it is calculated directly from the other parameters).  

Page 22: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

EP String Performance Chart

Page 23: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

June 10, 2015Power Processing Unit (PPU) Requirements Description

Page 24: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: PPU Requirements Description

• Power Processor Unit (PPU) requirements are located in Draft RFP Attachment: J.1 (C) Electric Propulsion String Requirement Document.

• Captures the PPU subsystem requirements to afford successful operations within the Electric Propulsion (EP) string and compatibility with the spacecraft bus.

• PPU performance capabilities will rely on Table 3-1: Thruster System Performance of

attachment J.1(C)

• The PPU requirements covers Performance Environment Operating Modes Mechanical Design Requirements Electrical Design Requirements Mass, Volume Mechanical and Electrical Interfaces with potential vehicle EEE Parts Thermal Interface

• Offeror’s PPU Design Solution shall meet all PPU requirements

Page 25: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: PPU Requirements List

3.4 PPU Requirements

3.4.1 PPU Performance Maximum Input Power

3.4.2 PPU Environments PPU Baseplate Mounting Temperature PPU Thermal - Non-Operating Temperature Limits PPU Thermal performance PPU Single-Event Effects PPU Single-Event Effects Actions

3.4.3 PPU Operational PPU Automatic Operation PPU Operating Modes

3.4.4 PPU Mechanical Design PPU Resonant Frequency PPU Interchangeability

Page 26: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: PPU Requirements List

3.4.5 PPU Electrical Design PPU Input Voltage, High-Voltage

Bus Nominal PPU Input Voltage, High-Voltage

Bus Off-Nominal for 1.8 AU PPU Input Voltage, High-Voltage

Bus Non-Operational from Eclipse PPU Input Voltage, Low-Voltage

Bus PPU Low Voltage Max Power PPU Magnet Supply Output

Polarity Reversal PPU Undervoltage Protection –

High Voltage PPU Undervoltage Protection –

Low Voltage PPU Overvoltage Protection –

High Voltage

PPU Overvoltage Protection – Low Voltage

PPU Analog Telemetry Sensors PPU Status Flags PPU Digital Enables PPU Analog Set-points PPU Telemetry PPU Electrical Filter PPU - XFC Interface – Power,

Control and Telemetry PPU Fault Protection PPU Distribution Wiring PPU Input Bus Isolation PPU Output Isolation

Page 27: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: PPU Requirements List

3.4.6 PPU Parts, Materials, and Processes Electronic, Electrical, Electromechanical (EEE) Parts Parts Derating

3.6.1 Loads, Structural, and Mechanical Requirements PPU Volume PPU Mass PPU Mounting Surface PPU Baseplate Finish PPU Connection Plate

3.6.5 Thermal Interface PPU Thermal Power Dissipation PPU Maximum Power Dissipation PPU Maximum Heat Flux

Page 28: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

June 10, 2015Thruster Requirements Description

Page 29: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: Thruster Requirements Description

• Captures the thruster requirements to afford successful operations within the Electric Propulsion (EP) string and compatibility with the spacecraft bus.

• Requirements as defined in the document are derived from the top-down

mission requirements and conceptual vehicle compatibility.

• Performance capabilities will rely on Table 3-1: Thruster System Performance of attachment J.1 (C) Electric Propulsion String Requirement Document

• The thruster requirements covers Performance Environments Design Requirements Mechanical Design Requirements Electrical Design Requirements Mass, Volume Mechanical Interface Requirements

• Offeror’s thruster Design Solution shall meet all thruster requirements

Page 30: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: Thruster Requirements List

3.3 Thruster Requirements

3.3.1 Thruster Performance Thruster Life Time Thrust Vector Thrust Accuracy

3.3.2 Thruster Environments Thruster Thermal

3.3.3 Thruster Design Backsputter Resistance, Voltage Standoff Backsputter Resistance, Thermal Properties

Page 31: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: Thruster Requirements List

3.3.4 Thruster Mechanical Design Resonant Frequency Covers Interchangeability Alignment Neutral Flow Uniformity Magnetic Field Measurement Provisions

3.3.5 Thruster Electrical Design Isolation Grounding Harness Magnetic Field Uniformity Magnetic Circuit Response

Page 32: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: Thruster Requirements List

3.6.1 Loads, Structural, and Mechanical Requirements Thruster Volume Thruster Mass Thruster Radiator Mass Thruster High Voltage Harness Mass Thruster Mounting Surface Thruster Connections, Electrical and Fluid Thruster Propellant Lines Thruster Interfaces

3.6.3 Environmental Control Requirements Thruster Shock Thruster Random Vibration Environmental Testing

Page 33: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: Thruster Requirements List

3.6.4 Gases and Fluids Requirements Propellant Fluid Alternate Fluids and Gases

Page 34: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

June 10, 2015Xenon Flow Controller (XFC) Requirements Description

Page 35: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: XFC Requirements Description

• Captures the Xenon Flow Controller (SFC) main requirements to afford successful operations within the Electric Propulsion (EP) string and compatibility with the spacecraft bus.

