thgem: introduction to discussion on uv-detector parameters for rich

24
THGEM: Introduction to discussion on UV-detector parameters for RICH RD51 meeting, Paris, October 2008 Amos Breskin Weizmann Discussion topics: THGEM: hole-layout geometry? THGEM : rim or no rim? THGEM gain: single or double? Gas? Fields? Readout? Stability of gain? Rates? CsI aging? RTHGEM?

Upload: loman

Post on 07-Jan-2016

38 views

Category:

Documents


1 download

DESCRIPTION

Amos Breskin Weizmann. THGEM: Introduction to discussion on UV-detector parameters for RICH. Discussion topics: THGEM: hole-layout geometry? THGEM : rim or no rim? THGEM gain: single or double? Gas? Fields? Readout? Stability of gain? Rates?  CsI aging? RTHGEM?. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: THGEM: Introduction to  discussion on UV-detector parameters for RICH

THGEM: Introduction to discussion on UV-detector parameters for

RICH

RD51 meeting, Paris, October 2008

Amos BreskinWeizmann

Discussion topics:THGEM: hole-layout geometry? THGEM : rim or no rim?THGEM gain: single or double?Gas?Fields?Readout?Stability of gain?Rates? CsI aging?RTHGEM?

Page 2: THGEM: Introduction to  discussion on UV-detector parameters for RICH

EHole

EHole

ETran

EInd

EDrift

One readout solution:Resistive anode

Induced-signal width matched to readout-pixel size.

UVDouble-THGEM photon-imaging detector

Single-photons:RobustSingle-photon sensitivityEffective single-photon detection8ns RMS time resolutionSub-mm position resolution>MHz/mm2 rate capabilityCryogenic operation: OK

Page 3: THGEM: Introduction to  discussion on UV-detector parameters for RICH

TO RIM OR NOT TO RIM…?

Higher gain but:- Higher charge-up- Studied extensively

Lower gain but:- Low charge-up- Higher effective CsI surface- Need further studies (e.g. e-collection into holes)

Page 4: THGEM: Introduction to  discussion on UV-detector parameters for RICH

geometrical parameters of THGEMs studied at Weizmann

THGEM

#Thicknes

st [mm]

Drilled holediameterd [mm]

Etched Cudiameter

[mm]

Pitcha [mm]

Ref PCarea[%]

Low (L) or Atm (A)pressure

1 1.6 1 1 (no etching)

7 98 L*

2 1.6 1 1 (no etching)

4 94 L*

3 1.6 1 1.2 4 92 L*

4, 6 1.6 1 1.2 1.5 42 L*+A

5 3.2 1 1.2 1.5 42 L*

7 0.4 0.5 0.7 1 56 A

8 0.8 0.5 0.7 1 56 A

9 0.4 0.3 0.5 0.7 54 1 atm

10 0.4 0.3 0.5 1.0 77 1 atm

11 2.2 1 1.2 1.5 42 L*

Standard GEM

0.05 0.055 .07 .14 77

Active CsI area larger with no rim

92%

83%

UV: Gain did not vary much with geometry

Page 5: THGEM: Introduction to  discussion on UV-detector parameters for RICH

THGEM - Gain vs rim size: Ar/5%CH4

0.04 0.06 0.08 0.10 0.12102

103

104

105

Gai

n

Rim size (mm)

Ar/CH4 (95:5)

atm press

pitch = 1 mm; diameter = 0.5 mm; rim=40; 60; 80; 100; 120 m

Double-THGEM6 keV x-rays

104

Page 6: THGEM: Introduction to  discussion on UV-detector parameters for RICH

GAIN vs RIM size: TRIESTE results: Ar/30%CO2

104

Page 7: THGEM: Introduction to  discussion on UV-detector parameters for RICH

GAIN vs RIM-size in pure Ne

SIMILAR GAIN LIMIT WITH X-RAYS for RIM: 40-120 microns:Single-THGEM: gain ~ 5,000Double-THGEM: gain ~20,000

pitch = 1 mm; diameter = 0.5 mm; thickness=0.4mm rim=40; 60; 80; 100; 120 m

VERY NEW!

