thick plate shear deformation

Upload: hasanain-almusawi

Post on 01-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 thick plate shear deformation

    1/12

    A higher order finite element including transverse normal strain for linear

    elastic composite plates with general lamination configurations

    Wu Zhen a,b, S.H. Lo b,n, K.Y. Sze c, Chen Wanji a

    a Key Laboratory of Liaoning Province for Composite Structural Analysis of Aerocraft and Simulation, Shenyang Aerospace University, Shenyang 110136, Chinab Department of Civil Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Chinac Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China

    a r t i c l e i n f o

     Article history:Received 5 September 2010

    Received in revised form

    18 March 2011

    Accepted 7 August 2011Available online 31 August 2011

    Keywords:

    Higher order theory

    Finite element

    Transverse normal strain

    Angle-ply

    Laminated composite and sandwich

    a b s t r a c t

    This paper describes a higher-order global–local theory for thermal/mechanical response of moderatelythick laminated composites with general lamination configurations. In-plane displacement fields are

    constructed by superimposing the third-order local displacement field to the global cubic displacement

    field. To eliminate layer-dependent variables, interlaminar shear stress compatibility conditions have

    been employed, so that the number of variables involved in the proposed model is independent of the

    number of layers of laminates. Imposing shear stress free condition at the top and the bottom surfaces,

    derivatives of transverse displacement are eliminated from the displacement field, so that C0

    interpolation functions are only required for the finite element implementation. To assess the proposed

    model, the quadratic six-node C0 triangular element is employed for the interpolation of all the

    displacement parameters defined at each nodal point on the composite plate. Comparing to various

    existing laminated plate models, it is found that simple C0 finite elements with non-zero normal strain

    could produce more accurate displacement and stresses for thick multilayer composite plates subjected

    to thermal and mechanical loads. Finally, it is remarked that the proposed model is quite robust, such

    that the finite element results are not sensitive to the mesh configuration and can rapidly converge to

    3-D elasticity solutions using regular or irregular meshes.

    &  2011 Elsevier B.V. All rights reserved.

    1. Introduction

    Due to low weight, high strength and rigidity, laminated

    composite structures are being widely used in many engineering

    fields such as aerospace, automotive and submarines. For safe and

    reliable designs, it is necessary to well understand the structural

    behavior of laminated composite and sandwich plates. Appro-

    priate computational models ought to be developed for accurately

    predicting the responses of these laminated structures. Among

    the available approaches, the classical laminated plate theory and

    the first order shear deformation theory have been proposedto predict thermo-mechanical behavior of laminated plates.

    The laminated composites generally possess relatively soft trans-

    verse shear modulus. However, the classical laminated plate

    theory and the first order shear deformation theory are unable

    to adequately model the relatively large transverse shear deforma-

    tions, so that they often produce unacceptable errors in predicting

    displacement and stresses of thick and moderately thick laminated

    composite plates. Although the three-dimensional models are

    accurate enough, the three-dimensional analysis requires huge

    computational efforts, as the number of unknowns, in general,

    depends on the number of layers of the laminate [1].

    By adding high-order terms of transverse coordinate  z   to the

    in-plane and transverse displacements, the global higher order

    shear deformation theories   [2–6] have been widely developed.

    Compared to the first-order theory, the global higher-order theory

    does not require the shear correction factors and can account for

    the warping of the cross-section. In the global higher-order

    theory, however, it is assumed that in-plane displacements and

    its derivatives are continuous through the thickness of laminates.Owing to this assumption, the continuity conditions of interla-

    minar stresses at interfaces will be violated as continuous strains

    at the interfaces are multiplied by varying material properties of 

    different layers. Previous studies [7–11] indicated that the global

    higher-order theories overestimate the natural frequencies and

    buckling loads of the soft-core sandwiches with a vast difference

    in material properties and thickness between the faces and the

    core, as these models violate the continuity conditions of trans-

    verse shear stresses at interfaces. To determine the natural

    frequencies and the critical loads of the soft-core sandwiches,

    the mixed layerwise theories   [7–10] have been developed.

    Although in general the performance of the mixed layerwise

    Contents lists available at  SciVerse ScienceDirect

    journal homepage:  www.elsevier.com/locate/finel

    Finite Elements in Analysis and Design

    0168-874X/$ - see front matter &  2011 Elsevier B.V. All rights reserved.

    doi:10.1016/j.finel.2011.08.003

    n Corresponding author.

    E-mail address:  [email protected] (S.H. Lo).

    Finite Elements in Analysis and Design 48 (2012) 1346–1357

    http://www.elsevier.com/locate/finelhttp://www.elsevier.com/locate/finelhttp://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.finel.2011.08.003mailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.finel.2011.08.003http://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.finel.2011.08.003mailto:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_1/dx.doi.org/10.1016/j.finel.2011.08.003http://www.elsevier.com/locate/finelhttp://www.elsevier.com/locate/finel

  • 8/9/2019 thick plate shear deformation

    2/12

    theories is promising, they are computational expensive and

    become intractable when the number of laminates increases, as

    the number of unknowns depends on the number of layers.

    The zig-zag theories, which can  a priori   satisfy the continuity

    of transverse shear stresses at interfaces, generally provide a

    reasonable compromise between accuracy and efficiency. Carrera

    [12] introduced the original work and development of the zig-zag

    theory in great details. In recent decade, the zig-zag theories have

    been developed to study the mechanical, thermal and electricalbehaviors of smart composite plates/shells [13–18]. However, due

    to enforcement of the transverse shear stress continuity at the

    interfaces, derivatives of transverse displacement are involved in

    the displacement field. Hence, C1 continuity of transverse

    displacement at element interfaces will be required for the finite

    element implementation. Although the continuity conditions of 

    transverse shear stresses at interfaces can be  a priori  satisfied, the

    zig-zag theories are unable to produce accurate transverse shear

    stresses directly from constitutive equations. For zig-zag theories,

    accurate transverse shear stresses could only be obtained by

    integrating three-dimensional equilibrium equation. However,

    third order derivatives of transverse displacement are involved

    if transverse shear stresses are to be computed by integrating the

    3-D equilibrium equations. Hence, global equilibrium equations

    related to the full domain were proposed   [19], which is rather

    complicated and expensive, and even might fail under irregular

    mesh configuration. An eight-node element based on the zig-zag

    theory has been proposed by Icardi   [20]   in which different

    degrees of freedom are defined at the nodes of a finite element.

    Nonetheless, the proposed element consists of first-order and

    second-order derivatives of transverse displacement as nodal

    variables, which is rather difficult to handle in a practical analysis.

    By virtue of the zig-zag theory, Chakrabarti and Sheikh   [21]

    developed a six-node nonconforming triangular element for the

    analysis of sandwich plates, which violates the normal slope

    continuity requirement. Recent study   [22]   indicated that the

    six-node nonconforming triangular element   [21]   was unable to

    produce the accurate dynamic response of the sandwich plates, as

    it violates the continuity conditions of the normal slope at the

    interelement boundary. Pandit et al.  [23]  proposed an improved

    zig-zag theory in which transverse displacement is assumed to be

    quadratic over the core thickness and constant over the face

    sheets. Nevertheless, the derivatives of transverse displacement

    are involved in the displacement fields. To avoid the use of C1

    interpolation functions in the finite element implementation,

    artificial constraints have to be imposed using a penalty approach.

    Subsequently, the improved zig-zag theory was extended to study

    the static behaviors of sandwich plate with random material

    properties  [24].

    To avoid using the C1 interpolation function in the finite

    element formulation, a C0-type global–local higher-order theory

    [25] was proposed for the static analysis of laminated composites.

    Compared to the previous global–local higher-order theories[26,27], C0 interpolation functions are only required for the finite

    element implementation, as derivatives of transverse displace-

    ment are eliminated from displacement field based on known

    shear stress conditions. Numerical results indicated that the

    C0-type global–local higher-order theory neglecting transverse

    normal strain   [25]   can be employed to study the deformations

    and stresses of laminated composites subjected to mechanical

    loads. However, for thick multilayer composite plates under

    thermal loads, transverse normal strain plays an important role.