• Requirements as defined in the document are derived from the top-down mission

requirements and conceptual vehicle compatibility.

• Performance capabilities will rely on Table 3-1: Thruster System Performance of attachment J.1 (C) Electric Propulsion String Requirement Document

• The XFC requirements covers Performance Environments Design Requirements Mechanical Design Requirements Gases and Fluids Requirements Mass, Volume Mechanical Interface Requirements

• Offeror’s Xenon Flow Controller Design Solution shall meet all XFC requirements

Page 36: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: XFC Requirements List

3.5 Xenon Flow Controller (XFC) Requirements

3.5.1 XFC Performance Flow Control Independence Flow Metering Inlet Pressure Flow Control Accuracy Flow Uncertainty Flow Throttle Response

3.5.2 XFC Environments XFC Thermal, Operating and Non-operating XFC Thermal Design

3.5.3 XFC Design XFC Marking, Flow Direction

Page 37: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: XFC Requirements List

3.5.4 XFC Mechanical Design Resonant Frequency Internal Leakage External Leakage Interchangeability Flow Isolation

3.6.1 Loads, Structural, and Mechanical Requirements XFC Volume XFC Mass XFC Mounting Surface XFC Connections, Electrical and Fluid XFC Propellant Lines

Page 38: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

NNC15ZCH014R: XFC Requirements List

3.6.3 Environmental Control Requirements XFC Shock XFC Random Vibration Environmental Testing

3.6.4 Gases and Fluids Requirements Propellant Fluid Alternate Fluids and Gases

Page 39: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

DFP/RFP Specific Procurement Slides

Industry Day Presentation

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 40: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration 40

Government Insight/Oversight

• The Government expects to have a close partnership with the contractor team through the development, modeling, test and production of the thruster string.

• The Contractor shall propose an operational plan that will allow for government participation throughout the contract.

• The Contractor shall provide adequate reporting to allow government participation in the implementation of contracted activities and technical decision-making.

• The Contractor shall identify cost control measures as part of the design process.

• The Contractor shall document the proposed processes and methods of Government participation in the Project Management Plan, DRD 01.001, as part of the Communication Plan. This baseline plan will be delivered with the proposal and the pages do NOT count towards the 85 page Mission Suitability limit.

Page 41: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration 41

Government Insight/Oversight (cont.)

Page 42: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration 42

Performance Fee Incentive• Contract Specific Clause Language Clause H.11

H.X Performance Fee Incentives  The Performance Fee Incentives described below are in addition to meeting all existing contract requirements which include: the contract document, J1(a) Statement of Work, J1(b) Specifications, and J1(d) Data Requirement Deliverables.  If a Contract requirement is not met, the Contractor is disqualified from earning any Performance Fee Incentive.  If the Contract Option is not exercised, Overall Efficiency Incentive B and Early Delievery of Flight Electric Propulsion String incentives are not available to be earned by the contractor.  Contractors assume full responsibilty for testing.  Facility abnormalities or testing issues do not waive the required parameters below to qualify for these performance incentives.   To qualify for a performance incentive the Contractor will submit a report in accordance with DRD X.X “Performance Fee Incentive Qualification” for review and approval.  The Contractor shall invoice separately, referencing  CLIN #X. no later than 30 days post delivery and acceptance of DRD X.X.  Final incentive qualification is nonnegotiable, the sole determination of the Contracting Officer, and not subject to 52.233-1 Disputes. 

Page 43: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Performance Fee Incentive (cont.)

43

Table 1. Incentive RequirementsPerformance Incentive Description

Method of Measure Timeline Incentive Available Notes

System Efficiency System efficiency is calculated, consistent with references 1 -4, based on measured data and instrumentation uncertainty. Selected test conditions are specified below. All measurements will be conducted during hot-fire testing in NASA facility VF-5. 

Incentive A: EM unit measured performance based on test data reports and CDR presentation. Incentive B: Following acceptance by NASA of test data report for successful Qualification Unit Testing.

