thomas lenormand - génétique des populations

58
Population genetics Thomas Lenormand CEFE – CNRS, Montpellier

Upload: seminaire-mee

Post on 22-Jun-2015

1.111 views

Category:

Technology


3 download

TRANSCRIPT

Page 1: Thomas Lenormand - Génétique des populations

Population genetics

Thomas LenormandCEFE – CNRS, Montpellier

Page 2: Thomas Lenormand - Génétique des populations

The mathematics of frequency change

• An allele arise by mutation

• Its frequency change for several reasons

• Genome change ( = evolution occurs)

Mendel + DarwinA ‘microscopic view’ founding other approaches

Page 3: Thomas Lenormand - Génétique des populations

G P P G

Page 4: Thomas Lenormand - Génétique des populations

(1892-1964)

(1911-1998)

(1890-1962) (1889-1988)

(1920-2004)(1924-1994)(1916- ) (1929 - )

Page 5: Thomas Lenormand - Génétique des populations

Levins 1966

Généralité

Précision Réalisme

Un corpus de modèlesTheories - sexe - speciation - mort - altruisme

Des Stats…bcp de stats

- Mutations- Enzymes- Microsat- Sequences- Genomes

Page 6: Thomas Lenormand - Génétique des populations

Réalisme

distance x0

1

0 20 40 60

{R}

{E}

fréquence

Page 7: Thomas Lenormand - Génétique des populations

Précison

Saccheri I J et al. PNAS 2008;105:16212-16217

1/(4πDeσ2)

Page 8: Thomas Lenormand - Génétique des populations

Généralité

Probabilité de fixationHaldane 1927

……

0 1 2 3 4 5 … 0 1 2 3 4 5 …

P(1+s) P(1)

P: proba fixation1-P: proba perteXt : nb de copies à la génération t

)(2/)1(1

1!

1

1Pr1

22

)1(

)1(

1

soPsP

e

Pj

se

PjXP

Ps

j

jjs

j

jt

P ≈ 2s

Page 9: Thomas Lenormand - Génétique des populations

Modifier theory

2nn

Page 10: Thomas Lenormand - Génétique des populations

2nn

Selection diploïde11 + h s1 + s

Selection haploïde11 + s

Recombinaison rMutation

Selfing rate Mating preferences

Modifier theory

Migration m

Page 11: Thomas Lenormand - Génétique des populations

Modifier theory

Suppose un locus qui modifie le caractère d’interet

Regarde changement de fréquence d’un mutant

Evolution à long terme du modifieur renseigne sur comment le caractère peut evoluer et dans quelles conditions

Un modifieur peut évoluer- par sélection directe (naturelle, sexuelle, de parentèle)- par sélection indirecte

On parle de modifieur « neutre » lorsqu’il n’y a que de la sélection indirecte

Construire un modèle: combien de locus au minimum?

Page 12: Thomas Lenormand - Génétique des populations

2nn

Selection diploïde11 + h s1 + s

Selection haploïde11 + s

sexRecombinaison rMutation

Selfing rate Mating preferences

Exemples

Migration m

Plasticity

Page 13: Thomas Lenormand - Génétique des populations

Reduction principle

If viability loci at stable polymorphic equilibriumTransmission evolves to be « perfect » (r = 0, = 0, m = 0, sex = 0)

Selected loci are at equilibrium. Selection coefficients are constant. There is random mating. Only one transmission parameter is considered at a time. Viability is sex-independent.

(Altenberg and Feldman 1987)

Page 14: Thomas Lenormand - Génétique des populations

Modifier vs. optimality

Does modifier evolve to maximise mean fitness ?

Knowing what would be best for the pop does not say that evolution will lead there

Modifiers are tools for modelling

‘True’ genes have *always* pleiotropic effects

Page 15: Thomas Lenormand - Génétique des populations

What is sex?

2nn

Page 16: Thomas Lenormand - Génétique des populations

Why sex?

What is the benefit of recombination?

How to construct a model to measure this?

Main hypothesis: sex allows for recombination

Page 17: Thomas Lenormand - Génétique des populations

Part I

Building the modelfrom scratch

Barton, N. H. 1995. A general model for the evolution of recombination. Genetical Research 65:123-144.

Page 18: Thomas Lenormand - Génétique des populations

Key insights

Recombination > 1 locus polymorphic otherwise uninteresting

Simplest polymorphismmutation – haploid selection

Keep it simplesingle populationvery large number of individuals (neglect drift)

Page 19: Thomas Lenormand - Génétique des populations

Step 1: genetic setting

Locus kLocus jrjk

W00 = 1W10 = 1+aj

W01 = 1+ak

W11 = 1+aj+ak+ajk

XjXk

01

01

Page 20: Thomas Lenormand - Génétique des populations

Step 2: modifier

Locus kLocus jrjk

XjXk

01

01

Locus irij

Xi01

If Xi = 0 then the recombination rates are rij and rjk

If Xi = 1 then the recombination rates are rij+ij and rjk+jk

Only effects of the modifier

+ij +jk

Page 21: Thomas Lenormand - Génétique des populations

Step 3: life cycle

2nn

Page 22: Thomas Lenormand - Génétique des populations

Step 3: life cycle

2nn

selection

haploid viability selection

fair meiosis

Random mating

Page 23: Thomas Lenormand - Génétique des populations

Step 4: variables

With 3 biallelic loci, there are 8 possible haploid genotypes

000 x1

001 x2

010011100101110 x7

111 x8

.

