this document was prepared in conjunction with work...

91

Upload: lykhuong

Post on 13-Aug-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

This document was prepared in conjunction with work accomplished under Contract No.DE-AC09-96SR18500 with the U. S. Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United StatesGovernment. Neither the United States Government nor any agency thereof, nor any of theiremployees, makes any warranty, express or implied, or assumes any legal liability or responsibilityfor the accuracy, completeness, or usefulness of any information, apparatus, product or processdisclosed, or represents that its use would not infringe privately owned rights. Reference herein toany specific commercial product, process or service by trade name, trademark, manufacturer, orotherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring bythe United States Government or any agency thereof. The views and opinions of authors expressedherein do not necessarily state or reflect those of the United States Government or any agencythereof.

This report has been reproduced directly from the best available copy.

Available for sale to the public, in paper, from: U.S. Department of Commerce, National TechnicalInformation Service, 5285 Port Royal Road, Springfield, VA 22161,phone: (800) 553-6847,fax: (703) 605-6900email: [email protected] ordering: http://www.ntis.gov/help/index.asp

Available electronically at http://www.osti.gov/bridgeAvailable for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S.Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN37831-0062,phone: (865)576-8401,fax: (865)576-5728email: [email protected]

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page ii

KEYWORDS:Hanford River Protection ProjectCrossflow FiltrationTank 241-AZ-101Envelope B, Envelope DSeparable Organics

Evaluating The Effects Of Tri-Butyl Phosphate And NormalParaffin Hydrocarbon In Simulated Low-Activity Waste SolutionOn Ultrafiltration

SAVANNAH RIVER TECHNOLOGY CENTER

J. R. ZamecnikM. A. Baich

April 25, 2002

Westinghouse Savannah River CompanySavannah River SiteAiken, SC 29808

Prepared for the U.S. Department of Energy under Contract No. DE-AC09-96SR18500

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page iv

Table of Contents

1.0 Executive Summary................................................................................................................ 1

2.0 Background and Introduction ............................................................................................... 1

2.1 Objectives ....................................................................................................................................... 12.1.1 General Objectives................................................................................................................................ 12.1.2 Specific Objectives ............................................................................................................................... 2

2.2 Experimental System & Operation.............................................................................................. 22.2.1 Cross-flow Filter Conditioning ............................................................................................................. 3

2.3 Experimental Methods & Materials ............................................................................................ 4

2.4 Experimental Runs Matrix........................................................................................................... 7

3.0 Results and Discussion........................................................................................................... 9

3.1 Experimental Data......................................................................................................................... 93.1.1 Clean Water Flux .................................................................................................................................. 93.1.2 Experimental Runs .............................................................................................................................. 10

3.2 Simulant and Permeate Composition Versus Time ................................................................. 12

3.3 Organics in Slurry and Permeate .............................................................................................. 22

3.4 Statistical Analysis of Data ......................................................................................................... 24

3.5 Quality Assurance ....................................................................................................................... 27

4.0 Conclusions .......................................................................................................................... 27

5.0 Appendices ............................................................................................................................ 29

5.1 Appendix – Supernate Recipe .................................................................................................... 29

5.2 Appendix – Simulant Compositions .......................................................................................... 30

5.3 Appendix – Experimental Design............................................................................................... 40

5.4 Appendix – Experimental Results.............................................................................................. 42

5.5 Appendix – Curve Fits from JMP.............................................................................................. 66

6.0 References............................................................................................................................. 82

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page v

List of Tables

Table 2.1 Amounts of Simulants and Chemicals Used ........................................................... 5

Table 2.2 Measured Initial Composition of Simulant from Supernate, Solids, &Trim Chemicals ..................................................................................................... 6

Table 3.1 Average Compositions of Slurry, Permeate, and Solids ...................................... 15

Table 3.2 Composition of Permeate........................................................................................ 20

Table 3.3 Dibutylphosphate and 1-Butanol in Samples ....................................................... 24

Table 3.4 Parameter Estimates for Model with Velocity, Adjusted Time, Pressure,and Organics Content ......................................................................................... 25

Table 3.5 Parameter Estimates for Model with Velocity and Adjusted Time.................... 25

Table 5.1 Supernate Simulant Samples.................................................................................. 30

Table 5.2 Sludge Solids Sample #1: Composition of solids filtered from sample. ............. 32

Table 5.3 Sludge Solids Sample #2: Composition of solids filtered from sample. ............. 33

Table 5.4 Sludge Solids Sample #3: Composition of solids filtered from sample. ............. 34

Table 5.5 Sludge Sample #1: Composition of filtrate from sample. .................................... 35

Table 5.6 Sludge Sample #2: Composition of filtrate from sample. .................................... 36

Table 5.7 Sludge Sample #3: Composition of filtrate calculated from compositionof Sample #2 by ratio. ......................................................................................... 37

Table 5.8 Overall Compositions of Samples #1-3 Calculated from Solids andFiltrate Analyses. ................................................................................................. 38

Table 5.9 Trim Chemicals Added........................................................................................... 39

Table 5.10 Experimental Design Table .................................................................................... 40

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page vi

List of Figures

Figure 2.1 Crossflow Ultrafilter System.................................................................................... 3

Figure 2.2 Cross-flow Filtration Schematic .............................................................................. 4

Figure 2.3 Level Z (No Organics) Factorial Design.................................................................. 8

Figure 2.4 Level L (25 mg/L Each TBP & NPH) Factorial Design......................................... 8

Figure 2.5 Level H (2500 mg/L Each TBP & NPH) Factorial Design .................................... 9

Figure 3.1 Clean Water Flux Prior to Experimentation ........................................................ 10

Figure 3.2 Factorial Data Points for All Levels ...................................................................... 11

Figure 3.3 All Centroid Flux Data ........................................................................................... 12

Figure 3.4 Total Solids, Suspended Solids, and Specific Gravity versus Run ..................... 13

Figure 3.5 Total Solids, Suspended Solids, and Specific Gravity versus Level ................... 16

Figure 3.6 Ion Chromatography Data for Slurry Samples.................................................... 16

Figure 3.7 Ion Chromatography Data for Permeate .............................................................. 17

Figure 3.8 Slurry Carbon and Free Hydroxide Analyses ...................................................... 17

Figure 3.9 IC, Hydroxide, and TIC/TOC mg/L Data Normalized to ConstantAverage Nitrate.................................................................................................... 18

Figure 3.10 IC, Hydroxide, and TIC/TOC Molar Data Normalized to ConstantAverage Nitrate.................................................................................................... 18

Figure 3.11 Elemental Analyses (by ICPES) for Major Metals .............................................. 19

Figure 3.12 Ratio of Iron and Zirconium to Suspended Solids............................................... 19

Figure 3.13 Photos of Slurry Samples........................................................................................ 22

Figure 3.14 Possible Organic Phase Separation in Piping ....................................................... 22

Figure 3.15 Organics Concentrations in Slurry and Permeate ............................................... 23

Figure 3.16 Fitted Data for Flux versus Velocity and Time .................................................... 26

Figure 3.17 Fitted Data for Flux versus Velocity, Time, and Organics.................................. 27

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page vii

List of Acronyms

ADS Analytical Development SectionDI deionizedDBP dibutylphosphatefps feet per secondHLW high level wasteIC ion chromatographyICPES inductively coupled plasma emission spectroscopyITS Immobilization Technology SectionNPH normal paraffin hydrocarbon (dodecane)QA Quality AssuranceQC Quality ControlSpGr specific gravitySRS Savannah River SiteSRTC Savannah River Technology CenterTBP tributyl phosphateTC total carbonTIC total inorganic carbonTOC total organic carbonTS total solidsTSS total suspended solidsWPT Waste Processing Technology (Section)WSRC Westinghouse Savannah River Company

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 1 of 82

1.0 Executive Summary

The effect on the filter flux of tributyl phosphate (TBP) and normal paraffin hydrocarbon(dodecane) in a simulated AZ-101 3.5 wt% insoluble, 28-30 wt% total solids slurry was studied.A 0.1 µm sintered metal Mott filter element was used for this work. The operating parametersused were specified by the customer to be within the range applicable to the full-scale plant.Specifically, transmembrane pressures of 20-60 psi and linear velocities of 7-15 fps were tested.

With TBP and dodecane at up to 2500 mg/L each, no effect on the filter flux was found.Therefore, the de minimis concentration of separable organics, if one exists, must be greater than2500 mg/L.

All measured fluxes exceeded the customer’s minimum of 0.014 gpm/ft2. Simulants with noorganics, 25 mg/L each, and 2500 mg/L each were concentrated by a factor of one to producepermeate for ion exchange tests.

Cleaning of the system after use with the organics proved difficult using only water and nitricacid. It should be noted that the concentrations of separable organics were much higher thanshould actually be seen in the WTP. We recommend that the effect of TBP and NPH be studiedfurther during filter cleaning tests.

2.0 Background and Introduction

Detailed background on the origin of this task is given in the customer’s (RPP-WTP) specifyingdocument: TSP-W375-00-00036, Rev. 1.1 This work is specified in the RPP-WTP R/T Plan(PL-W375-TE00007, Rev. 0).

2.1 Objectives

2.1.1 General Objectives

The effects of trace quantities of separable organics (tri-butyl phosphate {TBP} andnormal paraffin hydrocarbon{NPH}, herein also called “organics”) in the tank wasteliquid feed to the Hanford River Protection Project Waste Treatment Plant (RPP-WTP)and the fate of the separable organics within the system shall be evaluated. Bulkaverage concentrations of ~25 ppm (or mg/L) are expected, but instantaneousconcentrations could be higher. Each potentially affected unit operation, includingultrafiltration, ion exchange, and evaporation shall be examined for process, safety, andpermitting implications. Based upon the results of these tests, the SRTC shall propose ade minimis concentration level for separable organics that could be sent to the WTPwithout adversely affecting the WTP. Specifically, the effects of insoluble TBP andNPH on ultrafiltration filter flux rate with a simulated AZ-10l solution are to beevaluated in this task.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 2 of 82

The products from these filtration tests will be used as the feed for cesium andtechnetium ion exchange studies, which will be covered by a separate Task Technical &Quality Assurance Plan. Evaporation studies are described in a separate customerrequest.2

2.1.2 Specific Objectives

1. Determine the effect on filter flux rate, for a 0.1 µm sintered metal Mott filterelement, of processing a simulated waste solution containing approximately 25 ppm(mg/L) TBP and 25 ppm NPH each above their solubility limit. The solubility limitfor TBP is approximately 1.1 mg/L. Although the solubility limit for NPH in the saltsolution is not exactly known, it should be much less than that for TBP since NPHis more non-polar.

2. Determine the effect on filter flux rate, for a 0.1 µm sintered metal Mott filterelement, of processing a simulated waste solution containing incrementally higherlevels of TBP and NPH each above their solubility limit. Organic levels up to2500 mg/L each are to be studied.

3. For the simulant without TBP/NPH and simulant with two levels of TBP and NPH,produce at least 2.0-2.5 liters of permeate solution of each for use in ion exchangetests.

2.2 Experimental System & Operation

Figure 2.1 shows a photograph of the system. A schematic of the experimental system isshown in Figure 2.2. The experimental crossflow filter, or Cold Cells Unit Filter (CUF)contains a single crossflow filter tube. A 5-stage centrifugal pump is used to feed the slurryinto the filter. Some liquid permeates through the filter wall (permeate) and the remainderpasses through the filter axially (concentrate). As solids accumulate on the filter wall,backpulsing can be used to remove accumulation. The filter in this work was a 3/8-inchinternal diameter, 2-foot long Mott Metallurgical sintered stainless steel filter. The nominalpore size was 0.1 µm. The single filter tube was mounted horizontally in a stainless steelhousing of welded construction.

Filtrate flowrate was measured with a graduated collection glass and stopwatch. The simplebackpulse system is manually operated. The backpulse chamber is first charged with filtratefollowed by compressed air. Quickly opening a toggle valve below the chamber forcesreverse flow of filtrate upon the filter medium. Standard Bourdon tube type pressure gaugeson both the inlet and exit of the filter indicate pressure. A thermocouple mounted near thebottom of the reservoir measures slurry temperature directly. A heat exchanger and chillerunit provide temperature control. All experiments were performed at 25 ± 5°C.

Slurry is recirculated through a heat exchanger and the filter element. A magnetic flow metermeasures the volumetric flow in the system, which is displayed on a digital read out alongwith the feed vessel temperature. The filter is back-pulsed before the start each experiment by

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 3 of 82

pressurizing the backpulse tank to 45 psig. The toggle valve is then open repeatedly at noflow conditions. When air is observed returning to the feed vessel, back-pulsing is stopped.Each set of experimental conditions are set by adjusting the flow of air to the feed pump andadjusting the slurry flow control valve until the desired flow and transmembrane pressuresare achieved. The system was operated per an approved operating procedure.3

2.2.1 Cross-flow Filter Conditioning

The equipment internals were first rinsed with flush solutions or DI water per the stepsbelow. The filter cleaning fluids were pre-filtered with 0.22 µm nylon filters before use.The laboratory de-ionizing unit uses a 0.22 µm filter on the discharge.

A previously used filter element was used. It was first drained of any previous fluid,then filled with deionized water. This water was filtered through a 0.22 µm nylon filter,which was located on the deionizer. This water was then recirculated through the filterconcentrate side for at least 15 minutes. The filtrate generated was recycled back to thefeed tank. The system was then drained, filled with ~1 M nitric acid, and recirculatedfor at least one hour. The filtrate generated was again recycled back to the reservoir. Atleast 2 backpulses were done in this period to clean the backpulse system as well as thefilter. The system was then drained and the backpulse chamber is purged to empty it. Asolution of 0.01 M NaOH was then added and recirculated for at least 15 minutes. Atleast 2 backpulses were done in this period to clean the backpulse system as well as thefilter. The entire system and backpulse chamber were then drained and then refilledwith fresh DI water (the system is laid up with DI water).

CENTRIFUGALPUMP

FEEDTANK

PERMEATE FLOWMETER

FILTER

HEATEXCHANGER

MAGNETICFLOWMETER

BACKPULSECHAMBER

Figure 2.1 Crossflow Ultrafilter System

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 4 of 82

P1 P2

CW In CW Out

Drain

Feed Tank

Back-PulseTank

Air Drivefor Pump

PermeateProduct

Toggle

Back Pulse Air

PumpOiler

Regulator

House Air

3-Way

Heat Exchanger

PumpSpeed

P3

V4

V7

V3

V5

V6

V8

V1

V10

V11

V2

SlurryFlowmeter

Filter Element

CentrifugalPump

Flo

wm

eter

Figure 2.2 Cross-flow Filtration Schematic

2.3 Experimental Methods & Materials

Initially, this work was specified to be performed with no insoluble solids, then respecified toinclude 0.1 wt% insoluble solids, then again respecified to use 3 wt% insoluble solids. Giventhese changes, to complete this work on a reasonable schedule, it was decided that the bestway to proceed was to use the already made supernate simulant, some existing Envelope Dsolids simulant, and trim chemicals.

The simulant used for these experiments was made from a supernate simulant and a solidssimulant. A simulated Tank 241-AZ-101 supernate solution that was ~5M Na concentrationwas prepared using a slight modification of the Envelope B simulant recipe.4 The details ofthe recipe are given in Appendix 5.1. The solids used were an Envelope D simulant.4 Thesupernate simulant and the solids simulant were each analyzed prior to use to verify correctmakeup. The solids simulant used was actually from three different bottles of previouslymade materials that were at different insoluble solids concentrations (8.03-14.8 wt%). Notethat concentration of these solids simulants to greater than 15 wt% insoluble solids by deadend filtration and centrifugation had been tried previously with no success, so they were usedas is. The supernate simulant was mixed with calculated amounts of the solids simulants to

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 5 of 82

achieve a total insoluble solids content of nominally 3.0 wt%. Additional trim chemicalsneeded to be added to adjust the soluble solids concentrations to the correct values since thesolids simulant had been washed to remove soluble components (e.g., Na, nitrite, nitrate,etc.). The amounts of each simulant material and chemicals used are shown in Table 2.1. Thecompositions of the simulant materials are shown in Appendix 5.2.