 

Tier I and Tier II incentives are cumulative.   Maximum value of incentive A is $500K.  Maximum Value of incentive B is $500K.  The efficiency criteria at both the 2000 second specific impulse and 3000 second specific impulse operating points must be met to qualify for either Tier I or Tier II, as defined in the table 2 below. Maximum available incentive for overall efficiency is $1M. 

CDR efficiency incentive (A) is only avaialble at CDR, and not available at Qualification testing incentive (B).

Early Delivery of Flight Electric Propulsion String

Sucessful System Acceptace Review following final flight EP string delivery.

60 to 70 calendar days prior to contract required 36 month delivery

$1M  

Page 44: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Performance Fee Incentive (cont.)

44

Test Conditions:  Efficiency of both thruster and PPU measured after hardware burn in and outgassing and after operating the thruster for four hours at 12.5 kW discharge power.  After four hour firing, three (3) on/off cycles of 30 minutes each will be used to make measurements, from which the last ten minutes will be used for data acquisition and then averaged to calculate system performance.  The final system performance for evaluation purposes will be the average of the three measurements at each operating condition.  For thruster measurement, vacuum facility pressure lowest vacuum pressure obtainable at NASA-GRC VF-5.  Performance will not be corrected for extrapolation to zero pressure for the purpose of this evaluation.  The efficiency test for the PPU shall be performed after burn-in test with qualified ground support equipment and calibrated instrumentation. Test conditions are: 

- Cold Plate Temperature: 25oC - Environment:  Ambient - Input Voltages: Nominal - Output: Consistent with conditions listed in Table 2 

 Efficiency impact due to electrical harnesses will not be included. 

Page 45: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Performance Fee Incentive (cont.)

45

Table 2. System Efficiency Incentive Criteria

Operating condition System Efficiency Requirement

Tier I incentive($250k)

Tier II Incentive ($250k Additional)

Total system power = 13.33 kW, Thruster discharge voltage = 800.0 V

≥ 56.0% after subtracting uncertainty

≥ 57.0% after subtracting uncertainty

≥ 58.0% after subtracting uncertainty

Total system power = 10.00 kW, Thruster discharge voltage = 300.0 V

≥ 53.0% after subtracting uncertainty

≥ 54.0% after subtracting uncertainty

≥ 55.0% after subtracting uncertainty

System Efficiency:   𝜂𝑇𝑜𝑡𝑎𝑙 ∗= 𝜂𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 × 𝜂𝑃𝑃𝑈 (eqn. 25-4, ref. 1)   𝜂𝑃𝑃𝑈 = 𝑃𝑃𝑃𝑈 𝑇𝑜𝑡𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑃𝑃𝑈 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑝𝑢𝑡   *= Excluding cable harness 

References:  1) Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Dan M. Goebel, Ira Katz, ISBN: 978-0-470-42927-3, November 2008. 2) IEPC 2013-440: Recommended Practices in Thrust Measurements; James E. Polk, Anthony Pancotti, Thomas Haag, Scott King, 

Mitchell Walker, Joseph Blakely, and John Ziemer. 3) IEPC 2013-425: Flow Control and Measurement in Electric Propulsion System: Towards an AIAA Reference Standard; John Steven 

Snyder, Jeff Baldwin, Jason D. Frieman and Mitchell L. R. Walker, Nathan S. Hicks, Kurt A Polzin, James T. Singleton. 4) IEPC 2013-358: Recommended Practice for Pressure Measurement and Calculation of Effective Pumping Speeds During Electric 

Propulsion Testing; John W. Dankanich, Mitchell Walker, Michael W. Swiatek and John T. Yim. 

Page 46: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration 46

JPL

For the purposes of this procurement, JPL is considered on the NASA Government team. Therefore they are unavailable as potential subcontractors. When the RFP refers to “NASA” JPL is included.

Page 47: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

NAICS Code/Size Standard

• NAICS code selected was 541712 Research and Development in the Physical, Engineering, and Life Sciences (except Biotechnology)

• Due to Space Flight Hardware being procured, the 1000 person exception will be used.

