thomas gasser (lsce/ispl)

73
Climate change: the physical aspects ATHENS Programme AgroParisTech; Nov. 17, 2014 Thomas Gasser (LSCE/ISPL) ([email protected])

Upload: others

Post on 16-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Thomas Gasser (LSCE/ISPL)

Climate change: the physical aspects

ATHENS Programme AgroParisTech; Nov. 17, 2014

Thomas Gasser (LSCE/ISPL) ([email protected])

Page 2: Thomas Gasser (LSCE/ISPL)

Overview 2

1. Physical basis

• What evidence?

• Temperature of a planet

• The case of Earth

• Radiative forcings

• Climate response

2. Climate models

• Fluid dynamics

• Model complexity

• The IPSL model

• Basic performance

3. Climate projections

• The scenarios

• Temperature

• Water cycle

• Oceans

• Carbon cycle

• Uncertainty

4. Attribution of climate change

Page 3: Thomas Gasser (LSCE/ISPL)

1. Physical basis

Page 4: Thomas Gasser (LSCE/ISPL)

Expected changes of the climate system

1. Physical basis. What evidence? 4

IPCC AR5, WG1 Ch2

Page 5: Thomas Gasser (LSCE/ISPL)

Changes actually observed

1. Physical basis. What evidence? 5

IPCC AR5, WG1 Ch2

Page 6: Thomas Gasser (LSCE/ISPL)

Changes actually observed

1. Physical basis. What evidence? 6

IPCC AR5, WG1 Ch2

Also by statistical analysis of meteorological data.

Reminder: Meteorology is the weather at a given time and place; Climate is the statistical aspect of it.

Page 7: Thomas Gasser (LSCE/ISPL)

More and more observations available

1. Physical basis. What evidence? 7

IPCC AR5, WG1 Ch1

Page 8: Thomas Gasser (LSCE/ISPL)

Comparable to past changes?

1. Physical basis. What evidence? 8

IPCC AR4, WG1 Ch6

Page 9: Thomas Gasser (LSCE/ISPL)

Comparable to past changes?

1. Physical basis. What evidence? 9

IPCC AR4, WG1 Ch6

Page 10: Thomas Gasser (LSCE/ISPL)

Planet without an atmosphere

1. Physical Basis. Temperature of a planet. 10 Su

rfac

e

Sun

Stefan-Boltzman law: FS = σT4

F0 αF0 FS

Notation: F0 = insolation α = surface albedo FS = surface radiation

Equilibrium: (1-α)F0 = FS = σT4

Page 11: Thomas Gasser (LSCE/ISPL)

What’s IR temperature?

1. Physical Basis. Temperature of a planet. 11

Image: nature.com/nature_education

Page 12: Thomas Gasser (LSCE/ISPL)

Planet with an atmosphere

1. Physical Basis. Temperature of a planet. 12 A

tmo

sph

ere

aerosols, clouds

GHGs, clouds

F0 αF0

FS

Surf

ace

Su

n

Stefan-Boltzman law: FS = σT4

Notation: F0 = insolation α = planetary albedo FS = surface IR radiation ε = atmospheric ‘opacity’

Equilibrium: (1-α)F0 = (1-ε)FS = (1-ε)σT4 εFS

Greenhouse effect: G = εFS = εσT4

Page 13: Thomas Gasser (LSCE/ISPL)

Greenhouse effect in the solar system

1. Physical Basis. Temperature of a planet. 13

* nssdc.gsfc.nasa.gov/planetary

Mercury Venus Earth Mars

Insolation (W/m2)*§

F0

2282 654 342 147

Planetary albedo* α

0.07 0.90 0.31 0.25

Black body temperature (K) TBB = [(1-α)F0/σ] 1/4

440 184 254 (-19 °C)

210

Observed temperature* (K) Tobs

440 737 287 (14 °C)

210

Atmospheric ‘opacity’ ε = 1-TBB/Tobs

0 0.75 0.11 0

Greenhouse effect (W/m2) G = εσTobs

4

0 319 149 0

§ Insolation is a quarter the irradiance reported by NASA. This is the ratio between the cross-section of a sphere and its surface area.