    In view of this situation, this paper aims to develop a C0-type

    global–local theory including transverse normal strain for the

    analysis of thick multilayer plates under thermal/mechanical

    loads. Furthermore, the proposed model is applicable not only

    to cross-ply but also to angle-ply laminated composite plates.

    Based on the proposed model, the six-node C0 triangular element

    is formulated for the thermal/mechanical analysis of thick multi-

    layer plates with general lamination configurations.

    2. Higher-order global–local theory 

    In order to model the zig-zag shape distribution of in-plane

    displacement through the thickness of laminates, a higher-orderin-plane displacement field is defined by superimposing third-

    order local displacements to the global cubic displacement fields.

    To include the transverse normal strain effect, the transverse

    displacement is assumed to be linear across the thickness for

    thermo-mechanical problems of multilayered plates. The initial

    displacement fields are given by

    ukð x, y, z Þ ¼ uGð x, y, z ÞþukLð x, y, z Þþû

    kLð x, y, z Þ,

    vkð x, y, z Þ ¼ vGð x, y, z ÞþvkLð x, y, z Þþ v̂

    kLð x, y, z Þ,

    wkð x, y, z Þ ¼ wGð x, y, z Þ:   ð1Þ

    The global displacement components in Eq. (1) are given by

    uGð x, y, z Þ ¼ u0ð x, yÞþX3i ¼ 1

     z iuið x, yÞ,

    vGð x, y, z Þ ¼ v0ð x, yÞþX3i ¼ 1

     z ivið x, yÞ,

    wGð x, y, z Þ ¼ w0ð x, yÞþ zw1ð x, yÞ:   ð2Þ

    The local displacement components of the   kth ply can be

    written as follows:

    ukLð x, y, z Þ ¼ zkuk1ð x, yÞþz

    2k u

    k2ð x, yÞ,

    vkLð x, y, z Þ ¼ zkvk1ð x, yÞþz

    2k v

    k2ð x, yÞ,

    ûkLð x, y, z Þ ¼ z

    3k u

    k3ð x, yÞ,

    v̂kLð x, y, z Þ ¼ z3k vk3ð x, yÞ,   ð3Þ

    in which,   zk¼ak z bk,   ak ¼ ð2=ð z kþ1 z kÞÞ,   bk ¼ ð z kþ1þ z kÞ=ð z kþ1

     z kÞÞ, and   x,   y   and   z   are the global coordinates of the plate. The

    reference plane ( z ¼0) is taken at the mid-surface of the laminate.

    The local coordinates for a layer are denoted by  x, y  and  zk, where

    zkA[1,1]. The relationships between the global coordinates and

    the local coordinates are depicted in  Fig. 1.

    In Eq. (1), there are  6nþ10 variables in the displacement fields,

    where n  denotes the number of layers of the composite plate. In

    order to reduce the layer-dependent variables, the interlaminar

    continuity compatibility conditions of in-plane displacements

    [26] and transverse shear stresses will be employed. The inter-

    laminar continuity conditions of in-plane displacements can be

    Fig. 1.  Schematic diagram for the laminated plate and coordinates.

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1347

  • 8/9/2019 thick plate shear deformation

    3/12

    expressed as

    ukLð x, y, z kÞ ¼ uk1L   ð x, y, z kÞ

    ûkLð x, y, z kÞ ¼  û

    k1L   ð x, y, z kÞ

    vkLð x, y, z kÞ ¼ vk1L   ð x, y, z kÞ

    v̂kLð x, y, z kÞ ¼  v̂

    k1L   ð x, y, z kÞ

    ,   where   k ¼ 2,3,4,. . .,n:   ð4Þ

    Using the interlaminar continuity conditions of in-plane dis-

    placement, 4(n1) variables are eliminated from the initial

    displacement field. The interlaminar continuity conditions and

    free surface conditions of transverse shear stresses can be used

    to further reduce the layer-dependent variables. For angle-ply

    composite plate, the transverse shear stresses for the  kth ply are

    given by

    tk xz ð z Þ ¼ Q 44kek

     xz ð z ÞþQ 45kek

     yz ð z Þ,

    tk yz ð z Þ ¼ Q 45kek

     xz ð z ÞþQ 55kek

     yz ð z Þ,   ð5Þ

    where Q ijk are the transformed material constants with respect to

    the global coordinates for the   kth layer and transverse shear

    strains are given by

    ek xz ð z Þ ¼ @w0@ x

      þ z @w1@ x

      þu1þ2 zu2þ3 z 2u3þaku

    k1þ2akzku

    k2þ3akz

    2k u

    k3,

    ek yz ð z Þ ¼ @w0@ y

      þ z @w1@ y

      þv1þ2 zv2þ3 z 2v3þakv

    k1þ2akzkv

    k2þ3akz

    2k v

    k3,

    ð6Þ

    In Eq. (6), it can be found that derivatives of transverse

    displacements are present in the strain components. The deriva-

    tives of transverse displacements will be involved in the in-plane

    displacement fields, as the interlaminar continuity conditions

    of transverse shear stresses are used. As the derivatives of 

    transverse displacements are required in the in-plane displace-

    ment fields, C1 interpolation functions would be required for the

    finite element implementation. To avoid using C1 interpolation

    functions, the derivatives of lateral displacement have to be

    eliminated by employing the stress free conditions at the bound-

    ary surfaces.

    Using the conditions of zero transverse shear stresses at the

    lower surface, the following equations can be obtained:

    @w0@ x

      ¼ H 1u11þH 2u

    12þH 3u

    13þH 4u1þH 5u2þH 6u3þH 7

    @w1@ x

      ,

    @w0@ y

      ¼ N 1v11þN 2v

    12þN 3v

    13þN 4v1þN 5v2þN 6v3þN 7

    @w1@ y

      ,   ð7Þ

    where coefficients   H i   and   N i   (i¼17) can be found in

    Appendix A. Recall the transverse shear stress continuity conditions

    at interfaces,

    tkþ1 xz    ð z kÞ ¼ tk

     xz ð z kÞ,

    tkþ1 yz    ð z kÞ ¼ tk

     yz ð z kÞ:   ð8Þ

    Applying the interlaminar continuity condition and free con-

    dition at the bottom surface of transverse shear stresses, local

    displacement variables for the  kth ply can be expressed as

    where coefficients F ki ,  Gki , H 

    ki ,  L

    ki , M 

    ki and  N 

    ki   (i¼114) are given in

    Appendix.

    Employing the stress conditions of zero transverse shear

    stresses at the top surface,   @w1=@ x   and   @w1=@ y   can be, respec-

    tively, expressed as

    @w1@ x

      ¼ r 1u11þr 2u

    12þr 3u

    13þs1u1þs2u2þs3u3þc 1v

    11þc 2v

    12þc 3v

    13

    þd1v1þd2v2þd3v3,

    @w1@ y

      ¼ e1u11þe2u

    12þe3u

    13þ f 1u1þ f 2u2þ f 3u3 þ g 1v

    11þ g 2v

    12

    þ g 3v13þh1v1þh2v2þh3v3,   ð10Þ

    where the coefficients in Eq. (10) can be found in the  Appendix A.