.

.

genotypes frequencies

Locus i(modifier)

Locus j

Locus k

Page 24: Thomas Lenormand - Génétique des populations

Step 4: variables

kk

jj

ii

pXE

pXE

pXE

)(

)(

)(

frequencies

8765

8

1

)()(

xxxx

xgXXEg

gii

000 x1

001 x2

010 x3

011 x4

100 x5

101 x6

110 x7

111 x8

Page 25: Thomas Lenormand - Génétique des populations

Step 4: variables

kk

jj

ii

pXE

pXE

pXE

)(

)(

)(

frequencies

8743

8

1

)()(

xxxx

xgXXEg

gjj

000 x1

001 x2

010 x3

011 x4

100 x5

101 x6

110 x7

111 x8

Page 26: Thomas Lenormand - Génétique des populations

Step 4: variables

ikki

jkkj

ijji

CXXCov

CXXCov

CXXCov

),(

),(

),(

Pairwise ‘associations’

ji

gjigji

jiijjiji

jjiiji

ppxx

ppxgXX

ppXEpXEpXXE

pXpXEXXCov

87

8

1

)(

)()(][

))((),( 000 x1

001 x2

010 x3

011 x4

100 x5

101 x6

110 x7

111 x8

(usually referred to as ‘linkage disequilibrium’)

Page 27: Thomas Lenormand - Génétique des populations

Step 4: variables

ijkkji CXXXCov ),,( triplet ‘association’

kjiijkikjjki

kkjjiikji

pppCpCpCpx

pXpXpXEXXXCov

8

))()((),,(

000 x1

001 x2

010 x3

011 x4

100 x5

101 x6

110 x7

111 x8

Page 28: Thomas Lenormand - Génétique des populations

Step 4: variables

000 x1

001 x2

010 x3

011 x4

100 x5

101 x6

110 x7

111 x8

Sum to 1

7 independent variables

pi

pj

pk

Cij

Cjk

Cik

Cijk

7 independent variables

Page 29: Thomas Lenormand - Génétique des populations

Part II

Writing the equations

Page 30: Thomas Lenormand - Génétique des populations

Exact recursions

Aim : computing variations of variables over one generation

2nn

selection(a)

(b)

(c)

Page 31: Thomas Lenormand - Génétique des populations

Step 1: selection

8

1ggg

ggselection

g

xWW

xW

Wx

Page 32: Thomas Lenormand - Génétique des populations

Step 2: Fertilization (random mating)

000 001 010 011 100 101 110 111

000 x12

001 x1 x2 x22

010 x1 x3 x2 x3 x32

011 … … … …

100 … … … … …

101 … … … … … …

110 … … … … … … …

111 … … … … … … x7 x8 x82

Male gametesfe

mal

e ga

met

es

Page 33: Thomas Lenormand - Génétique des populations

Step 3: Meiosis

000 001 010 011 100 101 110 111

000 x12

001 x1 x2 x22

010 x1 x3 x2 x3 x32

011 … … … …

100 … … … … …

101 … … … … … …

110 … … … … … … …

111 … … … … … … x7 x8 x82

Male gametes

fem

ale

gam

etes

001010

001

010

000

011

(1-rjk)/2

(1-rjk)/2

rjk/2

rjk/2

Diploid individualproduces gametes

Page 34: Thomas Lenormand - Génétique des populations

Step 3: Meiosis

000 001 010 011 100 101 110 111

000 x12

001 x1 x2 x22

010 x1 x3 x2 x3 x32

011 … … … …

100 … … … … …

101 … … … … … …

110 … … … … … … …

111 … … … … … … x7 x8 x82

Male gametes

fem

ale

gam

etes

101110

001

010

000

011

(1-rjk-)/2

(1-rjk-)/2

(rjk+)/2

Diploid individualproduces gametes

(rjk+)/2

Page 35: Thomas Lenormand - Génétique des populations

Exact recursions

),,...,,( 8721' xxxxfx gg

Aftermatingmeiosismutationselection

System of 7 independent equationsg = 1…7

Page 36: Thomas Lenormand - Génétique des populations

Changing variables

),,...,,( 8721' xxxxfx gg

equivalently

ijkikjkijkji CCCCppp ,,,,,,

recursions on

Page 37: Thomas Lenormand - Génétique des populations

Part III

Analyzing the model

Page 38: Thomas Lenormand - Génétique des populations

Methods

When does the allele at the modifier locus change in frequency?

The exact recursions give the answer, but they are not helpful

Dynamical system: equilibria?