Table 2.1 Amounts of Simulants and Chemicals Used

MaterialInsoluble Solids

wt%Amount

UsedSupernate simulant 0 4.0 LSolids simulant 11.2 1.84 LSolids simulant 14.8 0.25Trim chemicals 0 513 gFinal Simulant ~ 3 6.3 L

The supernate simulant was prepared to give an Al concentration of approximately10700 mg/L, but precipitation of aluminum as alumina occurred immediately. The pH wasabout 11.3 and the total hydroxide concentration was greater than 1.0M. Small amounts of Siand Li also appear to have precipitated. Analysis of precipitate from a previous attempt toprepare this simulant showed that the solids were predominantly gibbsite [Al(OH)3], NaNO2,NaNO3, and a trace amount of hydrogen aluminum silicate [H(AlSi2O6)]. The actualsupernate simulant Al concentration was 5070 mg/L. Although aluminum precipitation couldnot be avoided, it was decided to continue with the experiments since the concentration ofsoluble aluminum in the simulant was deemed to have little effect on filtration. The supernatesimulant was filtered prior to mixing with the solids simulants. Upon mixing the supernatesimulant with the solids simulants and trim chemicals, the final composition shown in Table2.2 was achieved. Note that the Al concentration is less than the original simulant. Aluminumwas not added as a trim chemical, since it was suspected that additional precipitation wouldoccur.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 6 of 82

Table 2.2 Measured Initial Composition of Simulant fromSupernate, Solids, & Trim Chemicals

Filtrate Filtered Solids Total SampleTreatment: Filtered Aqua Regia Dissolution Microwave Dissolution

mg/L mg/L mg/kg mg/kg mg/L mg/L mg/L mg/LICPES: Al 1970 2100 7289 7257 2694 2662 2678 2691

B 20.2 28.1 544 461 NA NA NA NABa <0.12 <0.12 873 874 66.3 65.6 65.0 65.7Ca 0.404 0.812 2371 2342 185 182 179 177Cd 0.490 0.745 11120 11155 820 823 824 826Co <0.44 <0.44 1425 1449 107 107 105 108Cr 443 454 1660 1684 551 562 559 564Cu <0.5 <0.5 482 475 35.7 32.5 29.9 28.0Fe 0.560 0.952 142543 142434 10845 10898 10915 10895Li <1 <1 <43 <43 <30 <30 <28 <28

Mg <0.84 <0.84 245 226 <25 <25 <23 <23Mn <0.09 <0.09 3452 3452 287 289 261 261Mo 5.00 5.25 <43 <43 30.4 30.4 27.7 27.7Na 99600 105000 181250 176188 109955 106667 108417 107407Ni <0.62 <0.62 8616 8691 682 681 690 688P 711 735 1240 1016 1031 1018 1052 1022

Pb <6.9 <6.9 1552 1585 <210 <210 <191 <222Si 3.70 4.40 3196 3064 6077 6115 5653 5366Sn <2.6 <2.6 <112 <112 <79 <79 <72 <72Sr 0.165 0.170 428 422 97.6 97.0 31.7 32.1Ti <1.4 <1.4 216 215 <42 <42 <39 <39V <1.3 <1.3 <56 <56 <40 <40 <36 <36

Zn <3.7 <3.7 480 482 <112 <112 <102 <102Zr 0.997 2.15 42243 42785 3677 3669 3479 3496La <7 <7 5578 5563 358 337 230 263K 3650 3920 5753 5864 3547 3509 3786 3451

Re 33.2 34.4 52.7 62.3 <61 <61 64 64S 6190 6230 9429 9513 6572 6682 6719 6623

Ag <3 <3 599 841 <91 <91 <83 <83Ce <7.7 <7.7 1243 1300 <234 <234 <213 <213Nd <2.6 <2.6 3952 3992 390 316 300 319

IC: chloride 194 231 200fluoride 1738 2011 1694

nitrate 67107 75686 63905nitrite 54366 50080 61437

sulfate 18123 20532 17019phosphate 2547 2358 2358

TC NA 4000TIC NA 4000

TOC NA <200Total Solids (wt%) 26.5 28.0

Insoluble Solids (wt%) 2.95Specific Gravity 1.22 1.25

Numbers in red with < indicate values below detection limit

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 7 of 82

Samples of the slurry simulant and permeate were taken throughout the experiments. Somesamples were analyzed completely, while others were analyzed only for total solids, insolublesolids, and specific gravity. Sample results from throughout the experiments are discussed inSection 3.1. The TBP and NPH used were 99.9+ % pure. The NPH used was actuallydodecane. The TBP and NPH were first mixed to a 50:50 wt% mixture and then the mixturewas added to the simulant in the necessary quantities.

2.4 Experimental Runs Matrix

The experimental runs were divided into four sections:

1. No organics. Factorial design. Permeate flux versus transmembrane pressure (TMP) andlinear velocity. (Called “Level Z” herein.)

2. TBP and NPH both at 25 mg/L above the solubility limit. Factorial design as in #1.(Called “Level L” herein.)

3. Increase TBP and NPH to as high as 2500 mg/L each to determine concentration (impactlevel) that adversely affects the filter flux. This is the “de minimis” concentrationdetermination. (Called “Level M” herein.)

4. Organics at impact level. Factorial design as in #1. (Called “Level H” herein.)

The factorial design for the no organics level is shown in Figure 2.3. Three clean water fluxdetermination points are also shown in this Figure. The clean water flux was determined priorto the first runs with simulant sludge. The level L and level H designs are shown in Figure2.4-Figure 2.5. The clean water flux was again determined after level H was completed. Thenumbers on each experimental point indicate the order in which the experiments wereconducted; this order was randomly chosen for each level prior to the start of theexperiments. Details of these experimental designs are given in Appendix 5.3.

Between each level, approximately two liters of permeate was collected for further use in ionexchange and evaporation experiments. For all three collection periods, the permeate wascollected at a velocity of 13.4-15.9 fps, TMP of 32-39 psi, and a permeate flux of0.061-0.095 gpm/ft2. The Test Specification called for these production runs to be conductedat the optimum conditions of flow and pressure. The results of this work showed that thehighest permeate flowrate was achieved at the highest attainable velocity and any pressure(above 20 psi, since lower pressures were not tested).

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 8 of 82

1

3

5

7

9

11

13

15

17

0 10 20 30 40 50 60 70

Transmembrane Pressure (psi)

Vel

oci

ty (

ft/s

ec)

Surrogate Feed

Clean Water

1, 6, 11

8

4

10

5

3

2

9

7

0a 0b 0c

Centroid

Figure 2.3 Level Z (No Organics) Factorial Design

1

3

5

7

9

11

13

15

17

0 10 20 30 40 50 60 70

Transmembrane Pressure (psi)

Vel

oci

ty (

ft/s

ec) 2, 4, 11

3

9

10

1

5

7

8

6

Centroid

Figure 2.4 Level L (25 mg/L Each TBP & NPH) Factorial Design

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 9 of 82

1

3

5

7

9

11

13

15

17

0 10 20 30 40 50 60 70

Transmembrane Pressure (psi)

Vel

oci

ty (

ft/s

ec)

Surrogate FeedClean Water

1, 5, 11

6

9

10

7

3

8

4

2

0a 0b 0c

Centroid

Figure 2.5 Level H (2500 mg/L Each TBP & NPH) Factorial Design

3.0 Results and Discussion

3.1 Experimental Data

3.1.1 Clean Water Flux

Clean water fluxes were taken after the system was flushed with cleaning fluids asdescribed in section 2.2.1. Transmembrane pressures were between 5 and 20 psi andfluxes were measured after initial backpulsing. The purpose for obtaining the cleanwater flux measurements is to ensure the equipment is cleaned and to establish abaseline filter flux to determine if filter fouling occurs during tests with the wastesimulant sample. The high filtrate flux observed for water made it necessary to collectfiltrate in a 500 ml graduated cylinder instead of the 40 ml graduated collection vesselused in slurry operation. Figure 3.1 presents the measured clean water flux prior to andafter the experimentation. The clean water flux prior to the filtration of the Sr/TRUprecipitate of Envelope C waste, on a similar ultrafilter, is also shown.5

The post-test clean water flux data was taken after the system had been cleaned asdescribed in section 2.2.1, with the exceptions that the 0.01M NaOH flush was not doneand a flush with a low-foaming detergent (Alconox) was performed. Soaking with~1M nitric acid for several days did not return the flux back to the original values, sothe detergent was used on the assumption that the organics had affected the filter

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 10 of 82

(although not adversely for slurry filtration). Both TBP and NPH are relatively stable innitric acid (they are used in solvent extraction), so the apparent ineffectiveness of thenitric acid is not surprising since little organic degradation should occur.

After soaking with detergent, the system was flushed with water and then re-cleanedwith nitric acid. At this time, significant foaming occurred, so the acid was left in thesystem for several weeks. After the additional soaking, the foaming stopped and thefluxes returned to values similar to before the run. There is no comparative cleaningdata with an AZ-101 simulant without organics present to determine if the samedifficulty in cleaning would have occurred.

Also note that the final feed used, at 2500 mg/L each of TBP and NPH, was muchhigher than would ever be expected in the WTP, so the effect of these organics mayhave been much more severe that will actually occur in the WTP. We recommend thatthe effect of separable organics on cleaning be investigated during filter cleaning tests.

Figure 3.1 Clean Water Flux Prior to Experimentation

3.1.2 Experimental Runs

The no organics (Level Z) and the 25 mg/L each of TBP & NPH experiments (Level L)were run in succession per the designs shown in Figure 2.3 and Figure 2.4. Uponcompleting level L, the organics content was incrementally increased from 25 mg/Leach of TBP & NPH to 2500 mg/L of each. The organics content was increased eachtime by adding the additional organics on top of the feed in the feed tank. The pumpwas then started and run for several minutes at ~15 fps velocity to mix the organics.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 11 of 82

The Test Plan specified that addition of organics cease when the “impact level” wasfound. However, no significant impact of the organics up to 2500 mg/L appeared to befound. The high organics (Level H) factorial experiment, with both TBP and NPH at2500 mg/L, was then performed per the design shown in Figure 2.5.

The experimental fluxes measured for all levels of the factorial and impact levelexperiments are shown in Appendix 5.4. Plots of these same data are also shown in thisAppendix. Figure 3.2 shows the factorial experiment arrangement with the actualvariable values. The inability to achieve the highest flow/pressure combinations had noeffect on the outcome of these tests. It should be noted that the multi-stage centrifugalpump should have been a six stage, rather than five stage pump.

1

3

5

7

9

11

13

15

17

0 10 20 30 40 50 60 70

Transmembrane Pressure (psi)

Vel

oci

ty (

ft/s

ec)

Surrogate Feed

Clean Water

Actuals UNABLE TO OPERATEIN THIS RANGE

Figure 3.2 Factorial Data Points for All Levels

Because the factorial experiment used various combinations of TMP and velocity,direct graphical comparison of the data is somewhat difficult except where thesevariables are at the same values. Figure 3.3 shows the measured fluxes versus runnumber for the centroid point of the factorial experiments; this plot also includes theimpact level determination data, which was also taken at the centroid. The minimumflux for Envelope B/D is 0.014 gpm/ft2.6 During the Level L factorial experiment, thecentrifugal pump began to leak from the mechanical seal. By the end of this level, theleak was too great to continue without repairs. To repair the pump, the system had to bedrained and flushed. The flushing of the system resulted in a step change increase ofabout 0.006 gpm/ft2 in the steady state flux. Note the two data points that were run atthe same conditions. To account for this change in flux, all of the flux data after the

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 12 of 82

pump repair was decreased by 0.006 gpm/ft2 to put this data on the same basis as theinitial data.

The steady state flux decreased approximately linearly until the beginning of the impactlevel (M) determination runs. This type of behavior has been seen in other ultrafiltrationwork at SRTC.7 The cause for this type of trend has been attributed to either irreversible(except with cleaning) changes in the filter membrane or particle degradation to anultimate particle size distribution.8 Both of these proposed phenomena are functionsprimarily of run time.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 5 10 15 20 25

Cumulative Run Time (hr)

Ste

ady

Sta

te F

lux

(gp

m/f

t2 )

Level M data adjusted 0.006 gpm/ft2

downward to adjust for cleaning effectof flushing between Runs L and M

Both at 50 mg/Ltotal organics

no organics(Z)

25 mg/L eachTBP & NPH

(Level L)

25 to 2500 mg/L each TBP & NPH

(Level M)

2500 mg/L eachTBP & NPH

(Level H)

lines shown only tohighlight correlation;not a curvefit

� Original Data� Adjusted Data

RPP-WTP MINIMUM FLUX

Figure 3.3 All Centroid Flux Data

3.2 Simulant and Permeate Composition Versus Time

The total solids and suspended (insoluble) solids contents and the specific gravity of thesimulant sludge and permeate was measured periodically. More complete analyses of thecomposition of the simulant were made between each level of experiment. Figure 3.4 showsthe total solids, suspended solids, and specific gravity of the slurry throughout theexperiments. The total solids content ranged from about 27.5 to 29.0 wt% during the factorialexperiments, and increased during the concentration steps. These data are also summarized inFigure 3.5. Overall, there was a slight increase in all three quantities from level to level.These differences are due to the way each level was started. Upon completion of theconcentration step from the previous level, supernate simulant was re-added to the feed tankin the approximate amount that had been removed. The variation in the amounts of theseadditions is the reason for the different solids and specific gravity measurements.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 13 of 82

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50 55 60

Cumulative Run #

To

tal S

olid

s o

r S

usp

end

ed (

Inso

lub

le)

So

lids

(wt%

)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Sp

ecif

ic G

ravi

ty

Total Solids

Suspended Solids

Specific Gravity

NO ORGANICS(level Z)

25 mg/L EACH(level L)

INCREASE from25 mg/L EACH to2500 mg/L EACH

(level M)

2500 mg/L EACH(level H)

CO

NC

EN

TR

AT

E

CO

NC

EN

TR

AT

E

CO

NC

EN

TR

AT

E

Figure 3.4 Total Solids, Suspended Solids, and Specific Gravity versus Run

The composition of the slurry, permeate (or filtrate from slurry samples), and the filteredsolids are shown in Table 3.1. Most of the analyses of the slurry from level to level areconsistent and generally within 20%. Different types of dissolutions were sometimesnecessary for the elemental analyses to dissolve the entire sample. The microwave dissolutionwas usually used, but the peroxide fusion and aqua regia dissolutions were also used.

Since the main purpose of this work was to determine if the presence of the TBP and NPHhave any effect on the filtrate flux, it was important to eliminate other possible causes for thedata behavior. Dissolution or precipitation of selected species could have a significant effecton the filterability of the slurry. Figure 3.6-Figure 3.8 show the slurry and permeate IC andcarbon analyses plotted versus cumulative run number. Note that some of the variation seenis due to slightly different solids concentrations that existed during the different levels. Therewere several unexpected trends. The phosphate concentration in both the slurry and permeateappears to have dropped off during the high organics runs. An increase in phosphorus wasexpected with the addition of the TBP; however, the difficulty in getting a representativesample containing the organic phase contributed to this trend (see discussion in Section 3.3).The hydroxide concentration also dropped off during the experiments, starting at about0.97M and dropping to about 0.8M. In Figure 3.9-Figure 3.10, the IC and TIC/TOC data isshown in mg/L and Molar, respectively, where all concentrations have been normalized to aconstant nitrate concentration. Nitrate concentration was not expected to change except fordilution effects. These figures show that when normalized to nitrate, the concentrations ofsulfate, chloride, and fluoride stay essentially constant. The graph of Molar concentrationshows that the decrease in the hydroxide concentration is, to within the analytical accuracy,balanced by the increase in the carbonate concentration. Therefore, absorption of carbondioxide appears to account for the hydroxide decrease.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 14 of 82

The data in Figure 3.11 show that the iron concentration was relatively constant during thefactorial experiments and that it increased during the concentration, as expected. Iron was themajor insoluble species in the slurry. The other significant insoluble species were Zr, and Si;the data for both of these is inconclusive. The dissolution of Zr by the microwave and aquaregia methods gave inconsistent results, whereas there was significant scatter in the Si data.The soluble species Na, Al, Cr, and K all stayed relatively constant as expected.