    Substituting Eqs. (9) and (10) into Eq. (1), the final displacement

    fields can be written as

    uk ¼ u0þX3i ¼ 1

    Fki ð z Þu1i  þ

    X3 j ¼ 1

    Fk jþ3ð z Þu jþX3r ¼ 1

    Fkr þ6ð z Þv1r þ

    X3s ¼ 1

    Fksþ9ð z Þvs,

    vk ¼ v0þX3i ¼ 1

    Cki ð z Þu1i  þ

    X3 j ¼ 1

    Ck jþ3ð z Þu j þX3r  ¼ 1

    Ckr þ6ð z Þv1r þ

    X3s ¼ 1

    Cksþ9ð z Þvs,

    wk ¼w0þ zw1,   ð11Þ

    where   Fki   and  Cki   are functions of material constants and the

    thickness of the laminated plate, respectively, which are alsoshown in Appendix A. Based on known traction conditions at the

    upper surface, the derivatives of transverse displacement  @wi=@ x

    and @wi=@ y  (i¼0, 1) are eliminated. This is a major breakthrough

    in the finite element formulation of composite plates, in which

    simple planar C0 finite elements could be used for the interpola-

    tion of displacement parameters.

    3. Finite element formulation

    As the first derivatives of transverse displacement are excluded

    from the in-plane displacement fields, the classical six-node C0

    quadratic triangular element can be used in the finite element

    analysis. The interpolations for the displacement parameters used

    u1

    u2

    u3

    v1

    v2

    v3

    26666666664

    37777777775

    k

    ¼

    F 1   F 2   F 3   F 4   F 5   F 6   F 7   F 8   F 9   F 10   F 11   F 12   F 13   F 14

    G1   G2   G3   G4   G5   G6   G7   G8   G9   G10   G11   G12   G13   G14

    H 1   H 2   H 3   H 4   H 5   H 6   H 7   H 8   H 9   H 10   H 11   H 12   H 13   H 14

    L1   L2   L3   L4   L5   L6   L7   L8   L9   L10   L11   L12   L13   L14

    M 1   M 2   M 3   M 4   M 5   M 6   M 7   M 8   M 9   M 10   M 11   M 12   M 13   M 14

    N 1   N 2   N 3   N 4   N 5   N 6   N 7   N 8   N 9   N 10   N 11   N 12   N 13   N 14

    26666666664

    37777777775

    k

    u11u12u13u1

    u2

    u3@w1@ x

    v11v12v13v1

    v2

    v3@w1@ y

    8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

    9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

    ,   ð9Þ

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357 1348

  • 8/9/2019 thick plate shear deformation

    4/12

    in the generalized displacement field are given by

    u0 ¼X6r  ¼ 1

    N r u0r ,   v0 ¼X6r  ¼ 1

    N r v0r ,   w0 ¼X6r  ¼ 1

    N r w0r ,   w1 ¼X6r  ¼ 1

    N r w1r ,

    u11 ¼X6r  ¼ 1

    N r u11r ,   u

    12 ¼

    X6r ¼ 1

    N r u12r ,   u j ¼

    X6r  ¼ 1

    N r u jr ,   ð j ¼ 123Þ,

    v11 ¼X6r  ¼ 1

    N r v11r ,   v

    12 ¼

    X6r  ¼ 1

    N r v12r ,   v j ¼

    X6r  ¼ 1

    N r v jr ,   ð j ¼ 123Þ,   ð12Þ

    where  N i¼(2Li1)Li,  N 4¼4L1L2,   N 5¼4L2L3,  N 6¼4L3L1;   Li  are area

    coordinates, (i¼1,2,3).

     3.1. The strain and the stiffness matrix

    By virtue of linear strain–displacement relationships, the

    strain for the  kth  layer can be written as

    ek ¼ @uk ¼   B1   B2   B3   B4   B5   B6

    de,   ð13Þ

    where de ¼ ½ de1   d

    e2   d

    e3   d

    e4   d

    e5   d

    e6

    T  and dei (i¼1–6) are displa-

    cement parameters at the   ith node. The sixteen global displace-ment parameters at each node are given by

    @@ x   0 0

      @@ z    0

      @@ y

    0   @@ y   0 0  @

    @ z @@ x

    0 0   @@ z @@ x

    @@ y   0

    2664

    3775

    ,

    Bi ¼

    @N i@ x

      0 0 0 0   @N i@ y

    0   @N i@ y   0 0 0   @N i@ x

    0 0 0   @N i@ x@N i@ y

      0

    0 0   N i   z @N i@ x   z 

    @N i@ y   0

    Fk1@N i@ x   C

    k1

    @N i@ y   0

      @Fk1@ z   N i

    @Ck1@ z   N i   F

    k1

    @N i@ y  þC

    k1

    @N i@ x

    ^ ^ ^ ^ ^ ^

    Fk6@N i@ x   C

    k6

    @N i@ y

      0  @Fk6

    @ z   N i@Ck6@ z   N i   F

    k6

    @N i@ y  þC

    k6

    @N i@ x

    Fk7@N i@ x   C

    k7

    @N i@ y

      0  @Fk7

    @ z   N i@Ck7@ z   N i   F

    k7

    @N i@ y  þC

    k7

    @N i@ x

    ^ ^ ^ ^ ^ ^

    Fk12@N i@ x   C

    k12

    @N i@ y

      0  @Fk12

    @ z   N i@Ck12@ z    N i   F

    k12

    @N i@ y  þC

    k12

    @N i@ x

    266666666666666666666666664

    377777777777777777777777775

    ,   ði ¼ 126Þ:

    By means of the strain matrix  B , the element stiffness matrix

    Ke can be readily evaluated using the following equation:

    Ke ¼X

    n

    k ¼ 1

    Z hk

    ZZ  BT Q kB dxdy

    dz ,   ð14Þ

    where   Q k   is the transformed material constant matrix of the

    kth ply.

     3.2. Transverse shear stresses from 3-D equilibrium equation

    Apart from using constitutive equations, more accurate trans-

    verse shear stresses could be obtained by integrating three-

    dimensional local stress equilibrium equations through the thick-

    ness of laminated plates, i.e.

    t xz ð z Þ ¼Z   z 

    h

    2

    @s x

    @ x  þ

    @t xy

    @ y

      dz ,

    t yz ð z Þ ¼Z   z h2

    @t xy@ x

      þ@s y@ y

      dz ,   ð15Þ

    where s x, s y  and  t xy   are in-plane stresses of the element.

    4. Numerical examples

    In this section, the finite element results of laminated compo-sites based on the proposed model are presented. The perfor-

    mance of finite element is assessed by comparing with the three-

    dimensional elasticity solutions and other published results. The

    effects of transverse normal strain and stacking sequence are also

    studied. The finite element meshes for the static analysis of the

    composite plates are shown in Fig. 2. The material constants used

    in the examples are given as follows:

    Material (1) for laminated composite plates [28]

    E 1 ¼ 172:5GPa,   E 2 ¼ E 3 ¼ 6:9GPa,   G12 ¼ G13 ¼ 3:45GPa,

    G23 ¼ 1:38GPa,   v12 ¼ v13 ¼ v23 ¼ 0:25:

    Material (2) for laminated composite plates [29]

    C 11 ¼ 1:0025E 2,   C 12 ¼ 0:25E 2,   C 22 ¼ 25:0625E 2,   C 33 ¼ C 11,

    C 44 ¼ 0:5E 2,   C 55 ¼ 0:2E 2,   C 66 ¼ C 44:

    Material (3) for laminated composite plates [29]

    C 11 ¼ 32:0625E 2,   C 12 ¼ 0:2495E 2,   C 22 ¼ 1:00195E 2,   C 33 ¼ C 22,

    C 44 ¼ 0:2E 2,   C 55 ¼ 0:8E 2,   C 66 ¼ C 55:

    Material (4) for laminated composite plates [29]

    C 11 ¼ 25:0625E 2,   C 12 ¼ 0:25E 2,   C 22 ¼ 1:0025E 2,   C 33 ¼ C 22,

    C 44 ¼ 0:2E 2,   C 55 ¼ 0:5E 2,   C 66 ¼ C 55:

    Material (5) for sandwich plates  [30]

    Face sheets (h/52):

    E 1 ¼ 200GPa,   E 2 ¼ E 3 ¼ 8GPa,   G12 ¼ G13 ¼ 5GPa,

    G23 ¼ 2:2GPa,v12 ¼ v13 ¼ 0:25,   v23 ¼ 0:35,   a1 ¼2 106=K ,

    a2 ¼ a3 ¼ 50 106=K :

    Core material (3h/5):

    E c 1 ¼ E c 2 ¼ 1GPa,   E 

    c 3 ¼ 2GPa,   G

    c 12 ¼ 3:7GPa,   G

    c 13 ¼ G

    c 23 ¼ 0:8GPa,

    vc 12 ¼ 0:35,   vc 13 ¼ v

    c 23 ¼ 0:25,   a

    c 1 ¼a

    c 2 ¼ a

    c 3 ¼ 30 10

    6=K :

    where 1 and 2 denote the in-plane directions and 3 denotes

    transverse direction of laminates.