Analysis involve assumptions

Method 1 : stability analysis

Method 2 : separation of time scales

Page 39: Thomas Lenormand - Génétique des populations

Taylor Series

302

220

00 )(2

)()()()(

00

xxOdx

fdxx

dx

dfxxxfxf

xxxx

constant approximation

linear approximation

quadratic approximation

Notation: Series[f(x),{x, x0, 2}]

(like in Mathematica)

Page 40: Thomas Lenormand - Génétique des populations

Assumptionsr >> a

pi changes at a even slower rate

because indirect selection

Associations change at a faster rate

because r is larger

pi

pj

pk

Cij

Cjk

Cik

Cijk

pj and pk change slowly

because a is small

fast changing variables

slow changing variables

Separation of time scales = treat associations as constantsalso known as « Quasi Linkage Equilibrium » (QLE)

Page 41: Thomas Lenormand - Génétique des populations

Assumptions

aj , ak >> ajk

weak epistasisbecause more interesting (see later)

<< r weak modifier effectsinvestigate only evolution by the accumulation of small mutations

W00 = 1W10 = 1+aj

W01 = 1+ak

W11 = 1+aj+ak+ajk

W00 = 1W10 = 1+aj

W01 = 1+ak

W11 = (1+aj)(1+ak)+ejk

ajk=ejk+ajak

Page 42: Thomas Lenormand - Génétique des populations

QLECjk

(association between thetwo selected loci)

1,0,,Series ' aCC jkjk

jkC

3)()1( aOrCrpqe jkjkjkjkjk

0 jkC 3)()1(

aOr

rpqeC

jk

jkjkjkQLEjk

Association is generated by epistasis between the lociRecombination REDUCES associations

Page 43: Thomas Lenormand - Génétique des populations

QLE (leading orders)

4)(

aOrr

pqeC

jkijk

ijkjkjkQLEijk

5)()1(

aOrrr

rpqeaC

jkijkij

ijijkjkkjkQLEij

5)()1(

aOrrr

rpqeaC

jkijkik

ikijkjkjjkQLEik

3)()1(

aOr

rpqeC

jk

jkjkjkQLEjk

treat them as constant of knownorder

Page 44: Thomas Lenormand - Génétique des populations

Modifier

6)(aOCaCaCap QLEijkjk

QLEikk

QLEijji

ikijkj rr

aa11

1

6)(

aOeerr

pqjkjk

ijkjk

ijkjk

where

Final Result

Page 45: Thomas Lenormand - Génétique des populations

Sign of pi

ejk

pi

0

More recombination evolves if < ejk < 0

Page 46: Thomas Lenormand - Génétique des populations

Convergence state

-20 -15 -10 -5

0.1

0.2

0.3

0.4

0.5

rij = 0.1 0.2 0.50.4

0

kj

jk

aa

e

*jkr

outsidehypothesismade

by the accumulation of modifier of small effect

(stabilityanalysis)

Page 47: Thomas Lenormand - Génétique des populations

Part IV

Interpreting the model

Page 48: Thomas Lenormand - Génétique des populations

Back to equations

ijkjkikkijji CaCaCap

Effect on the mean fitness of offspring

Effect onthe variancein fitness of

offspring

Page 49: Thomas Lenormand - Génétique des populations

Effect on variance

W

Cjk > 0

W

Cjk < 0

VarianceResponse to selection ejk

Cjk

0

+ +

- -

Modifier becomes associated to beneficial alleles (Cij, Cik)and hitchhikes with them

IF Cjk < 0

Page 50: Thomas Lenormand - Génétique des populations

Effect on mean

W11 + W00 – W01 – W10 = ajk

when ajk >0 extreme genotypes are fitter on average, it’s worthrecombining if it producesmore of them (Cjk < 0)

ejk

Cjk

-ajak

+

+-

-

W

Cjk > 0

W

Cjk < 0

extreme intermediate

Page 51: Thomas Lenormand - Génétique des populations

Direction of selection

ejk

-ajak

Cjk

0

both effectspositive

‘effect on mean’ dominates

both effectsnegative

‘effect on variance’ dominates

Page 52: Thomas Lenormand - Génétique des populations

Direction of selection

ejk

-ajak

Cjk

0

Cjk is only generated by ejk in this model

Recombination favored for weak negative epistasis

Page 53: Thomas Lenormand - Génétique des populations

Part V

Relate to other models

Page 54: Thomas Lenormand - Génétique des populations

Fluctuating Epistasis (Barton 1995, Peters & Lively 1999)

ejk

Cjk

0

Page 55: Thomas Lenormand - Génétique des populations

Environmental heterogeneity(Lenormand & Otto 2000)

ejk

Cjk

0Cov(aj,ak)>0

Cov(aj,ak)<0

Page 56: Thomas Lenormand - Génétique des populations

Hill-Robertson effect(originally Fisher 1930, Muller 1932)

ejk

Cjk

0

Interference among selected loci generate negative Cjk

Page 57: Thomas Lenormand - Génétique des populations

Take home messages

Recombination…is neutral in absence of associations

can increase or decrease variance

may increase variation but variation needs not be favourable

can change both mean and variance in fitness

frequency change depends on both the sign of genes associations and epistasis

Page 58: Thomas Lenormand - Génétique des populations

Further?

• When to include stochasticity?

• Extending modifier theory to genome…

• Relationship to other approaches