NAICS Code/Size Standard

47

Page 48: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Subcontract Plan Goals

48

Small Businesses (SB) 10.40%

Small Disadvantaged Business Concerns (SDB) 2%

Women Owned Small Business Concerns (WOSB) 2%

Historically Black Colleges and Universities (HBCU)/Minority Institutions (MI) 0.5%

HUBZone Small Business Concerns (HUBZone) 1%

Veteran Owned Small Business Concerns (VOSB)1.5%

Service-Disabled Veteran-Owned Small Business Concerns (SDVOSB) 1%

Small Business subcontracting goals are as follows:

Page 49: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Page Counts (L.16 1852.215-81 Proposal Page Limitations (FEB 1998))

Source Selection Information - See FAR 2.101 and 3.104

49

Volume Number and Title Page Limit

I - Mission Suitability* 85

II - Past Performance 30

III – Cost N/A

* 1852.245–80 Government Property Management Information. (JANUARY 2011). The content of these plans and information will not be counted in the 85 page Mission Suitability page limit. However, the submitted pages for these documents should be concise and not overly burdensome. * Per L.22 (PM1.2) Communication Plan – pages will NOT be counted as part of the overall Mission Suitability 85 page limit. However, the submitted pages for these documents should be concise and not overly burdensome.

Page 50: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration 50

Past Performance

• Three tier approach to Past Performance:Tier I – Volume II submittal (30 pages)Tier II – PPQ responses (and rebuttals if needed)Tier III – PPIRS, CPARS, and outside information database research

• Relevancy when using time as a consideration - The Government will evaluate contracts, subcontracts and projects within the last fifteen years. However, the Government gives higher weighting to contracts, subcontracts or projects within the last five years.

• Major subcontractors, for the purpose of Past Performance are any contractors performing $1M or more of the total contract effort.

• Jason Siewert is the Past Performance POC – for delivery of PPQs

• Past Performance Volume II due date, as well as PPQ due date will be earlier than Mission Suitability and Price Volumes – stay tuned for final RFP for dates.

Page 51: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Pricing

• Follow RFP instructions• Cost realism analysis will be conducted• Price evaluations will include

– Status of Offerors’ business systems– Total proposed price consisting of the base effort

and one option– Evaluation of the proposed fee rates

Source Selection Information - See FAR 2.101 and 3.104 51

Page 52: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Pricing

• Flexible base/option periods– Base period ends at Critical Design Review – Option 1 begins at flight hardware production– Total Base and Option periods combined must no more than

36 months– Base and Option periods may overlap based on the offeror’

s methodology

• Pricing templates broken out by six work areas– Project Management (PM), Systems Engineering

& Integration (SE&I), Safety Mission Assurance (SMA), Power Processing Unit (PPU), Thruster, and Flow Controller.

Source Selection Information - See FAR 2.101 and 3.104 52

Page 53: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Pricing

• Schedule incentive- 3 incentives totaling $2M– Include incentive payment dates in your proposal

• Base at CDR• Option 1 at Quality Engine Test• Option 1 at Delivery

• Pricing disposal/freight/shipping– These costs will be removed as part of a probable

cost adjustment for the successful Offeror.– Do not add fee to shipping/freight– Government will not pay for

• Work in process (hardware)• Shipping cost for WIP

Source Selection Information - See FAR 2.101 and 3.104 53

Page 54: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

June 10, 2015Financial Reporting/Earned Value Management

Page 55: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Contractor Financial Management Report (533M)

• The standard contract clause for implementing NASA contractor financial management reporting as set forth in NFS 1852.242-73, NASA Contractor Financial Management Reporting, is not included in the RFP.

• A Monthly Contractor Financial Management Report (533M) is not required.

• In lieu of the 533M report, the Integrated Program Management Report (IPMR) for earned value and integrated master schedule reporting has been tailored to meet financial reporting needs.

Page 56: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Earned Value Management

• The standard contract clause for implementing NASA earned value management reporting as set forth in NFS 1852.234-2 Earned Value Management System, is included in the RFP (I.138.) (As well as provision L.11 1852.234-1 Notice of Earned Value Management System. (NOV 2006)

• CPR and IMS data requirements identified in NFS 1852.234-2(a)(2) are replaced by the Integrated Program Management Report (IPMR) per Procurement Information Circular (PIC) 15-06 (April 2015), Guidance on the Integrated Program Management Report for Earned Value Management: “Contracting Officers shall include a DRD/CDRL in the solicitation and resultant contract to describe the specific reporting requirements of the IPMR when Earned Value Management Systems is required in accordance with NFS 1834.201.”

Page 57: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

Integrated Program Management Report (IPMR)

• NASA has adopted the use of the IPMR (per DID-MGMT-81861) to replace the Contract Performance Report (CPR) and the Integrated Master Schedule (IMS) and will use the IPMR to satisfy financial reporting requirements for this procurement.