104

pitch = 1 mmdiameter = 0.5 mmthickness = 0.4 mm rim=40-120 microns

9 keV x-rays

Page 8: THGEM: Introduction to  discussion on UV-detector parameters for RICH

2-THGEM: 100 higher gain & lower HV. Etrans affects total gain

GAIN single- & double-THGEM: UV (recall)

Etrans = 3 kV/cm

Etrans = 1 kV/cm

104

t=0.4,d=0.3, etched d=0.5, a=0.7, area 54%

Page 9: THGEM: Introduction to  discussion on UV-detector parameters for RICH

0 400 800 1200 1600 200010-3

10-1

101

103

105A

bso

lute

eff

etiv

e g

ain Ar/CO2 (70:30)

760 Torr

VTHGEM [v]

THGEM#10 77% THGEM#9 54%

Cu area

Single-THGEM: Varying the hole pitch from 0.7 to 1 mm: minor effect on gain

t=0.4, d=0.3, etched d=0.5, a=1.0, area=77%

t=0.4,d=0.3, etched d=0.5, a=0.7, area 54%

SINGLE-THGEM: EFFECT OF HOLE-PITCH: UV

104

(recall)

Page 10: THGEM: Introduction to  discussion on UV-detector parameters for RICH

DEPENDS ON DIFFUSION GAS & FIELDS Large hole smaller diffusion effects full collection at very low gains compared to standard GEM.

t=0.4,d=0.3, etched d=0.5, a=0.7, area 54%

e- collection efficiency into holes (recall)

eRef PC

Page 11: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Larger pitch need higher VTHGEM & higher gain

t=0.4, d=0.3, etched d=0.5, a=1.0, area=77%

t=0.4,d=0.3, etched d=0.5, a=0.7, area 54%

e- collection efficiency vs hole-pitch (recall)

eRef PC

Page 12: THGEM: Introduction to  discussion on UV-detector parameters for RICH

VARIES WITH GAS & THGEM PARAMETERS

t=0.4,d=0.3, etched d=0.5, a=0.7, area 54%

e- extraction efficiency from holes vs E trans (recall)

Page 13: THGEM: Introduction to  discussion on UV-detector parameters for RICH

MAX GAIN hole diameter ~ thickness

GAIN vs HOLE DIAMETER/THICKNESS

104

6keV x-rays

Page 14: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Focusing is done by hole dipole field.• Maximum efficiency at Edrift =0 (like in GEM).• Slightly reversed Edrift (50-100V/cm) good photoelectron collection & low sensitivity to MIPS (~5-10%) !

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.60.0

0.5

1.0

1.5

2.0

0

Gain~103

1 Atm. Ar/CH4(95:5)

40

20

80

60

100

e- t

ran

sfe

r e

ffic

ien

cy [

%]

Edrift [kv/cm]R

ela

tive

Reversed Drift-field

eRef. PC

Edrift

E

EE=0

MIP

Attention: gas and field dependent!

Page 15: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Photoelectron extraction: effective QE

Page 16: THGEM: Introduction to  discussion on UV-detector parameters for RICH

High field on the PC surface (high effective QE)Also at low THGEM voltages (e.g. in Ne

mixtures!)

eRef PC

0.4mm thick0.3mm holes0.7mm pitch

>3kV/cm

Electric field on photocathode surfacecreated by the hole dipole field

VTHGEM=2200V

VTHGEM=1200V

VTHGEM=800V

VTHGEM=2200V

VTHGEM=1200V

VTHGEM=800V

C. Shalem et al. NIM A558 (2006) 468

FIELD AT THE THGEM CsI SURFACE

Attention: varies with hole-pitch & hole-voltage

Page 17: THGEM: Introduction to  discussion on UV-detector parameters for RICH

BACKSCATTERING ON GAS: EFFECTIVE QE

Coelho et al NIMA 581(2007)190Breskin et al. NIM A483 (2002) 670

No data for Ar/CO2 & Ne/CH4

Ne

simulation

Noble gases

scintillation

Page 18: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Repeated: extraction from CsI pc: Ar+5%CH4