    Example 1.   Cylindrical bending of laminated composite plate

    strips subjected to a sinusoidal loading  q ¼ q0 sinðp x=aÞ.

    The normalized displacements and stresses are given by

    s x ¼ s xða=2,b=2, z Þh2

    q0a2  ,   t xz ¼

     t xz ð0,b=2, z Þh

    q0a  ,

    ~u ¼ E 2uð0,b=2, z Þ

    q0h

      ,   ~s x ¼ s xða=2,b=2, z Þ

    q0,

    dei  ¼   u0i   v0i   w0i   w1i   u

    11i   u

    12i   u

    13i   u1i   u2i   u3i   v

    11i   v

    12i   v

    13i   v1i   v2i   v3i

    h iT :

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1349

  • 8/9/2019 thick plate shear deformation

    5/12

    ~t xy ¼ t xyða=2,b=2, z Þ

    q0,   ~t xz ¼

     t xz ð0,b=2, z Þq0

    :

    The following boundary conditions proposed by Bogdanovich

    and Yushanov [31] are used.

    u0 ¼ v0 ¼ w0 ¼w1 ¼ 0,   at   x ¼ 0;   u0 ¼ w0 ¼ w1 ¼ 0,   at   x ¼ a:

    Material (1) is used in this example for various models

    considered, and the entire plate is modeled in the analysis of 

    the static response of angle-ply laminated plates. In the Figures,

    acronyms have been used. GLHTI represents the results obtained

    Fig. 2.  Finite element meshes of the entire plate. (a) Regular mesh configuration (Mesh sh 1,  m m), (b) irregular mesh configuration (Mesh 2, 24 elements), (c) irregular

    mesh configuration (Mesh 3, 24 elements) and (d) irregular mesh configuration (Mesh 4, 24 elements).

     Table 1

    Convergence rate of in-plane stress  s xða=2,b=2, z Þ  for [151/151] plate (Mesh 1,a/h¼4).

     z /h   Present 3-D [31]

    44 88 1212 1414

    0.5   1.0292   0.9992   0.9925   0.9910   0.9960

    0.2   0.0371   0.0356   0.0353   0.0353   0.0373

    0.0   0.4719 0.4582 0.4552 0.4546 0.4526

    0.0þ 0.4926   0.4771   0.4738   0.4732   0.4719

    0.2 0.0240 0.0235 0.0234 0.0234 0.0260

    1.0 1.0812 1.0481 1.0411 1.0396 1.0446

     Table 2

    Convergence rate of in-plane stress  s xða=2,b=2, z Þ  for [151/151] plate (Mesh 2,a/h¼4).

     z /h   Present 3-D [31]

    96 elements 384 elements 600 elements

    0.5   1.005   0.9975   0.9966   0.9960

    0.2   0.0367   0.0356   0.0355   0.0373

    0.0   0.4595 0.4570 0.4566 0.4526

    0.0þ 0.4785   0.4755   0.4751   0.4719

    0.2 0.0240 0.0236 0.0237 0.0260

    1.0 1.0532 1.0456 1.0448 1.0446

     Table 3

    Comparison of nondimensional stresses at strategic points of laminated composite

    plate [01/901/01].

    a/h   s x   a2   ,b2  ,

    h2

      t xz   0,b2,0

    4

    Present (1212) 1.1763 0.3531

    Exact  [28]   1.1678 0.3576

    10

    Present (1212) 0.7343 0.4196

    Exact  [28]   0.7369 0.4238

    20

    Present (1212) 0.6540 0.4375

    Exact  [28]   0.6580 0.437450

    Present (1212) 0.6299 0.4854

    Exact  [28]   0.6348 0.4415

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357 1350

  • 8/9/2019 thick plate shear deformation

    6/12

    from the proposed six-node triangular element based on the

    C0-type Global Local Higher-order Theory, and 16 variables are

    defined at each node. GLHTN denotes the results obtained from

    the six-node triangular element based on the C0-type Global Local

    Higher-order Theory neglecting transverse normal strain [25], and

    13 variables are defined at each node. FSDT represents the results

    obtained from the six-node triangular element based on the First

    order Shear Deformation Theory, and there are 5 variables in the

    displacement field of this model. A suffix has been introduced tothe acronyms:   C and –E denote, respectively, transverse shear

    stresses obtained directly from constitutive equations and by

    integrating 3-D equilibrium equation; –M1 and M2 denote,

    respectively, results obtained from Mesh 1 and Mesh 2. It is

    noted that results of GLHTN and FSDT are produced by the

    authors based on their own computer codes.

    The convergence characteristics of the GLHTI for an angle-ply

    moderately thick [151/15] plate (a/h¼4) are shown in

    Tables 1 and 2. It is found that stresses can rapidly converge to

    within 1% of the 3-D elasticity solutions [31] by refining regular or

    irregular meshes. In   Table 3, comparison of nondimensional

    stresses at strategic points of laminated composite plate [01/901/01]

    with different length-to-thickness ratios has been presented. It is

    found that the proposed model is applicable not only to thick

    plates but also to thin composite plates. In Fig. 3, convergence rate

    of in-plane stress by different meshes for three-layer [301/301/301]

    plate (a/h¼4) is also presented. It is found that converged results

    close to the 3-D elasticity solution   [31]   could be obtained from

    regular 1212 meshes and irregular meshes of 384 elements, for

    which mesh configurations had little influence on the accuracy of 

    results. Effect of transverse normal strain on transverse shear

    stresses has been shown in   Fig. 4. Numerical results show thatGLHTI including transverse normal strain agree well with the 3-D

    elasticity solution   [31]. However, GLHTN neglecting transverse

    normal strain is less accurate compared to 3-D elasticity solution.

    For the five-layer [151/451/01/301/151] plate, the results are,

    respectively, presented in   Figs. 5–8. It is noted that results of 

    GLHTI are in good agreement with the 3-D elasticity solutions

    [32]. However, the results (FSDT) obtained from the first order

    theory seem to be less accurate in comparison with the 3-D

    elasticity solutions.

    Example 2.   Simply-supported laminated composite plate sub-

     jected to a doubly sinusoidal transverse loading   q ¼ q0 sinðp x=aÞsinðp y=bÞ.

    -1 -0.5 0 0.5 1-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [31]

    GLHTI (4x4)

    GLHTI (8x8)

    GLHTI (12x12)

    -1 -0.5 0 0.5 1-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.53-D [31]

    GLHTI (96 elements)

    GLHTI (384 elements)

    GLHTI (600 elements)

    hz  

    hz 

    -1 -0.5 0 0.5 1-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [31]

    GLHTI (24 elements)

    GLHTI (96 elements)

    GLHTI (384 elements)

    GLHTI (600 elements)

    -1 -0.5 0 0.5 1-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.53-D [31]

    GLHTI (24 elements)

    GLHTI (96 elements)

    GLHTI (384 elements)

    GLHTI (600 elements)

    ( )z baσ   x    ,2/,2/( )z baσ   x    ,2/,2/

    ( )z baσ   x    ,2/,2/ ( )z baσ   x    ,2/,2/

     hz 

    hz 

    Fig. 3.  In-plane stress by different meshes for three-layer [301/30

    1/30

    1] plate (a/h¼4). (a) Mesh 1, (b) mesh 2, (c) mesh 3 and (d) mesh 4.