Since Zr and Fe were mostly insoluble, their concentrations in the slurry should parallel thesuspended solids concentration. The ratio of these elements to the TSS is shown in Figure3.12. The ratios, within experimental variation, are constant.

Figure 3.8 shows the carbon analyses during the experiments. There is good agreementbetween the TIC and carbonate analyses (although a constant offset) and also between theTOC analyses and the TOC calculated from the organics added (except for the last datapoint). The TOC calculated from the organics measured by GC-MS was generally about 1/3of the actual amount added. This discrepancy can be explained by the difficulty in getting arepresentative sample of the slurry/organic phase mixture, which is discussed in Section 3.3.The average analyses of filtrate from slurry and permeate were shown in Figure 3.2. Thecomposition of the permeate varied little during the experiments, as shown in Table 3.2. Thefirst two columns and the last column are data for dead-end filtered slurry.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 15 of 82

Table 3.1 Average Compositions of Slurry, Permeate, and Solids

Filtrate orPermeate

SludgeSolids

Slurry –Level Z Start

Slurry -Level Z

Concentrated

Slurry -Level L

Start

Slurry –Level L

Concentrated

Slurry -Level H

Start

Slurry –Level H

Concentratedmg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

Al 2339 7273 2681 2862 3038 3356 2782 NAB 21.4 503 NA NA NA NA <29.6 621Ba 0.23 931 66 94 70.8 103 297 149Ca <0.47 3131 181 256 196 277 180 1054Cd 0.87 11128 823 1189 887 1300 831 1664Co <0.44 1459 106 156 118 167 108 219Cr 525 1803 559 589 649 710 624 737Cu <0.50 378 32 44 42.8 43.8 30.0 <18.8Fe 3.58 144878 10888 15394 11548 17076 10852 21717Li <1.00 <71 <29 <29 <30.8 <30.1 <14.1 <37.5Mg <0.84 248 <24 <25 <25.9 <25.3 <17.1 <73.8Mn <0.13 3592 274 380 289 411 272 541Mo 4.51 <71 <29 <31 <32.5 <30.1 <14.1 <37.5Na 110622 178719 108112 108213 112206 114892 112549 NANi <0.71 8809 685 960 732 1058 665 1364P 742 2343 1031 1069 968 991 395 862Pb <6.90 1717 <208 207 <213 217 163 270Si 3.55 5247 5803 3838 5292 5421 NA 5801Sn <2.60 <184 <76 <75 <80.2 <78.2 <36.6 <97.5Sr <0.12 444 65 60 46.8 48.6 40 NATi <1.40 259 <41 <43 <43.2 <42.1 <20.2 <191V <1.30 <92 <38 <37 <40.1 <39.1 <18.3 <48.8Zn <3.70 513 <107 <106 <114 <111 <52.1 <139Zr 3.45 42514 3580 4970 3786 5494 2999 NALa <7.00 5510 297 361 324 498 440 893K 4141 5809 3573 3534 3619 3842 3768 NARe 38.0 127 <63 <58 <62.0 <81.0 <70.4 <37.5S 6386 9405 6649 6557 6654 6635 7105 6991Ag <3.00 1226 <87 <144 <92.5 <150 <73.8 <313Ce <7.70 1326 <224 <222 <237 <232 <119 <289Nd <2.60 3921 331 380 365 476 288 603chloride 164 NA 215 221 207 221 161 155fluoride 1629 NA 1852 1888 1866 1973 1793 1705nitrate 62749 NA 69795 70394 73099 77174 69285 66567nitrite 49750 NA 55758 55171 57827 61918 58525 59140sulfate 16286 NA 18776 17332 18714 19701 17207 16302phosphate 2108 NA 2358 2424 2167 2276 1655 1325carbonate NA NA 22302 24105 24432 29403 27588 27690hydroxide NA NA 17061 16426 16394 14799 13782 13336TS (wt%) 27.25 NA 28.04 29.04 28.8 30.5 27.7 30.1TSS (wt%) NA NA 2.95 4.93 3.08 5.23 3.53 6.12SpGr 1.235 NA 1.249 1.261 1.25 1.27 1.26 1.28

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 16 of 82

0

5

10

15

20

25

30

35

Level Z Start Level Z afterConcentration

Level L Start Level L afterConcentration

Level H Start Level H afterConcentration

So

lids

(wt%

)

1.24

1.25

1.26

1.27

1.28

1.29

Sp

ecif

ic G

ravi

ty

TSTSSSpGr

TS TSS SpGrLevel Z S tar t 28.04 2.95 1.25

Level Z after Concentrat ion 29.04 4.93 1.26Level L S tar t 28.82 3.08 1.25

Level L after Concentration 30.53 5.23 1.27Level H S tart 27.66 3.53 1.26

Level H after Concentration 30.14 6.12 1.28

Figure 3.5 Total Solids, Suspended Solids, and Specific Gravity versus Level

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60

Cumulative Run #

Nit

rate

, Nit

rite

, Su

lfat

e (m

g/L

)

0

500

1000

1500

2000

2500

3000

3500

4000

Ch

lori

de,

Flu

ori

de,

Ph

osp

hat

e (m

g/L

)

nitrate

nitrite

sulfate

chloride

fluoride

phosphate

Figure 3.6 Ion Chromatography Data for Slurry Samples

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 17 of 82

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 10 20 30 40 50 60

Cumulative Run #

Nit

rate

, Nit

rite

, Su

lfat

e (m

g/L

)

0

500

1000

1500

2000

2500

3000

3500

Ch

lori

de,

Flu

ori

de,

Ph

osp

hat

e (m

g/L

)

nitratenitritesulfatechloridefluoridephosphate

Figure 3.7 Ion Chromatography Data for Permeate

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60

Cumulative Run #

Co

nce

ntr

atio

n (

mg

/L)

TC

TOC

TIC

TIC from carbonate

TOC from Organics Measured

TOC from Organics Added

Free Hydroxide

Figure 3.8 Slurry Carbon and Free Hydroxide Analyses

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 18 of 82

0

10000

20000

30000

40000

50000

60000

70000

80000

0 10 20 30 40 50 60

Cumulative Run #

Nit

rate

, Nit

rite

, Su

lfat

e, H

ydro

xid

e (

mg

/L)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Ch

lori

de,

Flu

ori

de,

Ph

osp

hat

e, T

IC, T

OC

(m

g/L

)

nitrate

nitrite

sulfate

hydroxide

chloride

fluoride

phosphate

TOC

TIC

Concentrations normalized to constant average nitrate concentration.

Figure 3.9 IC, Hydroxide, and TIC/TOC mg/L DataNormalized to Constant Average Nitrate

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

Cumulative Run #

Nit

rate

, Nit

rite

, Su

lfat

e, H

ydro

xid

e, T

OC

, TIC

(m

M)

0

10

20

30

40

50

60

70

80

90

100

Ch

lori

de,

Flu

ori

de,

Ph

osp

hat

e (m

M) nitrate

nitrite

sulfate

TOC

TIC

hydroxide

TIC + OH

chloride

fluoride

phosphate

Concentrations normalized to constant average nitrate concentration.

Figure 3.10 IC, Hydroxide, and TIC/TOC Molar DataNormalized to Constant Average Nitrate

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 19 of 82

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40 45 50 55 60

Cumulative Run #

Co

nce

ntr

atio

n, a

ll ex

cep

t N

a (m

g/L

)

0

20000

40000

60000

80000

100000

120000

Na

Co

nce

ntr

atio

n (

mg

/L)

Al

Cr

Fe

K

S

Si

Zr

NaC

ON

CE

NT

RA

TE

CO

NC

EN

TR

AT

E

CO

NC

EN

TR

AT

E

Figure 3.11 Elemental Analyses (by ICPES) for Major Metals

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Level Z Start Level Z afterConcentration

Level L Start Level L afterConcentration

Level H Start Level H afterConcentration

Rat

io m

g/L

/wt%

Fe/TSS

Zr/TSS

Figure 3.12 Ratio of Iron and Zirconium to Suspended Solids

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

20

of 8

2

Tab

le 3

.2C

ompo

siti

on o

f P

erm

eate

Filte

red

Slur

ry I

nitia

lP

erm

eate

Lev

el Z

Per

mea

te L

evel

LP

erm

eate

Lev

el H

Filte

red

Slur

ryL

evel

Hm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

Al

1970

2100

2280

2290

2280

2290

2630

2620

2590

B20

.228

.126

.024

.926

.024

.915

.214

.712

.1B

a<

0.12

<0.

120.

330.

390.

330.

39<

0.12

<0.

120.

19C

a0.

400.

81<

0.4

<0.

4<

0.4

<0.

40.

400.

530.

51C

d0.

490.

750.

790.

770.

790.

770.

560.

532.

41C

o<

0.44

<0.

44<

0.44

<0.

44<

0.44

<0.

44<

0.44

<0.

44<

0.44

Cr

443

454

497

500

497

500

611

610

612

Cu

<0.

5<

0.5

<0.

5<

0.5

<0.

5<

0.5

<0.

5<

0.5

0.50

Fe0.

560.

951.

311.

201.

311.

200.

600.

6524

.4L

i<

1<

1<

1<

1<

1<

1<

1<

1<

1M

g<

0.84

<0.

84<

0.84

<0.

84<

0.84

<0.

84<

0.84

<0.

840.

84M

n<

0.09

<0.

09<

0.09

<0.

09<

0.09

<0.

09<

0.09

<0.

090.

47M

o5.

005.

255.

735.

215.

735.

212.

812.

822.

81N

a99

600

1050

0011

7000

1140

0011

7000

1140

0010

9000

1090

0011

1000

Ni

<0.

62<

0.62

<0.

62<

0.62

<0.

62<

0.62

<0.

62<

0.62

1.44

P71

173

579

476

279

476

269

569

473

0P

b<

6.9

<6.

9<

6.9

<6.

9<

6.9

<6.

9<

6.9

<6.

9<

6.9

Si3.

704.

402.

612.

322.

612.

325.

406.

282.

28Sn

<2.

6<

2.6

<2.

6<

2.6

<2.

6<

2.6

<2.

6<

2.6

<2.

6Sr

0.17

0.17

<0.

1<

0.1

<0.

1<

0.1

0.06

310.

140.

12T

i<

1.4

<1.

4<

1.4

<1.

4<

1.4

<1.

4<

1.4

<1.

4<

1.4

V<

1.3

<1.

3<

1.3

<1.

3<

1.3

<1.

3<

1.3

<1.

3<

1.3

Zn

<3.

7<

3.7

<3.

7<

3.7

<3.

7<

3.7

<3.

7<

3.7

<3.

7Z

r1.

002.

151.

721.

641.

721.

640.

990.

9719

.2L

a<

7<

7<

7<

7<

7<

7<

7<

7<

7K

3650

3920

4300

4340

4300

4340

4130

4170

4120

Re

33.2

34.4

40.2

38.2

40.2

38.2

39.1

38.9

39.6

S61

9062

3067

0064

1067

0064

1063

1062

9062

30A

g<

3<

3<

3<

3<

3<

3<

3<

3<

3C

e<

7.7

<7.

7<

7.7

<7.

7<

7.7

<7.

7<

7.7

<7.

7<

7.7

Nd

<2.

6<

2.6

<2.

6<

2.6

<2.

6<

2.6

<2.

6<

2.6

<2.

6

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

21

of 8

2

Tab

le 3

.2C

ompo

siti

on o

f P

erm

eate

(co

ntin

ued)

Filte

red

Slur

ry I

nitia

lP

erm

eate

Lev

el Z

Per

mea

te L

evel

LP

erm

eate

Lev

el H

Filte

red

Slur

ryL

evel

Hm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

mg/

Lm

g/L

Tot

alSo

lids

(wt%

)

26.5

27.6

27.2

27.0

28.0

Sp G

r1.

221.

231.

231.

241.

26C

l19

413

4F

1738

1519

NO

367

107

5839

1N

O2

5436

645

134

SO4

1812

314

448

PO

425

4716

68

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 22 of 82

3.3 Organics in Slurry and Permeate

The concentrations of TBP and dodecane are plotted versus run number in Figure 3.15. Asthese organics were added during Level M, the measured concentrations in the slurry weregenerally about 1/3 of what the actual additions were.

The low measured concentration of organics would, at least initially, tend to indicate that theentire amount of organics did not pass through the filter system. If this were true, the filterwould not have been challenged as much as planned. Visual observation of the top of the feedtank showed that, although the organic phase tended to float on top of the aqueous phase, itwas periodically (on the order of several seconds) pulled down into the aqueous phase andfed to the filter. Figure 3.13 shows photos of slurry samples that show the presence oforganics. No accumulation of organic phase above the liquid level, which would have beeneffectively excluded from processing, was seen. There also was no evidence of stickingelsewhere in the system.

NO ORGANICS WITH ORGANICS

ORGANIC LAYER

ORGANICSFLOATING

ON TOP

Figure 3.13 Photos of Slurry Samples

The lower than expected concentrations can be explained by the difficulty in getting arepresentative sample of the three phase (aqueous, solid, organic) mixture. Any given samplecould contain different proportions of organics and slurry. The presence of organics in thesamples taken from the piping at the pump inlet is verified by these analyses and also byvisual examination of the samples. Figure 3.14 shows how the slurry samples were taken.

Figure 3.14 Possible Organic Phase Separation in Piping

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 23 of 82

Due to the density difference, the organic phase will tend to float to top of pipe even inturbulent flow. The axial distribution of organic phase along the pipe will also be notuniform. Therefore, samples taken at the sample tap would be expected to have loweraverage organic concentration than the average material in the pipe. (However, this sampletap configuration should result in good samples for the slurry consisting of small particles.)

The permeate measurements show that the dodecane was always below the detection limit,which was approximately 0.12 mg/L. The TBP concentrations in the permeate ranged fromthe detection limit of 0.12 mg/L to about 0.7 mg/L. The approximate solubility of TBP inhigh Na+ solutions is 1.1 mg/L.9 The concentrations of dibutylphosphate and 1-butanol (n-butanol) were measured in two samples. A trace amount of 1-butanol was found in thepermeate samples; the DBP was below the detection limit. Slurry sample results for DBP &n-butanol were all below the detection limit. These data are summarized in Table 3.3.

0

200

400

600

800

1000

15 20 25 30 35 40 45 50 55 60

Cumulative Run #

Slu

rry

(mg

/L)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Per

mea

te (

mg

/L)

Slurry DodecaneSlurry TBPDodecane or TBP AddedPermeate TBPPermeate DodecaneApprox. Detection Limit

2500

LEVEL L

CO

NC

EN

TR

AT

E

LEVEL MADD ORGANICS

LEVEL H

CO

NC

EN

TR

AT

E

APPROXIMATETBP SOLUBILITY

DETECTION LIMIT

Figure 3.15 Organics Concentrations in Slurry and Permeate

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 24 of 82

Table 3.3 Dibutylphosphate and 1-Butanol in Samples

Sample

dibutylphosphate(DBP)mg/L

1-butanol(n-butanol)

mg/Lsludge (2 samples) <10 <25permeate <10 0.98permeate <10 2.0

3.4 Statistical Analysis of Data

The filtrate flux for ultrafiltration can depend on several factors. To determine if the effectsof TBP and NPH, transmembrane pressure, velocity, and run time (or approximately, numberof runs) were significant, several potential models were examined. A number of models havebeen proposed for modeling the behavior of filters. Listed below are some of these models.