• Data Requirements Description (DRD) Guidance– The Base and the Option, if exercised, shall have separate IPMRs– Delivery of Formats 1, 3, 5, 6, and 7– Preliminary IMS (Format 6) with proposal. First submission of all

required Formats within 12 working days after the end of the second full accounting period following ATP

– Subsequent submission of all Formats monthly by the 12th working day after the close of the contractor’s accounting month

– IPMR formats shall be completed according to the instructions outlined in DI-MGMT-81861 except as modified in the DRD

Page 58: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

IPMR Tailoring for Financial Reporting

• Format 1 – Work Breakdown Structure– Provide reporting at WBS level 3 or at the cost account, whichever

is lower– Capital equipment and long lead items, if any, shall be their own

separate control accounts.– Tailoring: For each reporting element, provide elements of cost

(direct labor, material, overhead, etc.) and direct labor hours. Include G&A and COM as add.

– Format 1 – Section 8.a example data:Control Account CURRENT PERIOD CUMULATIVE TO DATE

ACTUALBUDGETED COST COST VARIANCE BUDGETED COST

WORK WORK WORKITEM SCHEDULED PERFORMED PERFORMED SCHEDULE COST(1) (2) (3) (4) (5) (6)

1.0 Program ManagementDirect Labor Hours 1,904 1,904 2,140 0 -236Subcontractor Hours(if applicable) 2,140 2,140 2,182 0 -42Direct Labor 166,422 166,422 187,021 0 -20,599Labor Overhead 146,894 146,894 160,075 0 -13,181Subcontractor Cost 285,307 285,307 291,053 0 -5,745Material 5,410 5,410 2,311 0 3,099ODC 0 0 0 0 0Travel 5,445 5,445 4,514 0 930

Control Account Totals: 609,477 609,477 644,973 0 -35,4972.0 Systems Engineering

Page 59: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

www.nasa.gov

IPMR Tailoring for Financial Reporting

• Format 7 – History and Forecast File– Format 7 is required at the same level as Format 1 reporting– Tailoring: Provided monthly instead of yearly with emphasis

on getting accurate forecasts for the next two months estimate to complete (ETC) to replace 533 estimate

– Format 7 – Contractor format of the following example data:Control Account Jan-16 Feb-16 Mar-16 Apr-16 May-16 Cumulative

1.0 Program Management

Direct Labor BCWS 32,406 42,805 47,939 39,422 32,769 195,341ACWP 17,340 47,422 0 0 0 64,762ETC 0 0 72,216 73,505 61,222 206,943

Labor Overhead BCWS 28,517 37,668 42,187 34,692 28,837 171,900ACWP 15,259 41,731 0 0 0 56,991ETC 0 0 63,550 64,684 53,875 182,110

Subcontractor Cost BCWS 61,871 61,871 76,745 62,854 65,227 328,568ACWP 27,678 25,425 0 0 0 53,103ETC 0 0 41,554 43,278 43,545 128,377

Material BCWS 50,405 63,006 54,748 42,147 42,147 252,453ACWP 32,382 10,000 0 0 0 42,382

ODC ACWP 0 0 0 0 0 0Travel BCWS 3,290 4,113 4,113 3,290 3,290 18,096

ACWP 4,772 4,239 0 0 0 9,011ETC 0 0 14,400 12,600 10,800 37,800

Control Account Totals: BCWS 176,488 209,462 225,732 182,405 172,271 966,358

ACWP 97,432 128,817 0 0 0 226,249ETC 0 0 191,720 194,067 169,442 555,230

2.0 Systems Engineering

Page 60: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

NASA In-House Technology Maturation Activities

SWITCH PRESNTATIONSJune 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 61: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

NASA Facilities and Analytical tools

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 62: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

62

Use of NASA Facilities• Contractor is responsible for all testing to include interface,

environmental and requirements verification

• NASA facilities shall be proposed for use by the Offeror for any testing involving hot-firing of a thruster at the component or system level

– Facility options include VF-5, VF-6, VF-12 and VF-16 at GRC and the Owens Chamber at JPL

• Proposals will not include cost of operating these large scale vacuum test facilities (will be GFE)

– NASA labor, utilities and propellant

• Contractor will include their costs to support testing and all hardware and special test equipment not listed in attachment J.1(d)

• Proposals shall include a detailed “Test Strategy”– Section L&M, TA1.7, TA2.8, TA3.5– Appropriateness and efficiency of test plans (including rationale) and will be

evaluated

Page 63: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Facilities, Diagnostics, and Modeling Capabilities for High-Power Electric Thrusters at the Jet Propulsion Laboratory

June 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 64: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

