three-dimensional slope stability analysis by shear

6
No.41 2015 9 Three-dimensional Slope Stability Analysis by Shear Strength Reduction Method 3 FEAST 3 2 3 FEM 3 Fellenius Bishop 3 2 FEM FEM 1) 1 FEM 3 FEAST Mohr-Coulomb f (1) c F c (2) f R m / m Fc ) 3 ( ) ( F F F tan tan R ) 2 ( F tan c F ' ) 1 ( tan c 2 1 c c 2 1 c 2 1 m m c c f f f f f /F c c c/F m R m 1 2 - 69 -

Upload: others

Post on 01-May-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

Three-dimensional Slope Stability Analysis by

Shear Strength Reduction Method

3 FEAST 3

2

3

FEM

3

Fellenius Bishop

3

2

FEM

FEM 1) 1

FEM

3 FEAST

Mohr-Coulomb

f (1)

c

Fc (2) f’

Rm/

m Fc

)3()(FFFtan

tanR

)2(F

tanc

F'

)1(tanc

21cc2

1

c2

1

m

m

cc

ff

f

f

f/Fccc/F mRm

1

2

- 69 -

Page 2: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

FEM

Mohr-Coulomb

Drucker-Prager

Drucker-Prager

Mohr-Coulomb

(4) Drucker-Prager

(5) 2)

1 3

c I1 J2 1 2

(6) (7) x y

z xy yz xz

(8)

i fi

)5(JI

)4(sincosc2f

21

3131

)8(tan129

tan

)7(

6

1J

)6(I

2

2zx

2yz

2xy

2xz

2zy

2yx2

zyx1

F0Fc1

Fcn+1=Fcn+ Fc

cn+1=cn/Fcn+1 tan n+1=tan n/Fcn

Mohr Coulomb

d ff=BT (Dep d )

{F}=[D] {u}

Yes

No

Yes

No

No

Yes

iihi Vkf

if

iVi

(8)

(7)

(6)

(5)

(4)

- 70 -

Page 3: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

23)

FEM

E=2 105kPa

=0.3 =0 =

0.8

0.29

0.29

Fc=0.29

Fc=0.35

Fc=0.37 Fc=0.39

Fc=0.39

Fc=0.42

kh=0.1

Fc=0.32

0.07

Fellinus

Fc=0.44

kh=0.1 Fc=0.36

0.08

c (kPa) (kN/m3) 12 29.4 18.82 5 9.8 18.82 40 294 18.82

Fc=0.35

Fc=0.37

Fc=0.39

(m)

(m)

0.0 0.5 1.0

0.0 0.5 1.0

0.0 0.5 1.0

Fc=0.36FelleniusFc=0.32

0.0 0.5 1.0

0.2 0.4 0.6 0.8 1.0

- 71 -

Page 4: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

12000 58000

A-A’ B-B’

Fc=1.10

40m 50m 60m

Fc=1.64

Fc=1.60

CASE1 A-A’

B-B’ Fellenius

2 A-A’

Fc=0.97 B-B’ Fc=1.43

2

( ) c (kPa) (kN/m3)

E (MPa)

15 30 19 37.5 0.2

D 30 100 22 65.5 0.2

60m Fc=1.66

0.06

CASE1 L=40m Fc=1.64

CASE2 L=50m Fc=1.62

CASE3 L=60m Fc=1.60

L=40m

Fc=0.97 FelleniusFc=1.43

L=60m

L=50m

0.050.040.030.020.010.0

0.050.040.030.020.010.0

0.050.040.030.020.010.0

A-A’

B-B’

A-A’

B-B’

A-A’

B-B’

(m)

D

D=13m)

A B

A'B'

- 72 -

Page 5: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

Dmm

Am2

L(m)

E(MPa)

32 8.04 10-4 7 16 2 105

kh=0.1

Fc=1.45 0.21

A-A’ Fc=0.81 B-B’ Fc=1.18

0.16 0.25

2m

Fc=0.60

Fc=0.80

(kN/m3) E (MPa) c (kPa) ( )

19 5.0 0.3 20 20

CM27 10.0 0.25 1,000 40

Fc=0.81 Fellenius

Fc=1.18

D32 120

Fc=1.66

Fc=1.45

0.050.040.030.020.010.0

0.050.040.030.020.010.0

(m)

CM

A-A’

B-B’

A-A’

B-B’

- 73 -

Page 6: Three-dimensional Slope Stability Analysis by Shear

No.41 2015 9

E (MPa)

5.0 103 0.2

2m

20m 15m

2.5m

Fc=1.06

0.26

FEM

2 3

2

3

2

1) FEMSoils and Foundations Vol.29 No.2 pp.190-

195 1989 2) FEM

15 83)

FEM Journal of the Landslide Society Vol.39 No.4 pp.9-16 2003

Fc=1.06

Fc=1.06 0.050.040.030.020.010.0

0.050.040.030.020.010.0

0.050.040.030.020.010.0

0.050.040.030.020.010.0

Fc=0.80

Fc=0.80

- 74 -