Kozeny-Carman J ∝ ∆P

Brownian Diffusion J ∝ 31

CV0.503

Shear Induced Diffusion J ∝ 31

CV1.75

Inertial Lift J ∝ 3.5V

Surface Transport J ∝ 1.75V

Lift Velocity J ∝ 2.625V

Boundary Layer J ∝

C

1lnV1.75 or

C

1V1.75

where J = transmembrane flux (gpm/ft2)V = velocity (ft/sec)∆P = transmembrane pressure (psi)

C = solids (insoluble) concentration (wt%)

In addition to the variables given above, the total organics concentration and total run timewere added as variables to a generalized model that was proposed:

Generalized Model J = )bt(1QPCaV adjqpcv −∆

where Q = organics concentration + 1 (mg/L)tadj = cumulative run time (hr) up to 13.5 hr, then = 13.5 thereafter

a, v, c, p, q, b = parameters (constants)

The cumulative run time term was added to account for the leveling off behavior shown inFigure 3.3. The linear drop occurs until about 13.5 hours, then the flux is essentiallyindependent of time. The form of the organics concentration term was arbitrary since therewas no theoretical basis for adding this term. The “concentration + 1” was used to make thebaseline at zero organics have a contribution of “1” to the equation. The statistical analysesand curve fitting was performed using a statistical software package.10

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 25 of 82

The solids concentration term was immediately removed from the model because the solidsconcentration only varied from 2.95 to 3.53 wt%, which is too small a range to reliably fit amodel. (Actual fitting with this variable gave a stair-step predicted flux, as expect, which isnot what was seen.) Fitting of the model without the effect of solids is summarized in Table3.4.

Table 3.4 Parameter Estimates for Model with Velocity, Adjusted Time, Pressure, andOrganics Content

Approximate 95%Confidence Limit

Parameter Estimate Lower Uppera 0.002642 0.001728 0.004016v 1.350 1.234 1.467b 0.008222 -0.004988 0.019929q -0.01972 -0.03813 0.00058p -0.07914 -0.15746 0.00129

Correlation of Estimatesa v b q p

a 1.0000 -0.7219 0.1902 0.1711 -0.7145v -0.7219 1.0000 -0.1340 -0.1209 0.0461b 0.1902 -0.1340 1.0000 0.9503 -0.0074q 0.1711 -0.1209 0.9503 1.0000 -0.0244p -0.7145 0.0461 -0.0074 -0.0244 1.0000

The effect of pressure (p) is statistically insignificant since the confidence region includeszero. Both time “b” and organics “q” are also insignificant, although both parameters barelyinclude zero. Moreover, they are highly correlated, so they tend to describe the same effect.Leaving out the effect of organics, since leaving this out makes more physical sense thanleaving out time, gives the parameters in Table 3.5.

Table 3.5 Parameter Estimates for Model with Velocity and Adjusted TimeApproximate 95%Confidence Limit

Parameter Estimate Lower Uppera 0.002091 0.001543 0.002821v 1.342 1.221 1.464b 0.01942 0.01631 0.02233

Correlation of Estimatesa v b

a 1.0000 -0.9914 0.1717v -0.9914 1.0000 -0.0597b 0.1717 -0.0597 1.0000

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 26 of 82

With only time as a variable, the parameter “b” is significant. Parameters “a” and “v” arehighly correlated as is common with exponential models. The best model is then:

J = )t019420(1V0.002091 adj1.342 .−

The predicted values for this model for all of the data is shown in Figure 3.16. The offsetfrom each curve to the data points is due to the effect of pressure on flux. If a subset of thedata is taken, the effect of pressure can be found to be statistically significant, but the scatterin the overall data hides this effect. In reality, higher pressures appear to result in slightlyhigher fluxes. Note the circled points in the Figure; if these are eliminated, the fit of the V=11fps data is quite good.

Models with all parameters in most of the possible combinations were examined tothoroughly eliminate the possible models. Models without the time factor and with either thesolids or organics gave statistically equivalent curve fits, but the shape of the curves wereunrealistic. Figure 3.17 shows the fit of flux versus velocity, time, and organicsconcentration. Similar curves result from fitting versus velocity and just organics or solids.Figure 3.17 also shows that the adjusted time and organics concentration are highlycorrelated. A summary of the curve fits performed is given in Appendix 5.5.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25

Cumulative Run Time (hr)

Ste

ady

Sta

te F

lux

at 2

5 °C

(g

pm

/ft2 )

V = 7 fps

V = 9 fps

V = 11 fps

V = 13 fps

V = 15 fps

V = 7 Data

V = 9 Data

V = 11 Data

V = 13 Data

V = 15 Data

V = 9.6 Data

V = 7.5 Data

V = 10.0 Data

Flux = 2.091x10-3 V1.3418 (1 - 1.194x10-2 tadj)

where tadj = time for time ≤ 13.5 hr = 13.5 for time > 13.5 hr

Figure 3.16 Fitted Data for Flux versus Velocity and Time

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 27 of 82

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 5 10 15 20 25

Cumulative Run Time (hr)

Ste

ady

Sta

te F

lux

at 2

5 °C

(g

pm

/ft2 )

V = 7 fps

V = 9 fps

V = 11 fps

V = 13 fps

V = 15 fps

V = 7 Data

V = 9 Data

V = 11 Data

V = 13 Data

V = 15 Data

V = 9.6 (11) Data

V = 7.5 (11) Data

V = 10.0 (11) Data

Flux = 1.953x10-3 V1.3567 Q-0.01968(1 - 8.437x10-3 timeadj)

where timeadj = time for time ≤ 13.5 hr = 13.5 for time > 13.5 hr

0

1 00 0

2 00 0

3 00 0

4 00 0

5 00 0

0 2 4 6 8 1 0 12 1 4Ad jus te d T im e (hr )

To

tal

Org

an

ics

,

TB

P+

NP

H (

mg

/L)

Figure 3.17 Fitted Data for Flux versus Velocity, Time, and Organics

3.5 Quality Assurance

This task was conducted per the requirements of a Task Technical & Quality Assurance Planthat was approved by both SRTC and RPP-WTP personnel (technical & QA manager).11

These tests were not HLW form affecting. Therefore, the Quality Assurance Requirementsand Description (DOE/RW-0333P), the principle quality assurance requirements for theCivilian Radioactive Waste Management Program, did not apply to this work. All data wasrecorded in a Laboratory Notebook.12

4.0 Conclusions

1. The presence of tributyl phosphate and normal paraffin hydrocarbon (dodecane) atconcentrations up to approximately 2500 mg/L of each has no effect on flux rate for filtrationof an AZ-101 3.5 wt% slurry simulant for a 0.1 µm sintered metal Mott filter element.

2. If a concentration exists wherein the flux is affected (de minimis), it is above the testedlevels.

3. The AZ-101 slurry simulant was filtered to an insoluble solids content of up to 6 wt%without the flux deteriorating below the lower limit of 0.014 gpm/ft2.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 28 of 82

4. The permeate concentration of TBP was always less than 1 mg/L and the dodecane wasalways less than the detection limit of ~0.12 mg/L. Neither of these passed through the filterat a level higher than its solubility and so were concentrated in the slurry.

5. Cleaning of the system after use with the organics proved difficult using only water and nitricacid. It should be noted that the concentrations of separable organics were much higher thanshould actually be seen in the WTP. We recommend that the effect of TBP and NPH bestudied further during filter cleaning tests.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 29 of 82

5.0 Appendices

5.1 Appendix – Supernate Recipe

Volume of Feed Made from this Recipe 8 Liters

Weigh a LARGE MIXING VESSEL of at least 8000 ml capacity

ADD THE FOLLOWING COMPOUNDS:

Transition Metals and Complexing Agents Formula Mass Needed (g) Actual Wt (g)

Alumimum Nitrate Al(NO3)3•9H2O 1186.521 1186.52

Ammonium Nitrate NH4NO3 11.759 11.76

Cesium Nitrate CsNO3 0.438 0.438

Zirconyl Nitrate ZrO(NO3)2•xH2O 0.067 0.067

Sodium Chloride NaCl 2.631 2.633

Sodium Fluoride NaF 32.06 32.064

Sodium Chromate Na2CrO4 18.189 18.1912

Sodium Sulfate Na2SO4 209.021 209.02

Sodium Perrhenate NaReO4 0.468 0.4619

ADD Formula Mass Needed (g) Actual Wt (g)

Water H2O 1600 1600.00

MIX THOROUGHLY TO DISSOLVE THE SALTS.

IN A SEPARATE CONTAINER MIX THE FOLLOWING:

Formula Mass Needed (g) Actual Wt (g)

Sodium Hydroxide NaOH 639.284 639.26

Potassium Hydroxide KOH 53.085 53.09

Water H2O 800 800.00

MIX THOROUGHLY TO DISSOLVE THE SODIUM HYDROXIDE AND POTASSIUM HYDROXIDE.

ADD Mass Needed (g) Actual Wt (g)

Sodium Phosphate Na3PO4•12H2O 48.117 48.12

Water H2O 1600 1600.00

MIX THOROUGHLY. THEN ADD THIS SOLUTION SLOWLY TO THE MIXING VESSEL WHILEMAINTAINING AGITATION.ADD Formula Mass Needed (g) Actual Wt (g)

Sodium Carbonate Na2CO3 326.057 326.06

MIX THOROUGHLY.

ADD Formula Mass Needed (g) Actual Wt (g)

Sodium Nitrate NaNO3 10.162 10.16

Sodium Nitrite NaNO2 780.663 780.66

MIX THOROUGHLY.

NEXT ADD THE FINAL WATER ADDITION Formula Mass Needed (g) Actual Wt (g)

Water H2O 2371.31 2371.30

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 30 of 82

5.2 Appendix – Simulant Compositions

The final simulant was made up from 4.0 liters of supernate simulant, 1.84 liters of solidssimulant #1 and 0.25 liters of solids simulant #3. Trim chemicals, in amounts shown below, werethen added to replace the washed sodium and anions. The final volume was approximately 6.3liters.

Table 5.1 Supernate Simulant SamplesFirst Supernate Sample Second Supernate Sample Overall

LIMS #300- 167560 167560 Average 169527 169527-D Average Average*

ICPES (mg/L) Al 5860 5740 5800 5060 5080 5070 5070

B <2.1 <2.1 <2.1 <2.1

Ba <0.12 <0.12 <0.12 <0.12

Ca 0.547 0.459 0.503 <0.4 <0.4

Cd <0.14 <0.14 <0.14 <0.14

Co <0.44 <0.44 <0.44 <0.44

Cr 720 721 720 727 727 727 724

Cu <0.8 <0.8 <0.5 <0.5

Fe <0.44 <0.44 <0.44 <0.44

Li 1.99 1.97 1.98 <1 <1

Mg <0.84 <0.84 <0.84 <0.84

Mn <0.09 <0.09 <0.09 <0.09

Mo <1 <1 <1 <1

Na 101000 100000 100500 114000 112000 113000 106750

Ni <0.62 <0.62 <0.62 <0.62

P 528 539 533 516 505 511 522

Pb <6.9 <6.9 <6.9 <6.9

Si 8.83 10.4 9.61 4.35 4.76 4.56 4.56

Sn <2.6 <2.6 <2.6 <2.6

Sr <0.04 <0.04 <0.02 <0.02

Ti <1.4 <1.4 <1.4 <1.4

V <1.3 <1.3 <1.3 <1.3

Zn <3.7 <3.7 <3.7 <3.7

Zr <0.6 <0.6 <0.48 <0.48

La <7 <7 <7 <7

K 3840 3860 3850 3910 3920 3915 3883

Re 40.0 40.3 40.2 39.5 39.3 39.4 39.8

S 6380 6330 6355 6180 6130 6155 6255

Ag <3 <3

Ce <7.7 <7.7

Nd <3.0 <3.0

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 31 of 82

Supernate Simulant Samples (continued)First Supernate Sample Second Supernate Sample Overall

LIMS #300- 167560 167560 Average 169527 169527-D Average Average*

IC (mg/L) F 1570 1574 1572 NA NA 1572 1572

formate <100 <100 <100 NA NA

Cl 139 141 140 NA NA 140 140

NO2- 60805 61724 61265 NA NA 61265 61265

NO3- 61724 62704 62214 NA NA 62214 62214

PO4(-3) 1292 1385 1339 NA NA 1339 1339

SO4(-2) 21402 21385 21394 NA NA 21394 21394

oxalate <100 <101 NA NA 0

Carbon (mg/L) TOC 4.60 4.60 4.60 NA NA 4.60 4.60

TIC <1 <1 <1 NA NA <1

TC 5.03 5.03 5.03 NA NA 5.03 5.03

Free OH NA NA NA NA NA NA

Solids Total 27.5 27.6 27.5 NA NA 27.5 27.5

Specific Gravity 1.244 1.241 1.243 NA NA 1.243 1.24

Estimated Sp Gr 1.198 1.200

* Average for Al, Li, Si from second sample only due to drop (precipitation).Values < detection limit not shown in averages.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 32 of 82

Table 5.2 Sludge Solids Sample #1: Composition of solids filtered from sample.

LIMS #300- 167562 167564 MeanICPES (mg/kg) Ag 351 349 350

Al 791 799 795B NA NA NABa 257 254 255Ca 669 737 703Cd 3210 3160 3185Ce 341 306 323Co 415 413 414Cr 329 327 328Cu 139 144 141Fe 41700 40900 41300K 673 759 716La 1610 1580 1595Li <10 <10

Mg 63.1 62.8 63.0Mn 989 981 985Mo <20 <20Na 8000 8090 8045Nd 1110 1080 1095Ni 2520 2490 2505P 1130 1050 1090

Pb 486 475 480Re 17.4 18.6 18.0S 335 347 341Si 2680 4090 3385Sn <50 <50Sr 122 120 121Ti 78.8 75.7 77.3V <15 <15Zn 140 139 140Zr 13400 13300 13350

Original Sample (prior to filtration)Solids Total 14.9 14.8 14.8

Insoluble 13.7 13.1 13.4Soluble (calculated) 1.18 1.61 1.40

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 33 of 82

Table 5.3 Sludge Solids Sample #2: Composition of solids filtered from sample.

LIMS #300- 167566 167568 MeanICPES (mg/kg) Ag 186 182 184

Al 400 385 393B NA NA NABa 135 133 134Ca 777 771 774Cd 1680 1650 1665Ce 176 180 178Co 221 217 219Cr 176 171 174Cu 73.2 74.4 73.8Fe 21900 21800 21850K 395 433 414La 848 854 851Li <10 <10 NA

Mg 42.2 36.8 39.5Mn 523 520 521Mo <20 <20 NANa 3950 3890 3920Nd 555 537 546Ni 1320 1290 1305P 316 234 275

Pb 270 253 262Re 7.91 6.30 7.10S 173 153 163Si 3240 3290 3265Sn <50 <50 NASr 64.0 64.0 64.0Ti 42.3 39.7 41.0V <15 <15 NAZn 73.7 72.3 73.0Zr 6970 6930 6950

Original Sample (prior to filtration)Solids Total 8.05 8.00 8.03

Insoluble 7.25 7.19 7.22Soluble (calculated) 0.80 0.81 0.81

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 34 of 82

Table 5.4 Sludge Solids Sample #3: Composition of solids filtered from sample.

LIMS #300- 169717a 169717b CalculatedICPES (mg/kg) Ag 263

Al 597BBa 192Ca 528Cd 2392Ce 243Co 311Cr 246Cu 106Fe

Composition same asSample #2, but moreconcentrated. 31017

K 538La 1198LiMg 47.3Mn 740Mo

Calculated compositionbased on ratioing totalsolids.

Na 6042Nd 822Ni 1881P 819Pb 361Re 13.5S 256Si 2542SnSr 91.2Ti 58.0VZn 105Zr 10026

Original Sample (prior to filtration)Solids (wt%) Total 11.2 11.1 11.1

Insoluble 9.97 9.73 9.85Soluble (calculated) 1.21 1.32 1.27

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 35 of 82

Table 5.5 Sludge Sample #1: Composition of filtrate from sample.