Page 14: Thomas Gasser (LSCE/ISPL)

Greenhouse effect on Earth

1. Physical Basis. The case of Earth. 14

IPCC TAR

H2O 60%

CO2 26%

O3 8%

N2O+CH4 6%

The GH effect on Earth can be computed from radiation theory and knowledge of atmospheric distributed composition:

(clear sky)

Images: wikipedia.org; periodni.com

Page 15: Thomas Gasser (LSCE/ISPL)

Earth’s energy budget…

1. Physical Basis. The case of Earth. 15

IPCC AR4, WG1 Ch1

Page 16: Thomas Gasser (LSCE/ISPL)

Earth’s energy budget… easily disturbed

1. Physical Basis. The case of Earth. 16

IPCC AR5, WG1 Ch1

Page 17: Thomas Gasser (LSCE/ISPL)

Orbital and solar forcings

1. Physical Basis. Radiative forcings. 17

IPCC AR5, WG1 Ch8

Milankovich’s theory: Past changes of climate triggered by orbit-induced changes in solar influx.

Page 18: Thomas Gasser (LSCE/ISPL)

Orbital and solar forcings

1. Physical Basis. Radiative forcings. 18

IPCC AR5, WG1 Ch8

Short-term cycles of the solar activity:

Page 19: Thomas Gasser (LSCE/ISPL)

Long-lived greenhouse gases

1. Physical Basis. Radiative forcings. 19

IPCC AR4, WG1 Ch6

Page 20: Thomas Gasser (LSCE/ISPL)

Long-lived greenhouse gases

1. Physical Basis. Radiative forcings. 20

IPCC AR5, WG1 Ch6

Page 21: Thomas Gasser (LSCE/ISPL)

Long-lived greenhouse gases

1. Physical Basis. Radiative forcings. 21

IPCC AR5, WG1 Ch2

Page 22: Thomas Gasser (LSCE/ISPL)

Long-lived greenhouse gases

1. Physical Basis. Radiative forcings. 22

Source: D. Hauglustaine (LSCE/IPSL)

Page 23: Thomas Gasser (LSCE/ISPL)

Long-lived greenhouse gases

1. Physical Basis. Radiative forcings. 23

Source: D. Hauglustaine (LSCE/IPSL)

Page 24: Thomas Gasser (LSCE/ISPL)

CO2 and the carbon cycle

1. Physical Basis. Radiative forcings. 24

IPCC AR5, WG1 Ch6

About 50% of CO2 absorbed by the ocean and the vegetation:

Image: esrl.noaa.gov/gmd/ccgg/trends

Page 25: Thomas Gasser (LSCE/ISPL)

CO2 and the carbon cycle

1. Physical Basis. Radiative forcings. 25

Canadell et al., 2007

Page 26: Thomas Gasser (LSCE/ISPL)

CO2 and the carbon cycle

1. Physical Basis. Radiative forcings. 26

IPCC AR5, WG1 Ch6

CO2 is not the only GHG with a global biogeochemical cycles:

Page 27: Thomas Gasser (LSCE/ISPL)

Methane and atmospheric chemistry

1. Physical Basis. Radiative forcings. 27

Image: ds.data.jma.go.jp/ghg/info_ghg_e.html

Page 28: Thomas Gasser (LSCE/ISPL)

Methane and atmospheric chemistry

1. Physical Basis. Radiative forcings. 28

Source: H. Le Treut (LMD/IPSL)

Emission of NOx and CO

Emission of CH4 OH

O3

Page 29: Thomas Gasser (LSCE/ISPL)

Tropospheric and stratospheric ozone

1. Physical Basis. Radiative forcings. 29

IPCC AR5, WG1 Ch2

2 effects: Increase of tropospheric O3 (emission of oxydants); Decrease of stratospheric O3 (emission of halogenated species).

Image: H. Le Treut (LMD/IPSL)

(model)

Page 30: Thomas Gasser (LSCE/ISPL)

Aerosols and clouds

1. Physical Basis. Radiative forcings. 30

IPCC AR5, WG1 Ch2

Page 31: Thomas Gasser (LSCE/ISPL)

Aerosols and clouds

1. Physical Basis. Radiative forcings. 31

IPCC AR5, WG1 Ch7

(sulfates, nitrate, particulate organic matter)

(black carbon)

Page 32: Thomas Gasser (LSCE/ISPL)

Aerosols and clouds

1. Physical Basis. Radiative forcings. 32

IPCC AR5, WG1 Ch7

Page 33: Thomas Gasser (LSCE/ISPL)

Aerosols and clouds

1. Physical Basis. Radiative forcings. 33

Image: cyriljackson.wa.edu.au

And yet another global biogeochemical cycle:

Page 34: Thomas Gasser (LSCE/ISPL)

Land surface albedo

1. Physical Basis. Radiative forcings. 34

IPCC AR4, WG1 Ch2; IPCC AR5, WG1, Ch8

Land-cover change (cooling)

Black carbon deposition on snow (warming)

Page 35: Thomas Gasser (LSCE/ISPL)

Assessed by the latest IPCC report

1. Physical Basis. Radiative forcings. 35

IPCC AR5, WG1 Ch8

Page 36: Thomas Gasser (LSCE/ISPL)

Climate sensitivity

1. Physical Basis. Climate response. 36

IPCC AR5, WG1 Ch10

Radiative theory gives: 2x CO2 increases GH effect by about 3.7 W/m2 which increases surface T° by about 1.2 °C

But, there are feedbacks:

T° increases water vapor (positive feedback);

T° decreases ice cover (positive feedback);

T° changes cloudiness (positive or negative feedback).