Owens Chamber

64

• Owens Chamber at JPL– 3 m diameter X 10 m long– 71 m3 volume– Graphite lined interior, stainless steel walls– 230,000 L/s pumping speed– Control systems for unattended operation– Digitally-controlled mass flow controllers with Bios Dry-cal for feed 

system calibration– Auxiliary xenon feed system for backpressure control

• Multiple probe- and optically-based diagnostics for assessing performance, stability, thermal, and wear characteristics

– Thrust stand– Thrust vector probe– Laser Induced Fluorescence (LIF) ion velocimetry– Current probes for measuring discharge voltage/current oscillations– Thermocouples & infrared thermal camera– Far-field ExB, RPA, ESA, combined ESA-ExB, Faraday, & emissive 

probes– Near-field, high-speed ion current density probe, emissive probes, 

and Langmuir probes (ji, φ, Te)– Flush-mounted wall probes (ji, φ, Te)– High-speed video (FASTCAM)– Quartz Crystal Microbalance (QCM) for measuring carbon 

backsputter rate– Residual Gas Analyzer (RGA)– Xenon-calibrated ionization gauges mounted at thruster exit plane

Far-field view

Near-field view

Page 65: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

JPL OrCa2D and Hall2De Scientific Codes

• Orificed Cathode (OrCa2D) Code - Used to simulate the plasma and erosion processes in hollow cathodes• Plasma power deposition are used as inputs for 

thermal modeling.• May be licensed at no cost for research funded by 

the US government to commercial and academic institutions through the California Institute of Technology.

• Hall2De Code - Used to simulate the plasma and erosion processes in Hall thrusters, including the plume region for spacecraft integration studies.• Plasma power deposition are used as inputs for 

thermal modeling.• May be licensed at no cost for research funded by 

the US government to commercial and academic institutions through the California Institute of Technology.

65Plume simulations

Discharge Chamber

Page 66: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

Axial beam

Radial beam

Collection optics

Feedthru flange

Translation stages

Laser and laser diagnostics

Vacuum setup Airside setup

Laser Induced Fluorescence (LIF) and Thruster Inspection Systems

Axial & Radial Ion Velocities

Optical Bench

• Surface profilometry (CMM & Nanovea)– Coordinate measuring machine

(30 um resolution)– Nanovea ST-400 non-contact

surface profiler (1 um resolution, 20 mm depth-of-field, 3-axis motion control)

Page 67: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

Environmental Testing

• Thruster thermal vacuum testing can be accomplished in multiple large vacuum chambers at JPL and GRC with the NASA GRC large thermal shroud  for testing over temperatures of -140 to >250 degrees C. 

67

Page 68: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Lunch Break – Resume at 12:30

National Aeronautics and Space Administration

www.nasa.gov

Page 69: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R

Industry Day Closing PointsJune 10, 2015

National Aeronautics and Space Administration

www.nasa.gov

Page 70: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

7 Question Areas to Industry (1 of 4)

• NASA Insight/Oversight - Communication Plan. Is the required interaction clear? Is there enough data provided to propose a comprehensive Communication Plan? What in addition should be provided?

• Testing Strategy - Is the division between Offeror/Government facilities to be used clear? Are there any alternative suggestions? Is there enough data provided to propose a comprehensive Testing Strategy?

Page 71: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

7 Question Areas to Industry (2 of 4)

• Performance Incentive Fee - Are the incentives clear? Are there any alternative suggestions for incentivizing technical performance? Is two months a reasonable expectation for an early delivery incentive?

• Assured Supply - Is the Government's intent clear for evaluating assured supply favorably (attributes that minimize future government investment/cost to assure availability)? Are there suggestions on how to measure assured supply abilities?

Page 72: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

7 Question Areas to Industry (3 of 4)

• 533M-Q/EVM - Is the Government's intent clear that the 533M/Q requirement is intended to be removed, that EVMs templates with slight modifications are to be used in lieu of this requirement? Does that streamline the process, or are there different/additional recommendations in this area?

• Internal R&D - How far are the Government's EP goals from the commercial sector? How could we modify our requirements to more closely align the capabilities of these EP Strings with your commercial application needs?

Page 73: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

7 Question Areas to Industry (4 of 4)

• Overall comments/suggestions - Do the due dates and page counts seem adequate? Are there contract clauses that raise concern? Are there DRD suggestions for streamlining? Are any of the requirements overly constraining? Could the requirements be streamlined while still meeting the primary goals?