LIMS #300- 167561 167563 Averagemg/L mg/L mg/L

ICPES Ag <3 <3 <3Al 5.08 <2.4 5.08B 16.4 26.9 21.6Ba <0.12 <0.12 <0.12Ca 15.2 11.9 13.6Cd <0.14 <0.14 <0.14Ce <7.7 <7.7 <7.7Co <0.44 <0.44 <0.44Cr 4.52 6.66 5.59Cu <0.6 <0.6 <0.6Fe <0.44 <0.44 <0.44K 313 444 378La <7 <7 <7Li NA NA NA

Mg 3.71 3.98 3.84Mn <0.09 <0.09 <0.09Mo 9.83 15.4 12.6Na 4190 6150 5170Nd <2.6 <2.6 <2.6Ni <0.62 <0.62 <0.62P <6.8 <6.8 <6.8

Pb <6.9 <6.9 <6.9Re 12.0 18.0 15.0S 254 363 308Si <1.3 <1.3 <1.3Sn NA NA NASr <0.15 <0.15 <0.15Ti <1.4 <1.4 <1.4V NA NA NAZn <3.7 <3.7 <3.7Zr <0.48 <0.48 <0.48

IC fluoride 47.0 69.0 58.0formate <100 <100 <100chloride 85.0 108 96.5nitrite 2916 4166 3541nitrate 2655 3916 3286

phosphate <100 <100 <100sulfate 572 837 705oxalate <100 <100 <100

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 36 of 82

Table 5.6 Sludge Sample #2: Composition of filtrate from sample.

LIMS #300- 167565 167567 Averagemg/L mg/L mg/L

ICPES Ag <3 <3 <3Al <2.4 <2.4 <2.4B 15.0 14.8 14.9Ba <0.12 <0.12 <0.12Ca 8.90 10.1 9.52Cd <0.14 <0.14 <0.14Ce <7.7 <7.7 <7.7Co <0.44 <0.44 <0.44Cr 2.98 3.00 2.99Cu <0.6 <0.6 <0.6Fe <0.44 <0.44 <0.44K 216 227 222La <7 <7 <7Li NA NA NA

Mg 1.59 2.03 1.81Mn <0.09 <0.09 <0.09Mo 6.90 6.48 6.69Na 2910 2790 2850Nd <2.6 <2.6 <2.6Ni <0.62 <0.62 <0.62P <6.8 <6.8 <6.8

Pb <6.9 <6.9 <6.9Re 7.81 7.78 7.79S 160 162 161Si <1.3 <1.3 <1.3Sn NA NA NASr <0.15 <0.15 <0.15Ti <1.4 <1.4 <1.4V NA NA NAZn <3.7 <3.7 <3.7Zr <0.48 <0.48 <0.48

IC fluoride 38.0 37.0 37.5formate <100 <100 <100chloride 69.0 67.0 68.0nitrite 1871 1833 1852nitrate 1627 1595 1611

phosphate <100 <100 <100sulfate 382 378 380oxalate <100 <100 <100

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 37 of 82

Table 5.7 Sludge Sample #3: Composition of filtrate calculated from composition ofSample #2 by ratio.

Calculated (mg/L)Ag 0Al 4.42B 18.9Ba 0Ca 11.8Cd 0Ce 0Co 0Cr 4.87Cu 0Fe 0K 330La 0Li 0

Mg 3.35Mn 0Mo 11.0Na 4506Nd 0Ni 0P 0

Pb 0Re 13.1S 269Si 0Sn 0Sr 0Ti 0V 0Zn 0Zr 0

fluoride 50.5formate 0chloride 84.1nitrite 3086nitrate 2863

phosphate 0sulfate 614oxalate 0

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 38 of 82

Table 5.8 Overall Compositions of Samples #1-3 Calculated from Solids and FiltrateAnalyses.

Sample #1 Sample #2 Sample #3mg/L mg/L mg/L

Metals Ag 345 172 247Al 788 368 565B 20.3 14.4 18.0Ba 252 125 180Ca 705 734 508Cd 3137 1559 2249Ce 319 166 228Co 408 205 292Cr 328 165 236Cu 139 69.1 99.9Fe 40681 20462 29166K 1060 601 820La 1571 797 1126Li 0 0 0

Mg 65.6 38.8 47.7Mn 970 488 696Mo 11.8 6.45 10.5Na 12770 6420 9975Nd 1079 511 773Ni 2467 1222 1769P 1074 258 770

Pb 473 245 339Re 31.8 14.2 25.2S 625 308 497Si 3334 3058 2390Sn 0 0 0Sr 120 59.9 85.7Ti 76.1 38.4 54.6V 0 0 0Zn 138 68.4 98.6Zr 13150 6509 9428

Anions fluoride 54.4 36.2 48.2formate 0 0 0chloride 90.4 65.6 80.1nitrite 3318 1786 2941nitrate 3079 1554 2728

phosphate 0 0 0sulfate 660 367 585oxalate 0 0 0

Solids (wt%) Insoluble 13.4 7.22 9.85Soluble 1.40 0.805 1.27Total 14.8 8.03 11.1

Specific gravity 1.09 1.04 1.06

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 39 of 82

Table 5.9 Trim Chemicals Added

Chemical Amount (g)NaOH 141.01NaCl 0.25NaF 7.79NaNO2 204.04NaNO3 190.06Na3PO4*12H2O 12.45Na2SO4 71.60KNO3 18.14NaReO4 0.0548

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

40

of 8

2

5.3

App

endi

x –

Exp

erim

enta

l Des

ign

Tab

le 5

.10

Exp

erim

enta

l Des

ign

Tab

le

Tes

t P

hase

TB

P/N

PH

Lev

el(e

ach)

(m

g/L

)R

unN

ame

Run

Ord

er(r

ando

miz

ed)

Fact

oria

lD

esig

n St

dO

rder

Fact

oria

lD

esig

nL

evel

Pre

ssur

e(p

sid)

Vel

ocity

(ft/s

)

Vol

umet

ric

Flow

rate

(gpm

)Sa

mpl

e T

ime

Cle

an w

ater

flu

xw

ater

Z-0

a0a

511

3.79

-w

ater

Z-0

b0b

1511

3.79

-w

ater

Z-0

c0c

2511

3.79

-N

O O

RG

AN

ICS

EX

PE

RIM

EN

TA

L D

ESI

GN

0Z

-11

900

4011

3.79

SS f

lux

"Z

-22

1-

-30

93.

10SS

flu

x"

Z-3

32

- +

3013

4.47

SS f

lux

"Z

-44

4+

+50

134.

47SS

flu

x"

Z-5

53

+ -

509

3.10

SS f

lux

"Z

-66

1000

4011

3.79

SS f

lux

"Z

-77

70a

407

2.41

SS f

lux

"Z

-88

80A

4015

5.16

SS f

lux

"Z

-99

5a0

2011

3.79

SS f

lux

"Z

-10

106

A0

6011

3.79

SS f

lux

"Z

-11

1111

0040

113.

79SS

flu

xC

olle

ct 2

lite

rs p

erm

eate

in 5

00 m

l fra

ctio

nsev

ery

500

ml p

erm

eate

Add

2 li

ters

new

fee

dL

OW

TB

P/N

PH

LE

VE

L E

XP

ER

IME

NT

AL

DE

SIG

N:

25 p

pm e

ach

TB

P &

NP

H a

dded

25L

-11

3+

-50

93.

10SS

flu

x"

L-2

29

0040

113.

79SS

flu

x"

L-3

38

0A40

155.

16SS

flu

x"

L-4

410

0040

113.

79SS

flu

x"

L-5

52

- +

3013

4.47

SS f

lux

"L

-66

70a

407

2.41

SS f

lux

"L

-77

1-

-30

93.

10SS

flu

x"

L-8

85

a020

113.

79SS

flu

x"

L-9

94

+ +

5013

4.47

SS f

lux

"L

-10

106

A0

6011

3.79

SS f

lux

"L

-11

1111

0040

113.

79SS

flu

xC

olle

ct 2

lite

rs p

erm

eate

in 5

00 m

l fra

ctio

ns"

--

ever

y 50

0 m

l per

mea

te

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

41

of 8

2

Tab

le 5

.10

Exp

erim

enta

l Des

ign

Tab

le (

cont

inue

d)

Tes

t P

hase

TB

P/N

PH

Lev

el(e

ach)

(m

g/L

)R

unN

ame

Run

Ord

er(r

ando

miz

ed)

Fact

oria

lD

esig

n St

dO

rder

Fact

oria

lD

esig

nL

evel

Pre

ssur

e(p

sid)

Vel

ocity

(ft/s

)

Vol

umet

ric

Flow

rate

(gpm

)Sa

mpl

e T

ime

Add

2 li

ters

new

fee

dA

dd T

BP

/NP

H b

ack

to ~

25 p

pm e

ach

DE

TE

RM

INE

IM

PA

CT

LE

VE

L25

M-1

140

113.

79SS

flu

x75

M-2

240

113.

79SS

flu

x15

0M

-33

4011

3.79

SS f

lux

250

M-4

440

113.

79SS

flu

x50

0M

-55

4011

3.79

SS f

lux

750

M-6

640

113.

79SS

flu

x10

00M

-77

4011

3.79

SS f

lux

1250

M-8

840

113.

79SS

flu

x15

00M

-99

4011

3.79

SS f

lux

2000

M-1

010

4011

3.79

SS f

lux

2500

M-1

111

4011

3.79

SS f

lux

IMP

AC

T L

EV

EL

EX

PE

RIM

EN

TA

L D

ESI

GN

2500

H-1

19

0040

113.

79SS

flu

x"

H-2

27

0a40

72.

41SS

flu

x"

H-3

32

- +

3013

4.47

SS f

lux

"H

-44

5a0

2011

3.79

SS f

lux

"H

-55

1000

4011

3.79

SS f

lux

"H

-66

80A

4015

5.16

SS f

lux

"H

-77

3+

-50

93.

10SS

flu

x"

H-8

81

- -

309

3.10

SS f

lux

"H

-99

4+

+50

134.

47SS

flu

x"

H-1

010

6A

060

113.

79SS

flu

x"

H-1

111

1100

4011

3.79

SS f

lux

Col

lect

2 li

ters

per

mea

te I

N 5

00 m

l inc

rem

ents

ever

y 50

0 m

lpe

rmea

teC

lean

wat

er f

lux

wat

erH

-0a

0a5

113.

79-

wat

erH

-0b

0b15

113.

79-

wat

erH

-0c

0c25

113.

79-

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

42

of 8

2

5.4

App

endi

x –

Exp

erim

enta

l Res

ults

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

Z-1

03.

8411

.15

4340

53.1

60

0.06

0722

1.08

906

0.06

62

53.

9411

.45

4239

59.8

95

0.05

3923

1.05

8322

0.05

71

103.

8011

.04

4340

57.9

810

0.05

5723

1.05

8322

0.05

89

153.

8511

.18

4440

59.1

150.

0546

241.

0286

490.

0562

203.

8911

.30

4340

60.2

920

0.05

3624

1.02

8649

0.05

51

253.

6610

.63

4340

61.1

325

0.05

2824

1.02

8649

0.05

43

303.

7710

.95

4138

63.4

630

0.05

0924

1.02

8649

0.05

23

1140

Mea

n:3.

8211

.10

42.7

139

.57

Mea

n St

eady

Sta

te:

0.05

3941

.14

Z-2

03.

068.

8932

3098

.14

00.

0329

241.

0286

490.

0338

53.

048.

8332

2998

.97

50.

0326

241.

0286

490.

0336

103.

109.

0134

3198

.67

100.

0327

241.

0286

490.

0337

153.

139.

0934

3110

4.96

150.

0308

251

0.03

08

203.

309.

5931

2811

1.38

200.

0290

231.

0583

220.

0307

253.

068.

8930

2711

3.7

250.

0284

231.

0583

220.

0301

303.

088.

9530

2711

4.75

300.

0281

231.

0583

220.

0298

930

Mea

n:3.

119.

0331

.86

29.0

0M

ean

Stea

dy S

tate

:0.

0303

30.4

3Z

-30

4.47

12.9

835

2748

.53

00.

0665

231.

0583

220.

0704

54.

5013

.07

3231

52.7

25

0.06

1323

1.05

8322

0.06

48

104.

4813

.01

3228

53.9

810

0.05

9824

1.02

8649

0.06

15

154.

4012

.78

3329

53.8

715

0.05

9924

1.02

8649

0.06

17

204.

5913

.33

3329

5420

0.05

9824

1.02

8649

0.06

15

254.

4913

.04

3330

52.9

425

0.06

1024

1.02

8649

0.06

27

304.

5513

.22

3329

56.1

730

0.05

7525

10.

0575

1330

Mea

n:4.

5013

.06

33.0

029

.00

Mea

n St

eady

Sta

te:

0.06

0931

.00

Z-4

04.

0111

.65

4947

46.3

40

0.06

9727

0.94

5607

0.06

59

54.

1812

.14

5248

47.8

45

0.06

7528

0.91

9786

0.06

21

104.

3412

.61

5147

51.2

910

0.06

3028

0.91

9786

0.05

79

154.

3412

.61

5348

52.2

315

0.06

1828

0.91

9786

0.05

69

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

43

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

204.

3412

.61

5350

52.9

120

0.06

1027

0.94

5607

0.05

77

254.

3712

.69

5349

52.0

525

0.06

2027

0.94

5607

0.05

87

304.

3212

.55

5350

52.8

300.

0612

280.

9197

860.

0563

1350

Mea

n:4.

2712

.41

52.0

048

.43

Mea

n St

eady

Sta

te:

0.05

7450

.21

Z-5

03.

088.

9550

4871

.53

00.

0451

260.

9723

320.

0439

53.

008.

7149

4779

.06

50.

0408

260.

9723

320.

0397

102.

988.

6652

4981

.06

100.

0398

260.

9723

320.

0387

153.

038.

8052

5083

.23

150.

0388

251

0.03

88

203.

209.

3051

4887

.53

200.

0369

260.

9723

320.

0359

253.

229.

3551

4890

.13

250.

0358

260.

9723

320.

0348

303.

088.

9552

5083

.49

300.

0387

260.

9723

320.

0376

950

Mea

n:3.

088.

9651

.00

48.5

7M

ean

Stea

dy S

tate

:0.

0368

49.7

9Z

-60

3.78

10.9

841

3863

.54

00.

0508

201.

1539

160.

0586

53.

7911

.01

4239

64.4

25

0.05

0120

1.15

3916

0.05

78

103.

7911

.01

4340

67.6

610

0.04

7721

1.12

0909

0.05

35

153.

7710

.95

4138

68.6

815

0.04

7022

1.08

906

0.05

12

203.

7810

.98

4238

69.2

520

0.04

6622

1.08

906

0.05

08

253.

7510

.89

4239

69.0

225

0.04

6823

1.05

8322

0.04

95

303.

7510

.89

4239

68.4

330

0.04

7224

1.02

8649

0.04

85

1140

Mea

n:3.

7710

.96

41.8

638

.71

Mea

n St

eady

Sta

te:

0.04

9640

.29

Z-7

02.

406.

9741

3997

.52

00.

0331

251

0.03

31

52.

376.

8841

3910

0.21

50.

0322

251

0.03

22

102.

477.

1842

4010

6.14

100.

0304

251

0.03

04

152.

427.

0342

4010

8.91

150.

0297

260.

9723

320.

0288

202.

417.

0042

4011

1.24

200.

0290

251

0.02

90

252.

406.

9742

4011

4.4

250.

0282

251

0.02

82

302.

406.

9742

4011

5.77

300.

0279

251

0.02

79

740

Mea

n:2.

417.

0041

.71

39.7

1M

ean

Stea

dy S

tate

:0.

0285

40.7

1Z

-80

5.07

14.7

343

3836

.89

00.

0875

241.

0286

490.

0900

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

44

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

55.

1715

.02

4338

43.1

15

0.07

4925

10.

0749

105.

1314

.90

4239

44.2

100.

0731

241.

0286

490.

0752

155.

2415

.22

4338

45.4

815

0.07

1025

10.

0710

205.

1414

.93

4339

45.4

120

0.07

1125

10.

0711

255.

0814

.76

4339

45.4

325

0.07

1126

0.97

2332

0.06

91

305.

0614

.70

4339

46.2

730

0.06

9826

0.97

2332

0.06

79

1540

Mea

n:5.

1314

.89

42.8

638

.57

Mea

n St

eady

Sta

te:

0.06

9840

.71

Z-9

03.

7810

.98

2219

57.2

00.

0565

231.