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1351

  • 8/9/2019 thick plate shear deformation

    7/12

    -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [31]

    2-D [31]

    GLHTI-C (12x12)

    GLHTN-C (12x12)

    ( )z byz    ,2/,0τ  

    ( )z byz    ,2/,0τ  

    -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [31]

    2-D [31]

    GLHTI-C (384 elements)

    GLHTI-E (384 elements)

    hz 

    hz 

    Fig. 4.   Transverse shear stress for three-layer [301/301/301] plate (a/h¼4). (a)

    Mesh 1 and (b) mesh 2.

    -1.5 -1 -0.5 0 0.5 1 1.5-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [32]

    GLHTI-M1 (12x12)

    GLHTI-M2 (384 elements)

    FSDT-M1 (12x12)

    ( )z bu    ,2/,0~

    hz 

    Fig. 5.   In-plane displacement for five-layer [151/45

    1/0

    1/30

    1/15

    1] plate (a/h¼4).

    -20 -15 -10 -5 0 5 10 15 20-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.53-D [32]

    GLHTI-M1 (12x12)

    GLHTI-M2 (384 elements)

    FSDT-M1 (12x12)

    ( )z ba x    ,2/,2/~σ  

    hz 

    Fig. 6.   In-plane stress for five-layer [151/451/01/301/151] plate (a/h¼4).

    -6 -4 -2 0 2 4-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [32]

    GLHTI-M1 (12x12)

    GLHTI-M2 (384 elements)

    FSDT-M1 (12x12)

    ( )z ba xy    ,2/,2/~τ  

    h

    Fig. 7.   In-plane stress for five-layer [151/451/01/301/151] plate (a/h¼4).

    0 0.5 1 1.5 2-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [32]

    GLHTI-M1 (12x12)

    GLHTI-M2 (384 elements)

    ( )z b xz    ,2/,0~τ  

    hz 

    Fig. 8.  Transverse shear five-layer [151/45

    1/0

    1/30

    1/15

    1] plate (a/h¼4).

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357 1352

  • 8/9/2019 thick plate shear deformation

    8/12

    The normalized displacements and stresses are given by

    u ¼ E 2h2u=q0a

    3,   ðs y,t xyÞ ¼ ðs y,t xyÞh

    2=q0a2

    ,   t xz ¼ t xz h=q0a:

    Owing to symmetry in geometry, material properties and

    loading conditions, one-quarter of the laminated plate is consid-

    ered in this example. The boundary conditions used are given in

    Table 4.

    To further assess the performance of the finite element based

    on the proposed model, a five-layer plate with different thickness

    and material properties at each ply is studied. The plies of the

    composite plate are of thickness 0.3h/0.2h/0.15h/0.25h/0.1h   and

    of materials 4/2/4/3/2. Distributions of displacement and stresses

    through the thickness are plotted in  Figs. 9–12. Due to the rapid

    changes of material properties through the thickness direction,

    the postprocessing method from the zig-zag theory proposed by

    Cho and Choi   [29]   did not produce accurate results of in-plane

    displacement and transverse shear stresses. However, the present

    finite element based on the proposed model could produce more

    accurate displacement and stress distributions.

     Table 4

    Boundary conditions for examples 2 and 3.

    Boundary

    conditions

     x¼constant   y¼constant

    Simply-

    supported

    boundary

    w0 ¼ w1 ¼ v11 ¼ v

    12 ¼ v

    13 ¼ v1 ¼ v2 ¼ v3 ¼ 0   w0 ¼ w1 ¼ u

    11 ¼ u

    12 ¼ u

    13 ¼ u1 ¼ u2 ¼ u3 ¼ 0

    Symmetric

    axis

    u0 ¼ u11 ¼ u

    12 ¼ u

    13 ¼ u1 ¼ u2 ¼ u3 ¼ 0   v0 ¼ v

    11 ¼ v

    12 ¼ v

    13 ¼ v1 ¼ v2 ¼ v3 ¼ 0

    -0.015 -0.01 -0.005 0 0.005 0.01-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.53-D [29]

    GLHTI (12x12)

    ZZT [29]

    ( )z au    ,0,2/

    h

    Fig. 9.  In-plane displacement through thickness of five-layer plate with different

    thickness at each ply (a/h¼4).

    -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [29]

    GLHTI (12x12)

    ZZT [29]

    ( )z y    ,0,0σ  

    h

    Fig. 10.   In-plane stresses through thickness of five-layer plate with different

    thickness at each ply (a/h¼4).

    -0.04 -0.02 0 0.02 0.04 0.06-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [29]

    GLHTI (12x12)

    ZZT [29]

    ( )z ba xy    ,2/,2/τ  

    hz 

    Fig. 11.   In-plane shear stresses through thickness of five-layer plate with different

    thickness at each ply (a/h¼4).

    -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [29]

    GLHTI (12x12)

    ZZT [29]

    ( )z a xz    ,0,2/τ  

    h

    Fig. 12.   Transverse shear stresses through thickness of five-layer plate with

    different thickness at each ply (a/h¼4).

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1353

  • 8/9/2019 thick plate shear deformation

    9/12

    Example 3.   A square sandwich plate (01/core/01) subjected to

    thermal load  DT ð x, y, z Þ ¼ T 0 sinðp x=aÞsinðp y=bÞ  has been analyzed.

    The normalized displacements and stresses are given by

    w ¼  w

    a0T 0,   ðs x,t xy,t xz ,Þ ¼

     ðs x,t xy,t xz Þ

    ða0T 0E T Þ  ,   a0 ¼ 10

    6=K :

    Taking into account the symmetry in geometry, material

    properties and loading conditions, one-quarter of the sandwich

    plate is considered in this example. The boundary conditions used

    are given in Table 4.

    In order to study the effects of thermal stress and displace-

    ment of sandwich plates due to transverse normal strain,

    three-layer sandwich plate with material (5) is considered. Dis-

    tributions of transverse displacement and stresses through the

    thickness are shown in Figs. 13–16. It is found that the proposedmodel GLHTI can produce much better lateral displacement

    distribution through the thickness. However, lateral displacement

    obtained from GLHTN is zero, which is in contradiction with the

    exact solution [30]. Due to neglect of transverse normal strain, the

    model GLHTN fails to produce accurate in-plane stresses.

    The distributions of transverse shear stresses along the thickness

    are shown in Fig. 16. Numerical results show that the transverse

    shear stresses computed by the proposed model (GLHTI) are in

    excellent agreement with the exact solutions. However, trans-

    verse shear stress obtained from the model GLHTN is less reliable.

    5. Conclusions

    By introducing transverse normal strain, a C0-type global-localhigher order theory is developed to enhance the analysis of thermal/

    mechanical response of thick multilayer plates with general lamina-

    tion configurations. The proposed model is applicable not only to

    cross-ply but also to angle-ply laminated composite plates.

    By employing transverse shear free conditions at upper and lower

    surfaces and interlaminar continuity conditions of transverse shear

    stresses, the layer-dependent displacement variables can all be

    eliminated. As a result, the number of variables involved in the

    proposed model is independent of the number of layers of laminates.

    One major advantage of the proposed model is that C0 interpolation

    functions are only required for the finite element implementation, as

    the derivatives of transverse displacement have been eliminated from

    the general displacement field. The six-node quadratic C0 triangular

    element can be conveniently applied to laminated composite and

    -30 -20 -10 0 10 20 30-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [30]

    GLHTI (12x12)

    GLHTN (12x12)

    ( )z w    ,0,0

    h

    Fig. 13.   Transverse displacement for sandwich plate under thermal loads (a/h¼4).

    -60 -50 -40 -30 -20 -10 0 10 20-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [30]

    GLHTI (12x12)

    GLHTN (12x12)

    ( )z  x    ,0,0σ  

    h

    Fig. 14.   In-plane stress for sandwich plate under thermal loads (a/h¼4).