Page 74: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

DRAFT SCHEDULE

Event Date

Draft RFP Release May 21, 2015

Industry Conference June 10, 2015

Comments on Draft Due June 22, 2015

Final RFP Release July 14, 2015

Proposal Due Date August 28, 2015

Contract Award March 29, 2016

Draft Procurement Schedule

Page 75: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

****Disclosure****

Whatever you hear today – no matter who said it – the final RFP is the controlling document, period.

75

Page 76: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Communication Process Industry Day through Final RFP

• Q&As from today will be gathered and posted

• One additional team meeting (per Offeror team) is available between June 10th release of Final RFP.

• After the Final RFP is published, the blackout period is in effect. All communication must occur in writing to the

Contracting Officer ONLY.

76

Page 77: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration

Points of Contact:Contracting Officer:

Leahmarie Koury

[email protected]

Technical POC/Lead:

Michael Meyer

[email protected]

77

Page 78: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

National Aeronautics and Space Administration Your Title Here 78

Page 79: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

BACKUP

79

Page 80: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

JPL OrCa2D and Hall2De Scientific Codes

• Orificed Cathode (OrCa2D) Code– Used to simulate the plasma and erosion processes in hollow cathodes. Plasma power deposition are used as 

inputs for thermal modeling.– Solves the conservation laws for the partially-ionized gas in hollow cathodes, in 2-D axisymmetric geometry

• Electrons: Ohm’s law and time-dependent energy equation based on continuum approximation.• Ions: time-dependent continuity and inviscid momentum equations based on continuum approximation.• Neutrals: time-dependent full Navier-Stokes equations in the cathode interior transitioning to collision-less gas in 

exterior. Time-dependent energy equation solved for the heavy species (ions & neutrals)• Accounts for applied magnetic field. Uses magnetic field aligned mesh generator. • Electrode boundary conditions including electron emission from insert. Large computational region encompassing 

cathode interior (emitter region), cathode plate and keeper orifice regions, near-plume and anode regions.– Started development at JPL in 2004 

• Written in Fortran90 using the Intel Visual Fortran Composer XE 12.0 compilers (Intel Parallel Studio XE 2011 or higher) and the Intel Math Kernel Library (MKL) 10.3 (or higher).

• Makes use of Intel’s parallel sparse matrix solvers (PARDISO) to take advantage of multi-core multi-thread processors.– May be licensed at no cost for research funded by the US government to commercial and academic 

institutions through the California Institute of Technology.– References

• Mikellides, I. G., Katz, I., Goebel, D. M., and Polk, J. E., "Hollow Cathode Theory and Experiment, II. A Two-Dimensional Theoretical Model of the Emitter Region," Journal of Applied Physics, Vol. 98, No. 11, 2005, pp. 113303 (1-14).

• Mikellides, I. G., Katz, I., Goebel, D. M., Jameson, K. K., and Polk, J. E., "Wear Mechanisms in Electron Sources for Ion Propulsion, II: Discharge Hollow Cathode," Journal of Propulsion and Power, Vol. 24, No. 4, 2008, pp. 866-879.

80

Page 81: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

JPL OrCa2D and Hall2De Scientific Codes

• Hall2De Code– Used to simulate the plasma and erosion processes in Hall thrusters, including the plume region for spacecraft 

integration studies.  Plasma power deposition are used as inputs for thermal modeling.– Solves the conservation laws for the partially-ionized gas in Hall thrusters, in 2-D axisymmetric geometry

• Magnetized electrons: anisotropic Ohm’s law and time-dependent energy equation. No assumptions made regarding isothermal properties of electrons along lines of force.

• Un-magnetized ions: time-dependent continuity and inviscid momentum equations based on continuum approximation.• Neutrals: Collision-less gas – solution obtained using view-factors.• Numerical approach for all species is inherently free of statistical noise since particle methods are not used.• Uses magnetic field aligned mesh to allow for highly-anisotropic solution to the equations for the electrons with minimal 

numerical diffusion.• Insulator and conducting boundary conditions. Large computational region allowing for self-consistent incorporation of 

cathode boundary.– Started development at JPL in 2009. Core code structure the same as that of OrCa2D. Many of the Hall2De 

algorithms also taken from OrCa2D.• Written in Fortran90 using the Intel Visual Fortran Composer XE 12.0 compilers (Intel Parallel Studio XE 2011 or higher) 

and the Intel Math Kernel Library (MKL) 10.3 (or higher).• Makes use of Intel’s parallel sparse matrix solvers (PARDISO) to take advantage of multi-core multi-thread processors.