0583

220.

0597

53.

6910

.72

2017

68.4

50.

0472

211.

1209

090.

0529

103.

7310

.84

2017

72.4

510

0.04

4621

1.12

0909

0.05

00

153.

6910

.72

2017

71.5

615

0.04

5121

1.12

0909

0.05

06

203.

7510

.89

2017

69.4

320

0.04

6522

1.08

906

0.05

07

253.

9011

.33

2118

62.2

250.

0519

231.

0583

220.

0549

303.

9111

.36

2219

63.9

930

0.05

0522

1.08

906

0.05

50

1120

Mea

n:3.

7810

.98

20.7

117

.71

Mea

n St

eady

Sta

te:

0.05

2819

.21

Z-1

00

3.10

9.01

5856

71.5

50

0.04

5123

1.05

8322

0.04

78

53.

229.

3560

5781

.14

50.

0398

231.

0583

220.

0421

103.

339.

6760

5886

.81

100.

0372

241.

0286

490.

0383

153.

229.

3560

5787

.14

150.

0371

241.

0286

490.

0381

202.

908.

4260

5789

.87

200.

0359

251

0.03

59

253.

7410

.86

6056

93.7

125

0.03

4525

10.

0345

303.

6010

.46

5955

94.0

430

0.03

4325

10.

0343

1160

Mea

n:3.

309.

5959

.57

56.5

7M

ean

Stea

dy S

tate

:0.

0357

58.0

7Z

-11

03.

7010

.75

4239

66.2

80

0.04

8720

1.15

3916

0.05

62

53.

5510

.31

4138

72.3

75

0.04

4621

1.12

0909

0.05

00

103.

7510

.89

4138

74.5

410

0.04

3322

1.08

906

0.04

72

153.

8311

.13

4137

73.5

150.

0439

231.

0583

220.

0465

203.

8511

.18

4239

69.7

420

0.04

6324

1.02

8649

0.04

76

253.

8011

.04

4239

70.9

525

0.04

5524

1.02

8649

0.04

68

303.

8211

.10

4340

71.8

300.

0450

231.

0583

220.

0476

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

45

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

1140

Mea

n:3.

7610

.91

41.7

138

.57

Mea

n St

eady

Sta

te:

0.04

7140

.14

L-1

03.

018.

7452

4964

.79

00.

0498

260.

9723

320.

0485

52.

868.

3150

4879

.11

50.

0408

260.

9723

320.

0397

103.

008.

7149

4784

.95

100.

0380

251

0.03

80

152.

998.

6950

4887

.73

150.

0368

251

0.03

68

202.

978.

6351

4889

.58

200.

0360

241.

0286

490.

0371

252.

968.

6053

5087

.67

250.

0368

241.

0286

490.

0379

303.

229.

3551

4890

.01

300.

0359

251

0.03

59

950

Mea

n:3.

008.

7250

.86

48.2

9M

ean

Stea

dy S

tate

:0.

0369

49.5

7L

-20

3.60

10.4

642

3955

.96

00.

0577

260.

9723

320.

0561

53.

6410

.57

4138

65.2

15

0.04

9524

1.02

8649

0.05

09

103.

6410

.57

4037

71.1

810

0.04

5423

1.05

8322

0.04

80

153.

5910

.43

4037

73.6

715

0.04

3823

1.05

8322

0.04

64

203.

6410

.57

4138

70.9

320

0.04

5524

1.02

8649

0.04

68

253.

6310

.54

4037

70.4

325

0.04

5925

10.

0459

303.

7911

.01

4138

73.2

630

0.04

4125

10.

0441

1140

Mea

n:3.

6510

.59

40.7

137

.71

Mea

n St

eady

Sta

te:

0.04

5839

.21

L-3

05.

2215

.16

4338

36.6

80

0.08

8025

10.

0880

55.

0714

.73

4339

39.1

55

0.08

2527

0.94

5607

0.07

80

105.

0414

.64

4137

42.8

510

0.07

5427

0.94

5607

0.07

13

155.

0814

.76

4035

46.2

215

0.06

9926

0.97

2332

0.06

79

205.

0714

.73

4136

48.3

320

0.06

6825

10.

0668

255.

2115

.13

4338

48.3

425

0.06

6825

10.

0668

305.

2015

.11

4440

45.8

630

0.07

0425

10.

0704

1540

Mea

n:5.

1314

.89

42.1

437

.57

Mea

n St

eady

Sta

te:

0.06

8039

.86

L-4

03.

8211

.10

4138

60.8

30

0.05

3125

10.

0531

53.

6410

.57

4239

65.0

85

0.04

9624

1.02

8649

0.05

10

103.

7310

.84

3936

71.0

710

0.04

5424

1.02

8649

0.04

67

153.

8411

.15

4139

71.8

515

0.04

4926

0.97

2332

0.04

37

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

46

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

203.

8211

.10

4139

72.4

220

0.04

4625

10.

0446

253.

8211

.10

4139

73.0

525

0.04

4225

10.

0442

303.

8711

.24

4240

70.6

730

0.04

5725

10.

0457

1140

Mea

n:3.

7911

.01

41.0

038

.57

Mea

n St

eady

Sta

te:

0.04

4539

.79

L-5

04.

3812

.72

3228

44.5

10

0.07

2626

0.97

2332

0.07

05

54.

5813

.30

3329

52.4

95

0.06

1526

0.97

2332

0.05

98

104.

4712

.98

3228

56.8

210

0.05

6825

10.

0568

154.

4512

.93

3228

59.4

150.

0544

251

0.05

44

204.

6013

.36

3329

56.2

320

0.05

7425

10.

0574

254.

5813

.30

3329

55.5

125

0.05

8226

0.97

2332

0.05

66

304.

6413

.48

3430

54.0

730

0.05

9726

0.97

2332

0.05

81

1330

Mea

n:4.

5313

.15

32.7

128

.71

Mea

n St

eady

Sta

te:

0.05

6630

.71

L-6

02.

326.

7441

3997

.41

00.

0332

231.

0583

220.

0351

52.

326.

7442

4010

5.48

50.

0306

241.

0286

490.

0315

102.

467.

1541

3911

4.36

100.

0282

251

0.02

82

152.

447.

0941

3911

6.96

150.

0276

251

0.02

76

202.

406.

9742

4011

7.63

200.

0275

260.

9723

320.

0267

252.

406.

9742

4012

4.94

250.

0258

251

0.02

58

302.

366.

8642

4013

1.37

300.

0246

241.

0286

490.

0253

740

Mea

n:2.

396.

9341

.57

39.5

7M

ean

Stea

dy S

tate

:0.

0264

40.5

7L

-70

3.18

9.24

3230

76.3

80

0.04

2325

10.

0423

53.

098.

9833

3179

.61

50.

0406

251

0.04

06

103.

098.

9834

3281

.17

100.

0398

251

0.03

98

153.

129.

0634

3183

.27

150.

0388

260.

9723

320.

0377

203.

149.

1234

3292

.720

0.03

4824

1.02

8649

0.03

58

253.

088.

9533

3194

.36

250.

0342

231.

0583

220.

0362

303.

139.

0932

3096

.95

300.

0333

241.

0286

490.

0343

930

Mea

n:3.

129.

0633

.14

31.0

0M

ean

Stea

dy S

tate

:0.

0360

32.0

7L

-80

3.86

11.2

123

1959

.82

00.

0540

251

0.05

40

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

47

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

53.

7110

.78

2017

63.7

50.

0507

251

0.05

07

103.

7410

.86

2319

66.3

610

0.04

8725

10.

0487

153.

7210

.81

2219

67.3

515

0.04

7925

10.

0479

203.

6210

.52

2118

69.0

920

0.04

6726

0.97

2332

0.04

54

253.

6110

.49

2117

70.3

925

0.04

5925

10.

0459

303.

6710

.66

2118

70.6

230

0.04

5725

10.

0457

1120

Mea

n:3.

7010

.76

21.5

718

.14

Mea

n St

eady

Sta

te:

0.04

6319

.86

L-9

04.

3212

.55

5350

46.4

40

0.06

9525

10.

0695

54.

2312

.29

5147

51.6

65

0.06

2526

0.97

2332

0.06

08

104.

1712

.11

5148

53.9

110

0.05

9926

0.97

2332

0.05

82

154.

2612

.37

5047

58.4

215

0.05

5325

10.

0553

204.

2412

.32

5147

60.9

200.

0530

251

0.05

30

254.

2512

.35

4946

62.0

725

0.05

2024

1.02

8649

0.05

35

304.

1011

.91

4844

61.8

630

0.05

2225

10.

0522

1350

Mea

n:4.

2212

.27

50.4

347

.00

Mea

n St

eady

Sta

te:

0.05

3548

.71

L-1

00

2.35

6.83

5957

90.0

90

0.03

5826

0.97

2332

0.03

49

52.

447.

0959

5612

2.24

50.

0264

251

0.02

64

102.

838.

2260

5713

0.2

100.

0248

251

0.02

48

152.

707.

8460

5813

4.59

150.

0240

251

0.02

40

202.

617.

5860

5713

620

0.02

3725

10.

0237

252.

567.

4460

5713

8.64

250.

0233

251

0.02

33

302.

587.

4960

5714

1.8

300.

0228

241.

0286

490.

0234

1160

Mea

n:2.

587.

5059

.71

57.0

0M

ean

Stea

dy S

tate

:0.

0236

58.3

6L

-11

03.

5610

.34

4037

62.0

70

0.05

2025

10.

0520

53.

8011

.04

4340

68.7

50.

0470

241.

0286

490.

0484

103.

7310

.84

4239

73.3

210

0.04

4024

1.02

8649

0.04

53

153.

7610

.92

3835

81.2

115

0.03

9824

1.02

8649

0.04

09

203.

9611

.50

4239

78.3

120

0.04

1224

1.02

8649

0.04

24

253.

9911

.59

4340

74.0

925

0.04

3626

0.97

2332

0.04

24

303.

8311

.13

4037

77.7

830

0.04

1526

0.97

2332

0.04

04

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

48

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

1140

Mea

n:3.

8011

.05

41.1

438

.14

Mea

n St

eady

Sta

te:

0.04

1539

.64

M-1

03.

8211

.10

4339

57.6

00.

0561

231.

0583

220.

0593

53.

8611

.21

4137

64.8

35

0.04

9823

1.05

8322

0.05

27

50 m

g/L

103.

8411

.15

4238

63.3

810

0.05

1025

10.

0510

153.

8111

.07

4137

66.2

515

0.04

8726

0.97

2332

0.04

74

203.

7810

.98

4137

66.0

420

0.04

8927

0.94

5607

0.04

62

253.

8111

.07

4036

66.6

425

0.04

8526

0.97

2332

0.04

71

303.

7210

.81

4137

70.1

930

0.04

6026

0.97

2332

0.04

47

353.

7710

.95

4137

69.0

435

0.04

6826

0.97

2332

0.04

55

1140

Mea

n:3.

8011

.04

41.2

537

.25

Mea

n St

eady

Sta

te:

0.04

5139

.25

M-2

03.

8011

.04

4038

56.9

10

0.05

6726

0.97

2332

0.05

52

53.

8611

.21

4239

59.4

65

0.05

4327

0.94

5607

0.05

14

150

mg/

L10

3.83

11.1

341

3867

.43

100.

0479

260.

9723

320.

0466

153.

8411

.15

4340

63.4

815

0.05

0926

0.97

2332

0.04

95

203.

7710

.95

4340

63.7

820

0.05

0627

0.94

5607

0.04

79

253.

8411

.15

4137

67.9

325

0.04

7527

0.94

5607

0.04

50

303.

7410

.86

4340

67.8

230

0.04

7626

0.97

2332

0.04

63

1140

Mea

n:3.

8111

.07

41.8

638

.86

Mea

n St

eady

Sta

te:

0.04

5640

.36

M-3

03.

9211

.39

4238

56.9

40

0.05

6725

10.

0567

53.

7610

.92

4138

62.1

25

0.05

2026

0.97

2332

0.05

05

300

mg/

L10

3.82

11.1

043

4067

.72

100.

0477

260.

9723

320.

0464

153.

8011

.04

4239

65.8

715

0.04

9025

10.

0490

203.

8111

.07

4138

67.3

120

0.04

8025

10.

0480

253.

8211

.10

4139

68.6

625

0.04

7026

0.97

2332

0.04

57

303.

8011

.04

4138

72.2

230

0.04

4725

10.

0447

353.

8343

4071

.95

350.

0449

260.

9723

320.

0436

1140

Mea

n:3.

8211

.09

41.7

538

.75

Mea

n St

eady

Sta

te:

0.04

4740

.25

M-4

03.

8011

.04

4238

57.9

90

0.05

5724

1.02

8649

0.05

73

53.

7510

.89

4139

67.8

75

0.04

7624

1.02

8649

0.04

89

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

49

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

500

mg/

L10

3.80

11.0

442

3871

.06

100.

0454

241.

0286

490.

0467

153.

7510

.89

4141

70.5

315

0.04

5825

10.

0458

203.

8611

.21

4439

69.1

620

0.04

6725

10.

0467

253.

8511

.18

4240

74.6

625

0.04

3324

1.02

8649

0.04

45

303.

8611

.21

4339

74.0

230

0.04

3624

1.02

8649

0.04

49

1140

Mea

n:3.

8111

.07

42.1

439

.14

Mea

n St

eady

Sta

te:

0.04

4740

.64

M-5

03.

7810

.98

4239

62.8

80

0.05

1423

1.05

8322

0.05

44

53.

8311

.13

4340

68.9

35

0.04

6823

1.05

8322

0.04

96

1000

mg/

L10

3.86

11.2

141

3874

.73

100.

0432

231.

0583

220.

0457

153.

8411

.15

4138

79.6

615

0.04

0523

1.05

8322

0.04

29

203.

8511

.18

4138

77.0

220

0.04

1924

1.02

8649

0.04

31

253.

8811

.27

4239

76.7

825

0.04

2125

10.

0421

303.

8911

.30

4239

74.0

530

0.04

3625

10.

0436

1140

Mea

n:3.

8511

.18

41.7

138

.71

Mea

n St

eady

Sta

te:

0.04

2940

.21

M-5

b0

3.87

11.2

441

3863

.43

00.

0509

211.

1209

090.

0571

53.

8411

.15

4138

68.8

25

0.04

6922

1.08

906

0.05

11

1000

mg/

L10

3.77

10.9

541

3871

.64

100.

0451

231.

0583

220.

0477

153.

8711

.24

4340

71.8

915

0.04

4923

1.05

8322

0.04

75

203.

7510

.89

4138

73.2

520

0.04

4124

1.02

8649

0.04

53

253.

8711

.24

4340

69.7

825

0.04

6325

10.

0463

303.

7911

.01

4239

71.5

830

0.04

5125

10.

0451

353.

7210

.81

4037

74.3

135

0.04

3526

0.97

2332

0.04

23

1140

Mea

n:3.

8111

.07

41.5

038

.50

Mea

n St

eady

Sta

te:

0.04

6140

.00

M-6

03.

6810

.69

4138

61.9

60

0.05

2125

10.

0521

53.

8611

.21

4239

64.6

95

0.04

9924

1.02

8649

0.05

14

1500

mg/

L10

3.82

11.1

042

3969

.94

100.

0462

241.

0286

490.

0475

153.

8111

.07

4239

71.0

515

0.04

5525

10.

0455

203.

8111

.07

4239

70.0

420

0.04

6125

10.

0461

253.

8311

.13

4239

70.3

625

0.04

5926

0.97

2332

0.04

46

303.

8311

.13

4239

72.2

930

0.04

4725

10.

0447

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

50

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

1140

Mea

n:3.

8111

.06

41.8

638

.86

Mea

n St

eady

Sta

te:

0.04

4640

.36

M-7

03.

8011

.04

4239

61.0

50

0.05

2924

1.02

8649

0.05

44

53.

6710

.66

4138

68.4

75

0.04

7225

10.

0472

2000

mg/

L10

3.82

11.1

043

4070

.10

100.

0461

251

0.04

61

153.

8111

.07

4340

69.9

315

0.04

6225

10.