    -18 -16 -14 -12 -10 -8 -6-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [30]

    GLHTI (12x12)

    GLHTN (12x12)

    ( )z ba xy    ,2/,2/τ  

    hz 

    Fig. 15.   In-plane stress for sandwich plate under thermal loads (a/h¼4).

    -1.5 -1 -0.5 0 0.5 1 1.5-0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    3-D [30]

    GLHTI (12x12)

    GLHTN (12x12)

    ( )z a xz    ,0,2/τ  

    h

    Fig. 16.  Transverse shear stress for sandwich plate under thermal loads ( a/h¼4).

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357 1354

  • 8/9/2019 thick plate shear deformation

    10/12

    sandwich plates of various material characteristics under different

    load conditions. It is remarked that the finite element results are not

    affected by the mesh configuration, which could rapidly converge to

    the 3-D elasticity solution using regular or irregular meshes. Further-

    more, effects of transverse normal strain on thermal/mechanical

    behaviors of thick multilayer plates have been studied. It is found

    that transverse normal strain has a crucial effect on the lateral

    displacement and in-plane stresses of thick multilayer composite

    and sandwich plates under thermal loads.

     Acknowledgement

    The work described in this paper was supported by the

    University Development Fund (2009) on Computational Science

    and Engineering at the University of Hong Kong, the National

    Natural Sciences Foundation of China (Nos. 10802052, 11072156),

    the Program for Liaoning Excellent Talents in University

    (LR201033), and the Program for Science and Technology of 

    Shenyang (F10-205-1-16).

     Appendix 

    The coefficients  H i and  N i (i¼1–7) are given by

    H 1 ¼a1,   H 2 ¼ 2a1,   H 3 ¼3a1,   H 4 ¼1,   H 5 ¼2 z 1,

    H 6 ¼3 z 21,   H 7 ¼ z 1,

    N 1 ¼a1,   N 2 ¼ 2a1,   N 3 ¼3a1,   N 4 ¼1,   N 5 ¼2 z 1,

    N 6 ¼3 z 21,   N 7 ¼ z 1:

    For  k¼1, the coefficients are written as

    F 11  ¼ 1,   F 12  ¼ F 

    13  ¼ F 

    14  ¼ . . .F 

    114 ¼ 0,   G

    12 ¼ 1,   G

    11 ¼

    G13 ¼G14 ¼ . . .G

    114 ¼ 0,

    H 13 ¼ 1,   H 11 ¼ H 

    12 ¼ H 

    14 ¼ . . .H 

    114 ¼ 0;

    L18 ¼ 1,   L11 ¼ L12 ¼ L13 ¼ . . .L114 ¼ 0,

    M 19 ¼ 1,M 11 ¼ M 

    12 ¼ M 

    13 ¼ . . .M 

    114 ¼ 0

    N 110 ¼ 1,   N 11 ¼N 

    12 ¼N 

    13 ¼ . . .N 

    114 ¼ 0:

    The coefficients for k41 can be determined from the following

    recursive equations:

    F ki   ¼ð2þwkÞF k1i   2ð1þwkÞG

    k1i   3ð1þwkÞH 

    k1i

    þgkðLk1i   þ2M 

    k1i   þ3N 

    k1i   ÞþS i;

    Lki  ¼ ð2þBkÞLk1i   2ð1þBkÞM 

    k1i   3ð1þBkÞN 

    k1i

    þykðF k1i   þ2G

    k1i   þ3H 

    k1i   ÞþS i;

    Gk

    i

     ¼ F k

    i

     þF k1

    i

      þGk1

    i

      ,   H k

    i

     ¼H k1

    i

      ;

    M ki  ¼ Lki  þ L

    k1i   þM 

    k1i   ,   N 

    ki  ¼N 

    k1i

    where

    S 1 ¼ H 1Wk,   S 2 ¼ H 2Wk,   S 3 ¼H 3Wk,   S 4 ¼ ðH 4þ1ÞWk,

    S 5 ¼ ðH 5þ2 z kÞWk,

    S 6 ¼ ðH 6þ3 z 2k ÞWk,   S 7 ¼ ðH 7þ z kÞWk,   S 8 ¼ N 1rk,

    S 9 ¼ N 2rk,   S 10 ¼ N 3rk,

    S 11 ¼ ðN 4þ1Þrk,   S 12 ¼ ðN 5þ2 z kÞrk,

    S 13 ¼ ðN 6þ3 z 2kÞrk,   S 14 ¼ ðN 7þ z kÞrk;

    S 1 ¼ H 1ck,   S 2 ¼H 2ck,   S 3 ¼H 3ck,

    S 4 ¼ ðH 4þ1Þck,   S 5 ¼ ðH 5þ2 z kÞck

    S 6 ¼ ðH 6þ3 z 2kÞck,   S 7 ¼ ðH 7þ z kÞck,

    S 8 ¼ N 1Zk,

      S 9 ¼ N 2Zk,

      S 10 ¼ N 3Zk,

    S 11 ¼ ðN 4þ1ÞZk,   S 12 ¼ ðN 5þ2 z kÞZk,

    S 13 ¼ ðN 6þ3 z 2k ÞZk,   S 14 ¼ ðN 7þ z kÞZk:

    k ¼ 2,3,:::n:

    wk ¼  Q 44k1Q 55kQ 45k1Q 45k

    Q 44kQ 55kQ 245k

    !ak1

    ak;

    Wk¼   1þ

    Q 45k1Q 45kQ 44k1Q 55k

    Q 44kQ 55kQ 245k !  1

    ak;

    gk ¼  Q 55k1Q 45kQ 45k1Q 55k

    Q 44kQ 55kQ 245k

    !ak1

    ak;

    rk ¼  Q 55k1Q 45kQ 45k1Q 55k

    Q 44kQ 55kQ 245k

    ! 1

    ak;

    Bk ¼  Q 55k1Q 44kQ 45k1Q 45k

    Q 44kQ 55kQ 245k

    !ak1

    ak;

    Zk ¼   1þQ 45k1Q 45kQ 55k1Q 44k

    Q 44kQ 55kQ 245k

    ! 1

    ak;

    yk ¼  Q 44k1Q 45kQ 45k1Q 44k

    Q 44kQ 55kQ 245k

    !ak1

    ak;

    ck ¼  Q 44k1Q 45kQ 45k1Q 44k

    Q 44kQ 55kQ 245k

    ! 1

    ak:

    Employing the stress free conditions of transverse shear

    stresses at the upper surface,  @w1=@ x  and  @w1=@ y  can be respec-

    tively expressed as

    @w1@ x

      ¼ r 1u11þr 2u

    12þr 3u

    13þs1u1þs2u2þs3u3þc 1v

    11

    þc 2v12þc 3v

    13þd1v1þd2v2þd3v3,

    @w1@ y

      ¼ e1u11þe2u

    12þe3u

    13þ f 1u1þ f 2u2þ f 3u3þ g 1v

    11

    þ g 2v12þ g 3v

    13þh1v1þh2v2þh3v3,

    where

    r 1 ¼ b1a14ða1þH 1Þðb14þN 7þ z nþ1Þ

    D  ,

    r 2 ¼ b2a14ða2þH 2Þðb14þN 7þ z nþ1Þ

    D  ,

    r 3 ¼ b3a14ða3þH 3Þðb14þN 7þ z nþ1Þ

    D  ,

    s1 ¼ b4a14ða4þH 4þ1Þðb14þN 7þ z nþ1Þ

    D  ,

    s2 ¼ b5a14ða5þH 5þ2 z nþ1Þðb14þN 7þ z nþ1Þ

    D  ,

    s3 ¼b6a14ða6þH 6þ3 z 

    2nþ1Þðb14þN 7þ z nþ1Þ

    D  ,

    c 1 ¼

     ðb8þN 1Þa14a8ðb14þN 7þ z nþ1Þ

    D  ,

    c 2 ¼ ðb9þN 2Þa14a9ðb14þN 7þ z nþ1Þ

    D  ,

    c 3 ¼ ðb10þN 3Þa14a10ðb14þN 7þ z nþ1Þ

    D  ,

    d1 ¼ ðb11þN 4þ1Þa14a11ðb14þN 7þ z nþ1Þ

    D  ,

    d2 ¼ ðb12þN 5þ2 z nþ1Þa14a12ðb14þN 7þ z nþ1Þ

    D  ,

    d3 ¼ðb13þN 6þ3 z 

    2nþ1Þa14a13ðb14þN 7þ z nþ1Þ

    D

    e1 ¼ ða1þH 1Þb7b1ða7þH 7þ z nþ1Þ

    D  ,

    e2 ¼ ða2þH 2Þb7b2ða7þH 7þ z nþ1Þ

    D  ,

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1355

  • 8/9/2019 thick plate shear deformation

    11/12

    e3 ¼ ða3þH 3Þb7b3ða7þH 7þ z nþ1Þ

    D  ,

     f 1 ¼ ða4þH 4þ1Þb7b4ða7þH 7þ z nþ1Þ

    D  ,

     f 2 ¼ ða5þH 5þ2 z nþ1Þb7b5ða7þH 7þ z nþ1Þ

    D  ,

     f 3 ¼ða6þH 6þ3 z 

    2nþ1Þb7b6ða7þH 7þ z nþ1Þ

    D  ,

     g 1 ¼ a8b7ðb8þN 1Þða7þH 7þ z nþ1Þ

    D  ,

     g 2 ¼ a9b7ðb9þN 2Þða7þH 7þ z nþ1Þ

    D  ,

     g 3 ¼ a10b7ðb10þN 3Þða7þH 7þ z nþ1Þ

    D  ,

    h1 ¼ a11b7ðb11þN 4þ1Þða7þH 7þ z nþ1Þ

    D  ,

    h2 ¼ a12b7ðb12þN 5þ2 z nþ1Þða7þH 7þ z nþ1Þ

    D  ,

    h3 ¼a13b7ðb13þN 6þ3 z 

    2nþ1Þða7þH 7þ z nþ1Þ

    D  :

    ai ¼ anF ni  þ2anG

    ni  þ3anH 

    ni  ;   bi ¼ anL

    ni  þ2anM 

    ni  þ3anN 

    ni

    D¼ ðanF n

    7 þ2anGn

    7þ3anH n

    7 þH 7þ z nþ1ÞðanLn

    14þ2anM n

    14

    þ3anN n14þN 7þ z nþ1ÞðanF 

    n14þ2anG

    n14þ3anH 

    n14Þ

    ðanLn7þ2anM 

    n7 þ3anN 

    n7Þ

    Finally, coefficients Fki   and Cki  are given by

    Fki  ¼ Rki zkþS 

    ki z

    2k þT 

    ki z

    3k þ Z i,

    Cki  ¼ Oki zkþP 

    ki z

    2k þQ 

    ki  z

    3k þ Z i ,

    where

     Z 4 ¼ z ,   Z 5 ¼ z 2

    ,   Z 6 ¼ z 3

    ,   Z i ¼ 0   ðia4,5,6Þ,

     Z 10 ¼ z ,   Z 11 ¼ z 2

    ,   Z 12 ¼ z 3

    ,   Z i ¼ 0   ðia10,11,12Þ,

    Rk1 ¼ F k1 þF 

    k7r 1þF 

    k14e1,   S 

    k1 ¼G

    k1þG

    k7r 1þG

    k14e1,

    T k1 ¼H 

    k1þH 

    k7r 1þH 

    k14e1

    ,

    Rk2 ¼ F k2 þF 

    k7r 2þF 

    k14e2,   S 

    k2 ¼G

    k2þG

    k7r 2þG

    k14e2,

    T k2 ¼H k2þH 

    k7r 2þH 

    k14e2,

    Rk3 ¼ F k3 þF 

    k7r 3þF 

    k14e3,   S 

    k3 ¼G

    k3þG

    k7r 3þG

    k14e3,

    T k3 ¼H k3þH 

    k7r 3þH 

    k14e3,

    Rk4 ¼ F k4 þF 

    k7s1þF 

    k14 f 1,   S 

    k4 ¼ G

    k4þG

    k7s1þG

    k14 f 1,

    T k4 ¼H k4þH 

    k7s1þH 

    k14 f 1,

    Rk5 ¼ F k5 þF 

    k7s2þF 

    k14 f 2,   S 

    k5 ¼ G

    k5þG

    k7s2þG

    k14 f 2,

    T k5 ¼H k5þH 

    k7s2þH 

    k14 f 2,

    Rk6 ¼ F k6 þF 

    k7s3þF 

    k14 f 3,   S 

    k6 ¼ G

    k6þG

    k7s3þG

    k14 f 3,

    T k6 ¼H k6þH 

    k7s3þH 

    k14 f 3,

    Rk7 ¼ F 

    k8 þF 

    k7c 1þF 

    k14 g 1

    ,

      S k7 ¼G

    k8þG

    k7c 1þG

    k14 g 1

    ,

    T k7 ¼H k8þH 

    k7c 1þH 

    k14 g 1,

    Rk8 ¼ F k9 þF 

    k7c 2þF 

    k14 g 2,   S 

    k8 ¼G

    k9þG

    k7c 2þG

    k14 g 2,

    T k8 ¼H k9þH 

    k7c 2þH 

    k14 g 2,

    Rk9 ¼ F k10þF 

    k7c 3þF 

    k14 g 3,   S 

    k9 ¼G

    k10þG

    k7c 3þG

    k14 g 3,

    T k9 ¼H k10þH 

    k7c 3þH 

    k14 g 3,

    Rk10 ¼ F k11þF 

    k7d1þF 

    k14h1,   S 

    k10 ¼ G

    k11þG

    k7d1þG

    k14h1,

    T k10 ¼H k11þH 

    k7d1þH 

    k14h1,

    Rk11 ¼ F k12þF 

    k7d2þF 

    k14h2,   S 

    k11 ¼ G

    k12þG

    k7d2þG

    k14h2,

    T k11 ¼ H k12þH 

    k7d2þH 

    k14h2,

    Rk12 ¼ F k13þF 

    k7d3þF 

    k14h3,   S 

    k12 ¼ G

    k13þG

    k7d3þG

    k14h3,

    T k

    12 ¼ H k

    13þH k

    7d3þH k

    14h3;