– May be licensed at no cost for research funded by the US government to commercial and academic institutions through the California Institute of Technology

– References• Mikellides, I. G., and Katz, I., "Simulation of Hall-effect Plasma Accelerators on a Magnetic-field-aligned Mesh," Physical

Review E, Vol. 86, No. 4, 2012, pp. 046703 (1-17).• Katz, I., and Mikellides, I. G., "Neutral Gas Free Molecular Flow Algorithm Including Ionization and Walls for Use in Plasma 

Simulations," Journal of Computational Physics, Vol. 230, No. 4, 2011, pp. 1454-1464.81

Page 82: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Jet Propulsion LaboratoryCalifornia Institute of Technology

Other Diagnostics & References

• Thrust stand– Hofer, R. R. and Anderson, J. R., "Finite Pressure Effects in Magnetically Shielded Hall Thrusters," AIAA Paper 2014-3709, 

July 2014. • High-speed plasma probes

– Hofer, R. R., Goebel, D. M., Mikellides, I. G., and Katz, I., "Magnetic Shielding of a Laboratory Hall Thruster Part II: Experiments," Journal of Applied Physics 115, 043303 (2014).

– Jorns, B., Hofer, R. R., and Mikellides, I. G., "Power Dependence of the Electron Mobility Profile in a Hall Thruster," AIAA Paper 2014-3620, July 2014.

• Far-field plume probes (Faraday, Langmuir, ExB, RPA)– Hofer, R. R., Goebel, D. M., Mikellides, I. G., and Katz, I., "Design of a Laboratory Hall Thruster with Magnetically Shielded 

Channel Walls, Phase II: Experiments," AIAA-2012-3788, July 2012. • Surface profilometry (CMM and Nanovea)

– Coordinate measuring machine (30 um resolution)• Hofer, R. R., Jorns, B. A., Polk, J. E., Mikellides, I. G., and Snyder, J. S., "Wear Test of a Magnetically Shielded Hall Thruster at 3000 Seconds 

Specific Impulse," Presented at the 33rd International Electric Propulsion Conference, IEPC-2013-033, Washington, DC, Oct 6-10, 2013. – Nanovea ST-400 non-contact surface profiler (1 um resolution, 20 mm depth-of-field, 3-axis motion control)

• Sekerak, M., Hofer, R. R., Polk, J. E., Jorns, B. A., and Mikellides, I. G., "Wear Testing of a Magnetically Shielded Hall Thruster at 2000 S Specific Impulse," Presented at the 34th International Electric Propulsion Conference, IEPC-2015-155, Kobe, Japan, July 4-10, 2015. 

• FLIR Infrared Camera– Hofer, R. R., Jorns, B. A., Polk, J. E., Mikellides, I. G., and Snyder, J. S., "Wear Test of a Magnetically Shielded Hall Thruster 

at 3000 Seconds Specific Impulse," Presented at the 33rd International Electric Propulsion Conference, IEPC-2013-033, Washington, DC, Oct 6-10, 2013. 

• FASTCAM– Jorns, B. A. and Hofer, R. R., "Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster," Physics of Plasmas 21, 5, 

053512 (2014).• 3-axis Gaussmeter (Lakeshore 460) with automated data acquisition and motion control

82

Page 83: Thruster and Power Processing Unit Development for an Advanced Electric Propulsion (EP) System NNC15ZCH014R Industry Day June 10, 2015 National Aeronautics

Industry Day Attendance List 6/10/15

83

Aerojet Rocketydyne Jackson, JeromeAerojet Rocketydyne Myers, RogerAerojet Rocketydyne Hoskins, William AAerojet Rocketydyne Lu, Cheng-YiAerojet Rocketydyne Spores, Ron   Zin Technologies Inc Johanson, Michael RZin Technologies Inc Chmiel, AlanZin Technologies Inc Bontempo, JimZin Technologies Inc Grodsinsky, Carlos   Boeing Carreno, AdrielBoeing Bienhoff, DallasBoeing Hairapetian, GarnickBoeing Diep, BaBoeing Elsperman, Michael   SSL van Ommering, GerritSSL Lord, Peter W.SSL Tilley, ScottSSL Liang, Ray   Busek Co. Inc. Hruby, VladimirBusek Co. Inc. Williams, Wallace D.Busek Co. Inc. Pote, Bruce   Moog Inc. Chaves, MarcMoog Inc. King, PaulMoog Inc. Illig, Mitchell   Ball Aerospace, Inc. Deining, William   Sierra Lobo, Inc. Yeckley, Alex