0462

203.

7911

.01

4239

71.7

920

0.04

5025

10.

0450

253.

8111

.07

4239

74.0

225

0.04

3625

10.

0436

303.

8111

.07

4340

74.1

330

0.04

3625

10.

0436

1140

Mea

n:3.

7911

.00

42.2

939

.29

Mea

n St

eady

Sta

te:

0.04

3640

.79

M-8

03.

8811

.27

4239

62.9

10

0.05

1325

10.

0513

53.

9111

.36

4138

67.1

50.

0481

251

0.04

81

2500

mg/

L10

3.85

11.1

842

3966

.81

100.

0483

251

0.04

83

153.

8811

.27

4310

67.7

815

0.04

7625

10.

0476

203.

7610

.92

4138

74.5

420

0.04

3325

10.

0433

253.

8611

.21

4239

70.8

425

0.04

5625

10.

0456

303.

8811

.27

4340

70.5

630

0.04

5825

10.

0458

1140

Mea

n:3.

8611

.21

42.0

034

.71

Mea

n St

eady

Sta

te:

0.04

4938

.36

M-9

03.

8711

.24

4239

51.0

20

0.06

3327

0.94

5607

0.05

99

53.

9711

.53

4239

55.0

15

0.05

8726

0.97

2332

0.05

71

3000

mg/

L10

3.81

11.0

742

3967

.56

100.

0478

260.

9723

320.

0465

153.

7810

.98

4138

69.4

415

0.04

6526

0.97

2332

0.04

52

203.

7911

.01

4239

70.6

620

0.04

5726

0.97

2332

0.04

44

253.

8511

.18

4340

68.8

525

0.04

6927

0.94

5607

0.04

44

303.

8211

.10

4340

70.6

330

0.04

5727

0.94

5607

0.04

32

1140

Mea

n:3.

8411

.16

42.1

439

.14

Mea

n St

eady

Sta

te:

0.04

4040

.64

M-1

00

3.85

11.1

842

3964

.09

00.

0504

251

0.05

04

53.

7710

.95

4239

70.9

15

0.04

5524

1.02

8649

0.04

68

4000

mg/

L10

3.77

10.9

543

4074

.32

100.

0435

231.

0583

220.

0460

153.

9911

.59

4440

75.9

115

0.04

2523

1.05

8322

0.04

50

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

51

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

203.

6510

.60

4138

77.3

420

0.04

1824

1.02

8649

0.04

30

253.

8211

.10

4239

77.2

225

0.04

1824

1.02

8649

0.04

30

303.

7510

.89

4239

77.0

630

0.04

1924

1.02

8649

0.04

31

1140

Mea

n:3.

8011

.04

42.2

939

.14

Mea

n St

eady

Sta

te:

0.04

3040

.71

M-1

10

3.86

11.2

143

4064

.97

00.

0497

231.

0583

220.

0526

53.

8611

.21

4340

68.0

95

0.04

7423

1.05

8322

0.05

02

5000

mg/

L10

3.79

11.0

141

3872

.63

100.

0445

231.

0583

220.

0471

153.

7610

.92

4239

72.3

615

0.04

4624

1.02

8649

0.04

59

203.

7310

.84

4037

75.7

420

0.04

2625

10.

0426

253.

7610

.92

4239

76.0

725

0.04

2525

10.

0425

303.

8211

.10

4340

76.8

130

0.04

2024

1.02

8649

0.04

32

1140

Mea

n:3.

8011

.03

42.0

039

.00

Mea

n St

eady

Sta

te:

0.04

2840

.50

H-1

03.

8511

.18

4239

59.7

60

0.05

4024

1.02

8649

0.05

56

53.

7810

.98

4138

66.1

55

0.04

8825

10.

0488

103.

9811

.56

4238

69.1

610

0.04

6724

1.02

8649

0.04

80

153.

8311

.13

4340

67.5

415

0.04

7823

1.05

8322

0.05

06

203.

9811

.56

4239

74.8

420

0.04

3224

1.02

8649

0.04

44

253.

9611

.50

4239

75.2

425

0.04

2924

1.02

8649

0.04

42

303.

9211

.39

4239

74.5

230

0.04

3325

10.

0433

1140

Mea

n:3.

9011

.33

42.0

038

.86

Mea

n St

eady

Sta

te:

0.04

3740

.43

H-2

02.

386.

9143

4110

4.33

00.

0310

251

0.03

10

52.

557.

4143

4011

5.35

50.

0280

241.

0286

490.

0288

102.

477.

1841

3812

1.33

100.

0266

241.

0286

490.

0274

152.

477.

1842

3912

5.12

150.

0258

241.

0286

490.

0265

202.

406.

9744

4112

1.79

200.

0265

241.

0286

490.

0273

252.

346.

8043

4012

5.42

250.

0257

251

0.02

57

302.

356.

8343

4012

5.65

300.

0257

251

0.02

57

740

Mea

n:2.

427.

0442

.71

39.8

6M

ean

Stea

dy S

tate

:0.

0263

41.2

9H

-30

4.43

12.8

732

2947

.18

00.

0684

251

0.06

84

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

52

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

54.

5113

.10

3127

56.9

75

0.05

6725

10.

0567

104.

5313

.16

3228

57.1

100.

0566

251

0.05

66

154.

5113

.10

3228

57.9

115

0.05

5825

10.

0558

204.

5013

.07

3228

58.5

320

0.05

5225

10.

0552

254.

5213

.13

3128

58.4

925

0.05

5226

0.97

2332

0.05

37

304.

5013

.07

3228

59.3

330

0.05

4425

10.

0544

1330

Mea

n:4.

5013

.07

31.7

128

.00

Mea

n St

eady

Sta

te:

0.05

4829

.86

H-4

03.

8411

.15

2319

64.9

70

0.04

9723

1.05

8322

0.05

26

53.

8511

.18

2319

66.0

25

0.04

8923

1.05

8322

0.05

18

103.

8011

.04

2319

69.4

910

0.04

6523

1.05

8322

0.04

92

153.

7810

.98

2320

70.4

415

0.04

5823

1.05

8322

0.04

85

203.

7610

.92

2319

73.1

200.

0442

231.

0583

220.

0468

253.

8311

.13

2219

75.7

525

0.04

2623

1.05

8322

0.04

51

303.

8011

.04

2219

76.9

430

0.04

2023

1.05

8322

0.04

44

1120

Mea

n:3.

8111

.06

22.7

119

.14

Mea

n St

eady

Sta

te:

0.04

5420

.93

H-5

03.

7210

.81

4138

64.3

70

0.05

0223

1.05

8322

0.05

31

53.

8211

.10

4239

68.3

50.

0473

231.

0583

220.

0500

103.

8411

.15

4138

72.5

510

0.04

4524

1.02

8649

0.04

58

153.

8811

.27

4239

72.2

150.

0447

241.

0286

490.

0460

203.

8611

.21

4239

72.6

420

0.04

4525

10.

0445

253.

8411

.15

4239

73.9

825

0.04

3725

10.

0437

303.

8111

.07

4138

74.8

300.

0432

251

0.04

32

1140

Mea

n:3.

8211

.11

41.5

738

.57

Mea

n St

eady

Sta

te:

0.04

4340

.07

H-6

05.

1915

.08

4239

41.7

50

0.07

7325

10.

0773

55.

2515

.25

4339

44.1

55

0.07

3125

10.

0731

105.

2715

.31

4439

45.8

910

0.07

0426

0.97

2332

0.06

84

155.

2915

.37

4439

46.7

315

0.06

9126

0.97

2332

0.06

72

205.

2515

.25

4439

48.2

820

0.06

6925

10.

0669

255.

2915

.37

4439

48.0

425

0.06

7226

0.97

2332

0.06

54

305.

2615

.28

4439

49.2

430

0.06

5626

0.97

2332

0.06

38

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

53

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

1540

Mea

n:5.

2615

.27

43.5

739

.00

Mea

n St

eady

Sta

te:

0.06

5841

.29

H-7

03.

068.

8951

4973

.84

00.

0437

251

0.04

37

53.

098.

9850

4886

.85

0.03

7225

10.

0372

103.

098.

9851

4989

.65

100.

0360

251

0.03

60

153.

078.

9252

4990

.51

150.

0357

260.

9723

320.

0347

203.

088.

9552

5092

.66

200.

0349

260.

9723

320.

0339

253.

058.

8652

5094

.24

250.

0343

260.

9723

320.

0333

303.

129.

0652

5010

0.17

300.

0322

251

0.03

22

353.

169.

1851

4910

0.59

350.

0321

251

0.03

21

950

Mea

n:3.

098.

9851

.38

49.2

5M

ean

Stea

dy S

tate

:0.

0328

50.3

1H

-80

3.13

9.09

3330

83.1

10

0.03

8923

1.05

8322

0.04

11

53.

149.

1233

3085

.32

50.

0378

241.

0286

490.

0389

103.

169.

1832

2988

.27

100.

0366

241.

0286

490.

0376

153.

149.

1232

2990

.07

150.

0359

241.

0286

490.

0369

203.

139.

0933

3094

.79

200.

0341

241.

0286

490.

0350

253.

139.

0933

3096

.94

250.

0333

241.

0286

490.

0343

303.

129.

0632

2997

.99

300.

0330

241.

0286

490.

0339

930

Mea

n:3.

149.

1132

.57

29.5

7M

ean

Stea

dy S

tate

:0.

0350

31.0

7H

-90

4.36

12.6

750

4656

.78

00.

0569

241.

0286

490.

0585

54.

3712

.69

5147

58.9

65

0.05

4825

10.

0548

104.

4412

.90

5147

62.1

210

0.05

2024

1.02

8649

0.05

35

154.

3912

.75

5248

60.9

515

0.05

3025

10.

0530

204.

3812

.72

5248

60.7

420

0.05

3225

10.

0532

254.

4312

.87

5248

60.0

225

0.05

3825

10.

0538

304.

4212

.84

5149

58.2

830

0.05

5426

0.97

2332

0.05

39

354.

4112

.81

5248

59.6

735

0.05

4126

0.97

2332

0.05

26

1350

Mea

n:4.

4012

.78

51.3

847

.63

Mea

n St

eady

Sta

te:

0.05

3649

.50

H-1

00

3.24

9.41

6057

75.6

10

0.04

2725

10.

0427

53.

159.

1558

5683

.39

50.

0387

251

0.03

87

WSR

C-T

R-2

002-

0010

8, R

ev. 0

SRT

-RP

P-2

002-

0004

1, R

ev. 0

Page

54

of 8

2

Run

Tar

get

Vel

ocit

y(f

ps)

Tar

get

Pre

ssur

e(p

si)

Tim

e(m

in)

Flo

w(g

pm)

Flo

w(f

ps)

Inle

t P

(psi

g)O

utle

t P

(psi

g)

Tim

e fo

r40

ml o

fP

erm

eate

(sec

)

Run

Tim

e(m

in)

Flu

x(g

pm/f

t2 )T

emp

(°C

)T

emp.

Com

p.

Cor

r.F

lux

(gpm

/ft2 )

103.

369.

7659

5788

.710

0.03

6425

10.

0364

153.

5110

.20

5956

92.1

715

0.03

5025

10.

0350

203.

4910

.14

5856

93.3

820

0.03

4626

0.97

2332

0.03

36

253.

5110

.20

5957

94.1

525

0.03

4325

10.

0343

303.

4710

.08

5856

96.5

330

0.03

3526

0.97

2332

0.03

25

1160

Mea

n:3.

399.

8558

.71

56.4

3M

ean

Stea

dy S

tate

:0.

0335

57.5

7H

-11

03.

7911

.01

4138

61.6

50

0.05

2426

0.97

2332

0.05

09

53.

8211

.10

4238

66.8

95

0.04

8326

0.97

2332

0.04

69

103.

8211

.10

4239

70.5

310

0.04

5825

10.

0458

153.

8011

.04

4239

71.6

615

0.04

5125

10.

0451

203.

8111

.07

4239

73.2

720

0.04

4125

10.

0441

253.

7710

.95

4239

73.4

725

0.04

4025

10.

0440

303.

8111

.07

4239

75.5

300.

0428

251

0.04

28

1140

Mea

n:3.

8011

.05

41.8

638

.71

Mea

n St

eady

Sta

te:

0.04

3640

.29

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 55 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-2 (30.4 psi TMP, 9.0 fps)

Z-5 (49.8 psi TMP, 9.0 fps)

Nominal P V 30 9 50 9

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-9 (19.2 psi TMP, 11.0 fps)

Z-1 (41.1 psi TMP, 11.1 fps)

Z-6 (40.3 psi TMP, 11.0 fps)

Z-11 (40.1 psi TMP, 10.9 fps)

Z-10 (58.1 psi TMP, 9.6 fps)

Nominal P V 20 11 40 11 60 11

Data at 60 psi TMP and nominal 11 fps is actually at 9.6 fps. At 11 fps, flux would be expected to be greater than other data

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 56 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-3 (31.0 psi TMP, 13.1 fps)

Z-4 (50.2 psi TMP, 12.4 fps)

Nominal P V 30 13 50 13

Flux is inverted because velocity at 50 psi TMP is significantly less than 13 fps.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-3 (31.0 psi TMP, 13.1 fps)

Z-2 (30.4 psi TMP, 9.0 fps)

Nominal P V 30 9 30 13

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 57 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-7 (40.7 psi TMP, 7.0 fps)

Z-1 (41.1 psi TMP, 11.1 fps)

Z-6 (40.3 psi TMP, 11.0 fps)

Z-11 (40.1 psi TMP, 10.9 fps)

Z-8 (40.7 psi TMP, 14.9 fps)

Nominal P V 40 7 40 11 40 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-5 (49.8 psi TMP, 9.0 fps)

Z-4 (50.2 psi TMP, 12.4 fps)

Nominal P V 50 9 50 13

Flux at nominal 13 fps is actually for 12.4 fps, so it is lower than expected.