Page 37: Thomas Gasser (LSCE/ISPL)

Models are needed to study this complex system!

1. Physical Basis. Climate response. 37

UK MetOffice

Page 38: Thomas Gasser (LSCE/ISPL)

2. Climate models

Page 39: Thomas Gasser (LSCE/ISPL)

Navier-Stokes differential equation

2. Climate models. Fluid dynamics 39

Source: H. Le Treut (LMD/IPSL)

Old equation (1845):

It is still analytically unsolved…

It concerns two stratified fluids in climate science:

Page 40: Thomas Gasser (LSCE/ISPL)

Navier-Stokes differential equation

2. Climate models. Fluid dynamics 40

Source: T. Dubos (LMD/IPSL)

It requires discretization; to avoid chaotic behavior:

and dimensioning;

Rossby nb. for geostrophic eq. (Ro < 1) Froude nb. for hydrostatic eq. (Fr < 1)

Page 41: Thomas Gasser (LSCE/ISPL)

Resolution improves

2. Climate models. Model complexity. 41

IPCC AR5, WG1 Ch1

1990 1995 2001 2007

AR5 (2013)

AR6?

Page 42: Thomas Gasser (LSCE/ISPL)

Processes improve

2. Climate models. Model complexity. 42

IPCC AR5, WG1 Ch1; IPCC AR4, WG1 Ch1

Page 43: Thomas Gasser (LSCE/ISPL)

From climate models to Earth system models

2. Climate models. Model complexity. 43

Image: nature.com/nature_education

Page 44: Thomas Gasser (LSCE/ISPL)

Coupling of several other models

2. Climate models. The IPSL model. 44

Source: J.-L. Dufresne (LMD/IPSL)

Page 45: Thomas Gasser (LSCE/ISPL)

Requiring heavy computation

2. Climate models. The IPSL model. 45

Source: H. Le Treut (LMD/IPSL)

Page 46: Thomas Gasser (LSCE/ISPL)

Atmospheric circulation

2. Climate models. Basic performance. 46

Source: H. Le Treut (LMD/IPSL)

Page 47: Thomas Gasser (LSCE/ISPL)

Some simulated trends

2. Climate models. Basic performance. 47

Mean daily precipitation over 1979-1999

Minimum daily temperature in summer over 1971-2000

Source: H. Le Treut (LMD/IPSL)

CNRM: Obs:

Page 48: Thomas Gasser (LSCE/ISPL)

Back to the FAR in 1990

2. Climate models. Basic performance. 48

observations 3 models

Source: H. Le Treut (LMD/IPSL)

Page 49: Thomas Gasser (LSCE/ISPL)

IPCC’s projections versus observations

2. Climate models. Basic performance. 49

IPCC AR5, WG1 Ch1

Page 50: Thomas Gasser (LSCE/ISPL)

Concluding words

2. Climate models. Basic performance. 50

Henri Atlan : «Il y a un problème de crédibilité des modèles de changements climatiques et des prédictions qui en sont déduites. Ces modèles concernent en effet un domaine - le climat - où le nombre de données disponibles est petit par rapport au nombre de variables qui sont prises en compte dans leur construction, sans parler des variables encore inconnues. Cela implique qu'il existe un grand nombre de bons modèles, capables de rendre compte des observations disponibles, alors même qu'ils reposent sur des hypothèses explicatives différentes et conduisent aussi à des prédictions différentes, voire opposées. Il s'agit là d'une situation dite "des modèles par les observations« , cas particulier de "sous-détermination des théories par les faits", bien connue des chercheurs engagés dans la construction de modèles de systèmes complexes naturels, où le nombre de données ne peut pas être multiplié à l'envi par des expérimentations répétées et reproductibles. Conséquence : les modèles sur les changements climatiques ne peuvent être que des hypothèses, mises en formes informatiques très sophistiquées mais pleines d'incertitudes quant à leur relation à la réalité ; et il en va de même des prédictions qui en

sont déduites.»