    Ok1 ¼ Lk1þL

    k7r 1þL

    k14e1,   P 

    k1 ¼ M 

    k1þM 

    k7r 1þM 

    k14e1,

    Q k1  ¼ N k1þN 

    k7r 1þN 

    k14e1,

    Ok2 ¼ Lk2þL

    k7r 2þL

    k14e2,   P 

    k2 ¼ M 

    k2þM 

    k7r 2þM 

    k14e2,

    Q k2  ¼ N k2þN 

    k7r 2þN 

    k14e2,

    Ok3 ¼ Lk3þL

    k7r 3þL

    k14e3,   P 

    k3 ¼ M 

    k3þM 

    k7r 3þM 

    k14e3,

    Q k3  ¼ N k3þN 

    k7r 3þN 

    k14e3,

    Ok4 ¼ Lk4þL

    k7s1þL

    k14 f 1,   P 

    k4 ¼ M 

    k4þM 

    k7s1þM 

    k14 f 1,

    Q k4  ¼ N k4þN 

    k7s1þN 

    k14 f 1,

    Ok5 ¼ Lk5þL

    k7s2þL

    k14 f 2,   P 

    k5 ¼ M 

    k5þM 

    k7s2þM 

    k14 f 2,

    Q k5  ¼ N k5þN 

    k7s2þN 

    k14 f 2,

    Ok6 ¼ Lk6þL

    k7s3þL

    k14 f 3,   P 

    k6 ¼ M 

    k6þM 

    k7s3þM 

    k14 f 3,

    Q k6  ¼ N k6þN 

    k7s3þN 

    k14 f 3,

    Ok7 ¼ Lk8þL

    k7c 1þL

    k14 g 1,   P 

    k7 ¼M 

    k8þM 

    k7c 1þM 

    k14 g 1,

    Q k7  ¼ N k8þN 

    k7c 1þN 

    k14 g 1

    Ok8 ¼ Lk9þL

    k7c 2þL

    k14 g 2,   P 

    k8 ¼M 

    k9þM 

    k7c 2þM 

    k14 g 2,

    Q k8  ¼ N k9þN 

    k7c 2þN 

    k14 g 2,

    Ok9 ¼ Lk10þL

    k7c 3þL

    k14 g 3,   P 

    k9 ¼M 

    k10þM 

    k7c 3þM 

    k14 g 3,

    Q k9  ¼ N k10þN 

    k7c 3þN 

    k14 g 3,

    Ok10 ¼ Lk11þLk7d1þLk14h1,   P k10 ¼ M k11þM k7d1þM k14h1,

    Q k10 ¼N k11þN 

    k7d1þN 

    k14h1,

    Ok11 ¼ Lk12þL

    k7d2þL

    k14h2,   P 

    k11 ¼ M 

    k12þM 

    k7d2þM 

    k14h2,

    Q k11 ¼ N k12þN 

    k7d2þN 

    k14h2,

    Ok12 ¼ Lk13þL

    k7d3þL

    k14h3,   P 

    k12 ¼ M 

    k13þM 

    k7d3þM 

    k14h3,

    Q k12 ¼ N k13þN 

    k7d3þN 

    k14h3:

    References

    [1] J.E.S. Garcao, C.M. Mota Soares, C.A. Mota Soares, J.N. Reddy, Analysis of laminated adaptive structures using layerwise finite element models, Com-put. Struct. 82 (2004) 1939–1959.

    [2] J.N. Reddy, A simple higher-order theory for laminated composite plates, J. Appl. Mech. 51 (1984) 745–752.

    [3] A. Tessler, E. Saether, A computationally viable higher-order theory forlaminated composite plates, Int. J. Numer. Mech. Eng. 31 (1991) 1069–1086.

    [4] K. Rohwer, Application of higher order theories to the bending analysis of layered composite plates, Int. J. Solids Struct. 29 (1992) 105–119.

    [5] T. Kant, S.R. Marur, G.S. Rao, Analytical solution to the dynamic analysis of laminated beams using higher order refined theory, Compos. Struct. 40(1998) 1–9.

    [6] T. Kant, K. Swaminathan, Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refinedtheory, Compos. Struct. 56 (2002) 329–344.

    [7] M.K. Rao, K. Scherbatiuk, Y.M. Desai, A.H. Shah, Natural vibrations of laminated and sandwich plates, J. Eng. Mech. 130 (2004) 1268–1278.

    [8] M.K. Rao, Y.M. Desai, Analytical solutions for vibrations of laminated andsandwich plates using mixed theory, Compos. Struct. 63 (2004) 361–373.

    [9] J.B. Dafedar, Y.M. Desai, A.A. Mufti, Stability of sandwich plates by mixed,higher-order analytical formulation, Int. J. Solids Struct. 40 (2003)

    4501–4517.[10] J.B. Dafedar, Y.M. Desai, Stability of composite and sandwich struts by mixedformulation, J. Eng. Mech. 130 (2004) 762–770.

    [11] W.J. Chen, Z. Wu, A selective review on recent development of displacement-based laminated plate theories, Recent Patents Mechan. Eng. 1 (2008) 29–44.

    [12] E. Carrera, Historical review of zig-zag theories for multilayered plates andshells, Appl. Mech. Rev. 56 (2003) 287–308.

    [13] M. Cho, J. Oh, Higher order zig-zag plate theory under thermo-electric-mechanical loads combined, Composites: Part B 34 (2003) 67–82.

    [14] S. Kapuria, G.G.S. Achary, An efficient higher order zigzag theory forlaminated plates subjected to thermal loading, Int. J. Solids Struct. 41(2004) 4661–4684.

    [15] M. Cho, J. Oh, Higher order zig-zag theory for fully coupled thermo-electric-mechanical smart composite plates, Int. J. Solids Struct. 41 (2004)1331–1356.

    [16] S. Kapuria, A. Ahmed, P.C. Dumir, Static and dynamic thermo-electro-mechanical analysis of angle-ply hybrid piezoelectric beams using anefficient coupled zigzag theory, Compos. Sci. Tech. 64 (2004) 2463–2475.

    [17] S. Kapuria, G.G.S. Achary, A coupled zigzag theory for the dynamic of 

    piezoelectric hybrid cross-ply plates, Arch. Appl. Mech. 75 (2005) 42–57.

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357 1356

  • 8/9/2019 thick plate shear deformation

    12/12

    [18] J. Oh, M. Cho, Higher order zig-zag theory for smart composite shells undermechanical-thermo-electric loading, Int. J. Solids Struct. 44 (2007) 100–127.

    [19] J. Oh, M. Cho, A finite element based on cubic zig-zag plate theory for theprediction of thermo-electric-mechanical behaviors, Int. J. Solids Struct. 41(2004) 1357–1375.

    [20] U. Icardi, Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up, Compos. B: Eng. 29 (1998) 425–441.

    [21] A. Chakrabarti, A.H. Sheikh, Vibration of laminate-faced sandwich plate by anew refined element, J. Aerospace Eng. 17 (2004) 123–134.

    [22] S.D. Kulkarni, S. Kapuria, Free vibration analysis of composite and sandwichplates using an improved discrete Kirchhoff quadrilateral element based on

    third-order zigzag theory, Comput. Mech. 42 (2008) 803–824.[23] M.K. Pandit, A.H. Sheikh, B.N. Singh, An i mproved higher order zigzag theory

    for the static analysis of laminated sandwich plate with soft core, FiniteElements Anal. Des. 44 (2008) 602–610.

    [24] M.K. Pandit, B.N. Singh, A.H. Sheikh, Stochastic perturbation-based finiteelement for deflection statics of soft core sandwich plate with randommaterial properties, Int. J. Mech. Sci. 51 (2009) 363–371.

    [25] Z. Wu, W.J. Chen, A global-local higher order theory including interlaminar stresscontinuity and C0 plate bending element, Comput. Mech. 45 (2010) 387–400.

    [26] X.Y. Li, D. Liu., Generalized laminate theories based on double superposition

    hypothesis, Int. J, Numer. Methods Eng. 40 (1997) 1197–1212.[27] K.Y. Sze, R.G. Chen, Y.K. Cheung, Finite element model with continuous

    transverse shear stress for composite laminates in cylindrical bending, Finite

    Element Anal. Des. 31 (1998) 153–164.[28] N.J. Pagano, Exact solutions for composite laminates in cylindrical bending,

     J. Compos. Mater. 3 (1969) 398–411.[29] M. Cho, Y.J. Choi, A new postprocessing method for laminated composites of 

    general lamination configurations, Compos. Struct. 54 (2001) 397–406.[30] H. Matsunaga, A comparison between 2-D single-layer and 3-D layerwise

    theories for computing interlaminar stresses of laminated composite andsandwich plates subjected to thermal loadings, Compos. Struct. 64 (2004)

    161–177.[31] A.E. Bogdanovich, S.P. Yushanov, Three-dimensional variational analysis of 

    Pagano’s problems for laminated composite plates, Compos. Sci. Tech. 60

    (2000) 2407–2425.[32] W.Q. Chen, K.Y. Lee, Three-dimensional exact analysis of angle-ply laminates

    in cylindrical bending with interfacial damage via state-space method,

    Compos. Struct. 64 (2004) 275–283.

    W. Zhen et al. / Finite Elements in Analysis and Design 48 (2012) 1346–1357    1357