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 58 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-7 (32.1 psi TMP, 9.1 fps)

L-1 (49.6 psi TMP, 8.7 fps)

Nominal P V 30 9 50 9

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-8 (19.9 psi TMP, 10.8 fps)

L-2 (39.2 psi TMP, 10.6 fps)

L-4 (39.8 psi TMP, 11.0 fps)

L-11 (39.6 psi TMP, 11.1 fps)

L-10 (58.4 psi TMP, 7.5 fps)

Nominal P V 20 11 40 11 60 11

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 59 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-5 (30.7 psi TMP, 13.2 fps)

L-9 (48.7 psi TMP, 12.3 fps)

Nominal P V 30 13 50 13

Flux is inverted because velocity at 50 psi TMP is significantly less than 13 fps.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-7 (32.1 psi TMP, 9.1 fps)

L-5 (30.7 psi TMP, 13.2 fps)

Nominal P V 30 9 30 13

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 60 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-6 (40.6 psi TMP, 6.9 fps)

L-2 (39.2 psi TMP, 10.6 fps)

L-4 (39.8 psi TMP, 11.0 fps)

L-11 (39.6 psi TMP, 11.1 fps)

L-3 (39.9 psi TMP, 14.9 fps)

Nominal P V 40 7 40 11 40 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

L-1 (49.6 psi TMP, 8.7 fps)

L-9 (48.7 psi TMP, 12.3 fps)

Nominal P V 50 9 50 13

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 61 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-8 (31.1 psig TMP, 9.1 fps)

H-7 (50.3 psig TMP, 9.0 fps)

Nominal P V 30 9 50 9

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-4 (20.9 psig TMP, 11.1 fps)

H-1 (40.4 psig TMP, 11.3 fps)

H-5 (40.1 psig TMP, 11.1 fps)

H-11 (40.3 psig TMP, 11.1 fps)

H-10 (57.6 psig TMP, 9.9 fps)

Nominal P V 20 11 40 11 60 11

Data at 60 psi TMP and nominal 11 fps is actually at 9.9 fps. At 11 fps, flux would be expected to be greater than other data

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 62 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-3 (29.9 psig TMP, 13.1 fps)

H-9 (49.5 psig TMP, 12.8 fps)

Nominal P V 30 13 50 13

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-8 (31.1 psi TMP, 9.11 fps)

H-3 (29.9 psi TMP, 13.1 fps)

Nominal P V 30 9 30 13

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 63 of 82

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-2 (41.3 psi TMP, 7.0 fps)

H-1 (40.4 psi TMP, 11.3 fps)

H-5 (40.1 psi TMP, 11.1 fps)

H-11 (40.3 psi TMP, 11.1 fps)

H-6 (41.3 psi TMP, 15.3 fps)

Nominal P V 40 7 40 11 40 15

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

H-9 (49.5 psi TMP, 12.8 fps)

H-7 (50.3 psi TMP, 9.0 fps)

Nominal P V 40 7 40 11 40 15

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 64 of 82

0.0300

0.0350

0.0400

0.0450

0.0500

0.0550

0.0600

0.0650

0.0700

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2

)

Z-1 (41.1 psi TMP, 11.1 fps)

Z-6 (40.3 psi TMP, 11.0 fps)

Z-11 (40.1 psi TMP, 10.9 fps)

L-2 (39.2 psi TMP, 10.6 fps)

L-4 (39.8 psi TMP, 11.0 fps)

L-11 (39.6 psi TMP, 11.1 fps)

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0 5 10 15 20 25 30 35

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2 )

Z-1

Z-6

Z-11

L-2

L-4

L-11

H-1

H-5

H-11

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 65 of 82

0.0400

0.0420

0.0440

0.0460

0.0480

0.0500

0.0520

0.0540

0.0560

0.0580

0.0600

0 5 10 15 20 25 30 35 40

Time (min)

Co

rrec

ted

Flu

x (g

pm

/ft2

)

M-1 (Org=50) (39.3 psi TMP, 11.0 fps)

M-2 (Org=150) (40.4 psi TMP, 11.1 fps)

M-3 (Org=300) (40.3 psi TMP, 11.1 fps)

M-4 (Org=500) (40.6 psi TMP, 11.1 fps)

M-5 (Org=1000) (40.2 psi TMP, 11.2 fps)

M-5b (Org=1000) (40.0 psi TMP, 11.1 fps)

M-6 (Org=1500) (40.4 psi TMP, 11.1 fps)

M-7 (Org=2000) (40.8 psi TMP, 11.0 fps)

M-8 (Org=2500) (40.4 psi TMP, 11.1 fps)

M-9 (Org=3000) (40.6 psi TMP, 11.2 fps)

M-10 (Org=4000) (40.7 psi TMP, 11.0 fps)

M-11 (Org=5000) (40.5 psi TMP, 11.0 fps)

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 66 of 82

5.5 Appendix – Curve Fits from JMP

Fit of )bt(1SQPaVFlux adjsqpv −=

Flux = gpm/ft2

V = velocity (fps)P = transmembrane pressure (psi)Q = total organics (TBP+NPH) (mg/L)tadj = cumulative run time (adjusted after t=13.5) (hr)S = solids concentration (wt%)a, b, p, q, s are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 59 60Shortening 0 15Obj Change 8.212934e-13 0.0000001Prm Change 0.0000079245 0.0000001Gradient 1.988623e-16 0.000001

Parameter Current Valuea 0.005626668v 1.3465218598b 0.0033701345q -0.010193617p -0.071298492s -0.736696127

SSE 0.0002544523N 45

Alpha 0.050Convergence Criterion 0.00001Goal SSE for CL 0.0002811028

SolutionSSE DFE MSE RMSE0.0002544523 39 0.0000065 0.0025543

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 67 of 82

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.005627 0.002171 0.002543 0.002543v 1.3465 0.05437 1.2371 1.4569b 0.003370 0.006026 -0.009993 0.015354q -0.01019 0.00946 -0.02964 0.00979p -0.07130 0.03728 -0.14592 0.0049s -0.7367 0.3231 -1.3829 -0.0905Correlation of Estimates

a v b q p sa 1.0000 -0.3946 -0.1704 0.5026 -0.2821 -0.8592v -0.3946 1.0000 -0.1163 -0.1184 0.0458 0.0298b -0.1704 -0.1163 1.0000 0.6311 -0.0420 0.3103q 0.5026 -0.1184 0.6311 1.0000 0.0219 -0.4931p -0.2821 0.0458 -0.0420 0.0219 1.0000 -0.0960s -0.8592 0.0298 0.3103 -0.4931 -0.0960 1.0000

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 68 of 82

Fit of )bt(1QPaVFlux adjqpv −=

Flux = gpm/ft2

V = velocity (fps)P = transmembrane pressure (psi)Q = total organics (TBP+NPH) (mg/L)tadj = cumulative run time (adjusted after t=13.5) (hr)a, b, p, q, v are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 4 60Shortening 0 15Obj Change 0.000308719 0.0000001Prm Change 0.0646007448 0.0000001Gradient 7.7701505e-8 0.000001

Parameter Current Valuea 0.00264206v 1.3503668344b 0.0082221362q -0.019724438p -0.079136273

SSE 0.0002869069N 45

Alpha 0.050

Convergence Criterion 0.05Goal SSE for CL 0.000316161

SolutionSSE DFE MSE RMSE0.0002869069 40 0.0000072 0.0026782

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 69 of 82

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.002642 0.000547 0.001728 0.004016v 1.350 0.057 1.234 1.467b 0.008222 0.005655 -0.004988 0.019929q -0.01972 0.00877 -0.03813 0.00058p -0.07914 0.03911 -0.15746 0.00129

Correlation of Estimatesa v b q p

a 1.0000 -0.7219 0.1902 0.1711 -0.7145v -0.7219 1.0000 -0.1340 -0.1209 0.0461b 0.1902 -0.1340 1.0000 0.9503 -0.0074q 0.1711 -0.1209 0.9503 1.0000 -0.0244p -0.7145 0.0461 -0.0074 -0.0244 1.0000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pre

d aV

v (1

-bt)

Pp

Qq

.0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800

SS Flux Cor

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 70 of 82

Fit of )bt(1QPaVFlux adjqpv −=

Flux = gpm/ft2

V = velocity (fps)P = transmembrane pressure (psi)Q = total organics (TBP+NPH) (mg/L)tadj = cumulative run time (adjusted after t=13.5) (hr)a, b, p, q, v are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 4 60Shortening 0 15Obj Change 0.000308719 0.0000001Prm Change 0.0646007448 0.0000001Gradient 7.7701505e-8 0.000001

Parameter Current Valuea 0.00264206v 1.3503668344b 0.0082221362q -0.019724438p -0.079136273

SSE 0.0002869069N 45

Alpha 0.050

Convergence Criterion 0.05Goal SSE for CL 0.000316161

SolutionSSE DFE MSE RMSE0.0002869069 40 0.0000072 0.0026782

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 71 of 82

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.002642 0.000547 0.001728 0.004016v 1.350 0.057 1.234 1.467b 0.008222 0.005655 -0.004988 0.019929q -0.01972 0.00877 -0.03813 0.00058p -0.07914 0.03911 -0.15746 0.00129

Correlation of Estimatesa v b q p

a 1.0000 -0.7219 0.1902 0.1711 -0.7145v -0.7219 1.0000 -0.1340 -0.1209 0.0461b 0.1902 -0.1340 1.0000 0.9503 -0.0074q 0.1711 -0.1209 0.9503 1.0000 -0.0244p -0.7145 0.0461 -0.0074 -0.0244 1.0000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pre

d aV

v (1

-bt)

Pp

Qq

.0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800

SS Flux Cor

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 72 of 82

Fit of )bt(1QaVFlux adjqv −=

Flux = gpm/ft2

V = velocity (fps)Q = total organics (TBP+NPH) (mg/L)tadj = cumulative run time (adjusted after t=13.5) (hr)a, b, q, v are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 3 60Shortening 0 15Obj Change 0.0003080764 0.0000001Prm Change 0.0667741471 0.0000001Gradient 8.4865869e-8 0.000001

Parameter Current Valuea 0.0019529218v 1.3566523696b 0.0084367207q -0.019681765

SSE 0.0003152431N 45

Alpha 0.050

Convergence Criterion 0.05Goal SSE for CL 0.0003465571

SolutionSSE DFE MSE RMSE0.0003152431 41 0.0000077 0.0027729

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 73 of 82

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.001953 0.000291 0.001438 0.00264v 1.357 0.059 1.238 1.477b 0.008437 0.005831 -0.005246 0.020509q -0.01968 0.00907 -0.03875 0.00143

Correlation of Estimatesa v b q

a 1.0000 -0.9858 0.2638 0.2191v -0.9858 1.0000 -0.1333 -0.1195b 0.2638 -0.1333 1.0000 0.9504q 0.2191 -0.1195 0.9504 1.0000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pre

d aV

v (1

-bN

) Q

q

.0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800

SS Flux Cor

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 74 of 82

Fit of )bt(1SaVFlux adjsv −=

Flux = gpm/ft2

V = velocity (fps)P = transmembrane pressure (psi)Q = total organics (TBP+NPH) (mg/L)tadj = cumulative run time (adjusted after t=13.5) (hr)a, b, s, v are parameters

Converged in the Gradient

Criterion Current Stop LimitIteration 59 60Shortening 0 15Obj Change 3.8329933e-7 0.0000001Prm Change 0.0001371318 0.0000001Gradient 1.089313e-10 0.000001Parameter Current Valuea 0.0054779622v 1.3458730305b 0.007057525s -0.942319127Lock

SSE 0.0002839426N 45Alpha 0.050Convergence Criterion 0.00001Goal SSE for CL 0.0003121475

SolutionSSE DFE MSE RMSE0.0002839426 41 0.0000069 0.0026316

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.005478 0.001809 0.001860 0.009096v 1.3459 0.0551 1.2354 1.4571b 0.007058 0.004624 -0.002942 0.016239s -0.9423 0.2959 -1.5341 -0.3505

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 75 of 82

Correlation of Estimatesa v b s

a 1.0000 -0.3827 -0.8121 -0.9096v -0.3827 1.0000 -0.0522 -0.0313b -0.8121 -0.0522 1.0000 0.9247s -0.9096 -0.0313 0.9247 1.0000

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 76 of 82

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 77 of 82

Fit of svSaVFlux =Flux = gpm/ft2

V = velocity (fps)S = solids concentrationa, v, s are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 4 60Shortening 0 15Obj Change 0.0013144702 0.0000001Prm Change 0.0009129883 0.0000001Gradient 3.9218594e-7 0.000001

Parameter Current Valuea 0.0080168667v 1.3501400332s -1.333106672

SSE 0.0002983598N 45Alpha 0.050Convergence Criterion 0.00001Goal SSE for CL 0.0003272513

SolutionSSE DFE MSE RMSE0.0002983598 42 0.0000071 0.0026653

Parameter EstimateApprox.Standard Error

LowerConfidenceLimit

UpperConfidenceLimit

a 0.008017 0.001568 0.005391 0.010643v 1.3501 0.0558 1.2388 1.4624s -1.3331 0.1148 -1.5648 -1.1023Correlation of Estimates

a v sa 1.0000 -0.7276 -0.7156v -0.7276 1.0000 0.0438s -0.7156 0.0438 1.0000

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 78 of 82

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08P

red

aVv

Ss

.0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800

SS Flux Cor

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pre

d aV

v S

s

0 5 10 15

t adj

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 79 of 82

Fit of )bt(1aVFlux adjv −=

Flux = gpm/ft2

V = velocity (fps)tadj = cumulative run time (adjusted after t=13.5) (hr)a, b, v are parameters

Nonlinear Fit

Converged in the Gradient

Criterion Current Stop LimitIteration 2 60Shortening 0 15Obj Change 0.0000272661 0.0000001Prm Change 0.0050122417 0.0000001Gradient 9.3709483e-9 0.000001

Parameter Current Valuea 0.0020910329v 1.3418623025b 0.0194210721

SSE 0.0003425838N 45

Alpha 0.050

Convergence Criterion 0.05Goal SSE for CL 0.0003757578

SolutionSSE DFE MSE RMSE0.0003425838 42 0.0000082 0.002856

Parameter Estimate

Approx.StandardError

LowerConfidenceLimit

UpperConfidenceLimit

a 0.002091 0.000311 0.001543 0.002821v 1.342 0.0602 1.221 1.464b 0.01942 0.00149 0.01631 0.02233

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 80 of 82

Correlation of Estimatesa v b

a 1.0000 -0.9914 0.1717v -0.9914 1.0000 -0.0597b 0.1717 -0.0597 1.0000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pre

d aV

^v (

1-bt

)

.0100 .0200 .0300 .0400 .0500 .0600 .0700 .0800

SS Flux Cor

-0.01

-0.005

0

0.005

aVv

(1-b

t) R

esid

uals

.01 .02 .03 .04 .05 .06 .07 .08

Pred aV^v (1-bt)

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 81 of 82

-0.01

-0.005

0

0.005

aVv

(1-b

t) R

esid

uals

-5 0 5 10 15 20 25 30

Approx. Cumul. Time (hr)

WSRC-TR-2002-00108, Rev. 0SRT-RPP-2002-00041, Rev. 0

Page 82 of 82

6.0 References1 Test Specification for Evaluating Effect of Tri-Butyl Phosphate and Normal Paraffin

Hydrocarbon in Simulated Low-Activity Waste Solution on Ultrafiltration and IonExchange Systems, TSP-W375-00-00036, Rev. 1, Washington Group International, RPP-WTP, Richland, Washington, June 14, 2001.

2 LAW Evaporation: Antifoam / Defoamer Testing for Low Activity Waste Solution,TSP-W375-00-00035, Rev. 0, CH2M HILL Hanford Group, Inc., Richland, Washington,December 15, 2000.

3 Procedure for the Operation of the Cold Ultrafilter, IWT-OP-140, Rev. 0, WestinghouseSavannah River Co., Aiken, SC, November 2001.

4 R. E. Eibling and C. A. Nash, Hanford Waste Simulants Created to Support the Researchand Development on the River Protection Project – Waste Treatment Plant, SRT-RPP-2000-00017, Rev. 0 (WSRC-TR-2000-00338, Rev. 0), Westinghouse Savannah River Co.,Aiken, SC, February 2001.

5 C. A. Nash, S. W. Rosencrance, W. R. Wilmarth, Entrained Solids, Strontium-TransuranicPrecipitation, and Crossflow Filtration of AN102 Small C, SRT-RPP-2000-00003, Rev. 0(WSRC-TR-2000-00341, Rev. 0), Westinghouse Savannah River Co., Aiken, SC, August,2000.

6 E. Slaathaug, et. al, Configuration of the Ultrafiltration System, 24590-PTF-RPT-ENG-01-002, Rev. 0, RPP-WTP, Bechtel Washington Group, July 30, 2001.

7 M. R. Poirier, T. M. Jones, S. D. Fink, Impact of Strontium Nitrate and SodiumPermanganate Addition an Solid-Liquid Separation of SRS High Level Waste, WSRC-TR-2001-00554, Rev. 0, Westinghouse Savannah River Co., Aiken, SC, November 16, 2001.

8 M. R. Poirier, personal communication to J. R. Zamecnik, Westinghouse Savannah RiverCo., Aiken, SC, December, 2001.

9 M. J. Barnes, D. T. Hobbs, R. F. Swingle, Tributylphosphate in the In-Tank PrecipitationProcess Facilities, WSRC-RP-93-1162, Rev. 0, Westinghouse Savannah River Co.,Aiken, SC, November 23, 1993.

10 JMP, Version 4.0.4 for Windows, SAS Institute, Cary, NC.11 J. R. Zamecnik, M. A. Baich, Task Technical and Quality Assurance Plan In Support of

RPP – Evaluating The Effects Of Tri-Butyl Phosphate And Normal Paraffin HydrocarbonIn Simulated Low-Activity Waste Solution On Ultrafiltration, WSRC-TR-2001-00217,Rev. 0 (SRT-RPP-2001-0053, Rev. 0), Westinghouse Savannah River Co., Aiken, SC,November 2, 2001

12 Laboratory Notebook, WSRC-NB-2001-00144, Westinghouse Savannah River Co., Aiken,SC.