« La religion de la catastrophe », Le Monde, 27 mars 2010

Voir réponse: « Un étonnant effet collatéral du changement climatique », Le Monde, 6 avril 2010

Page 51: Thomas Gasser (LSCE/ISPL)

Concluding words

2. Climate models. Basic performance. 51

George E. P. Box :

« Essentially, all models are wrong, but some are useful. »

« […] all models are wrong; the practical question is how wrong do they have to be to not be useful. »

Empirical Model-Building and Response Surfaces (1987)

Page 52: Thomas Gasser (LSCE/ISPL)

3. Climate projections

Page 53: Thomas Gasser (LSCE/ISPL)

Creating scenarios

3. Climate projections. The scenarios. 53

SRES (2000) RCP (2013)

Page 54: Thomas Gasser (LSCE/ISPL)

Representative Concentration Pathways

3. Climate projections. The scenarios. 54

+ emissions of short-lived pollutants + trajectories of natural forcings

IPCC AR5, WG1 Ch11

Page 55: Thomas Gasser (LSCE/ISPL)

Temperature projections

3. Climate projections. Temperature. 55

IPCC AR5, WG1 TS

Page 56: Thomas Gasser (LSCE/ISPL)

Understanding temperature change

3. Climate projections. Temperature. 56

last glacial era (about -5°C; equilibrium)

wikipedia.org

Page 57: Thomas Gasser (LSCE/ISPL)

Understanding temperature change

3. Climate projections. Temperature. 57

climate analogues (about +4°C, one model)

Hallegatte et al., 2007

Page 58: Thomas Gasser (LSCE/ISPL)

Understanding temperature change

3. Climate projections. Temperature. 58

climate analogues (about +4°C, another model)

Hallegatte et al., 2007

Page 59: Thomas Gasser (LSCE/ISPL)

Understanding temperature change

3. Climate projections. Temperature. 59

IPCC AR4, WG2 Ch8, Ch12

2003 heat wave in Europe

Page 60: Thomas Gasser (LSCE/ISPL)

Understanding temperature change

3. Climate projections. Temperature. 60

IPCC AR4, WG2 Ch8 Ch12

2003 heat wave in Europe

Page 61: Thomas Gasser (LSCE/ISPL)

Precipitations projections

3. Climate projections. Water cycle. 61

IPCC AR5, WG1 TS

Page 62: Thomas Gasser (LSCE/ISPL)

Sea-ice cover projections

3. Climate projections. Water cycle. 62

IPCC AR5, WG1 TS

Page 63: Thomas Gasser (LSCE/ISPL)

Acidity projections and biological activity

3. Projections. Oceans. 63

IPCC AR5, WG1 TS; Bopp et al., 2013

Page 64: Thomas Gasser (LSCE/ISPL)

Acidity projections and biological activity

3. Projections. Oceans. 64

IPCC AR5, WG1 TS, Ch13

Page 65: Thomas Gasser (LSCE/ISPL)

Compatible emissions

3. Projections. Carbon cycle. 65

IPCC AR5, WG1 Ch6

Page 66: Thomas Gasser (LSCE/ISPL)

Source of the spread in projections

3. Climate projections. Uncertainties. 66

IPCC AR5, WG1 Ch1

Page 67: Thomas Gasser (LSCE/ISPL)

The longest timescale

3. Climate projections. Uncertainties. 67

IPCC AR5, WG1 Ch12

The inertia of the system implies several timescales:

Page 68: Thomas Gasser (LSCE/ISPL)

Is the system linear?

3. Climate projections. Uncertainties. 68

IPCC AR5, WG1 TS

Page 69: Thomas Gasser (LSCE/ISPL)

What about tipping points?

3. Climate projections. Uncertainties. 69

Lenton et al., 2008

Page 70: Thomas Gasser (LSCE/ISPL)

4. Attribution of climate change

Page 71: Thomas Gasser (LSCE/ISPL)

Using models to test different assumptions

4. Attribution of climate change 71

IPCC AR5, WG1 Ch10

Page 72: Thomas Gasser (LSCE/ISPL)

Detection is a matter of natural variability

4. Attribution of climate change 72

IPCC AR5, WG1 Ch10

Page 73: Thomas Gasser (LSCE/ISPL)

Thank you for your attention

References: IPCC reports available at http://www.ipcc.ch Canadell et al. (2007). “Contributions to accelerating atmospheric CO2 growth from economic

activity, carbon intensity, and efficiency of natural sinks”, PNAS, 104(47): 18866–18870.

Hallegatte et al. (2007). “Using climate analogues for assessing climate change economic impacts in urban areas”, Climatic Change, 82:47–60.

Bopp et al., (2013). “Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models”, Biogeosciences, 10:6225–6245.

Lenton et al. (2008). “Tipping elements in the Earth’s climate system”, PNAS, 105(6): 1786–1793.