Ar+5%CH4=1atm

0

0.05

0.1

0.15

0.2

0.25

0.3

0 200 400 600 800 1000 1200

Voltage

nA

Vacuum

Gas

Extraction 67%

E=Voltage/2cm

CsI

Extraction efficiency:Ar/5%CH4: 67%@550V/cm Same in both works

Breskin et al. NIM A483 (2002) 670

This work

Page 19: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Repeated: extraction from CsI pc: Ne

Photocurrent extraction from CsI pc in Ne, 1atm

00.5

11.5

22.5

33.5

0 200 400 600 800 1000 1200

Voltage PC- mesh (V)

Cu

rre

nt

(n

A)

Current in vacuum

Ne after tootbo

Ne flushed

Ne not flushed

Coelho et al NIMA 581(2007)190

This work

Extraction efficiency:Depends on Ne purity!After turbo: ~50% @ 300V/cmFlushed: ~60% @ 380V/cm“Static”: ~70% @ 420V/cm

Need to add a “quencher”

Extr. EfficiencyIn ultra-pure Ne(with getter):~40% @ 900V/cmScintillation limit!

scintillation

Page 20: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Extraction from the CsI pc in: Ne+CH4

Ne+5%CH4

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000

Voltage (V)

Cu

rren

t (n

A) Extraction 53%

Exaction in 23%CH4+Ne=1atm

0

0.05

0.1

0.15

0 200 400 600 800 1000 1200

Voltage (V)

Cu

rren

t (n

A)

Ectraction 69%

Ne/5%CH4: ~53% @ 400V/cmNe/23%CH4: ~69% @ 550V/cm

NO SCINTILLATION!

vacuum

vacuum

This work

This work

Similar to Ar/5%CH4

Ne/23%CH4

Ne/5%CH4

Page 21: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Gain stability

• Discussed yesterday• Depend on gas, THGEM-parameters, gain, rate.

To determine in “real conditions” with CsI/UV.• Seems better with no rim (TRIESTE) @ 6x104 • To check with Ne-mixtures and high-rate UV

Page 22: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Gain comparison for UV:

• WIS: Ar/5%CH4 & Ar/30%CO2, with 0.1mm rim:

1-THGEM 105 & 2-THGEMs 107

Ne, Ne/CH4 1-THGEM 105 -106

• TRIESTE: Ar/30%CO2, with 0 rim:

2-THGEMs 6x104

Page 23: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Summary - considerations for a RICH w CsI1. Gain Single- vs double-THGEMs Lower voltage per THGEM Larger dynamic range – less sensitive to heavily ionizing BGND Optimize transfer field! (gas-dependent) 2. Gas Diffusion: affects e- collection eff. into the holes Vhole: affects effective-QE (photoelectron extraction from CsI)

3. Photon detection efficiency Effective-QE + e-collection + gain Effective-QE Hole layout & field at CsI surface Extraction fields should be calculated vs hole-layout & rim-size & gas e- collection efficiency should be measured in pulse-counting mode with no-rim THGEMs in the selected gas (not simple but method known)4. Gain-stability rim vs no-rim5. Induction field defined by readout type6. Drift field above CsI slightly reversed to reduce MIPs sensitivity7. RTHGEM? If in Ne: low HV, stable operation…8. Max gain in LARGE AREA THGEM (defects limit)9. RICH tests: how? Who? When?

Page 24: THGEM: Introduction to  discussion on UV-detector parameters for RICH

Ne or Ne/CH4

• Attractive low voltages• Similar e-extraction efficiency to Ar/CH4• High gain for x rays & UV dynamic range

But still to verify:

• Calculate fields on PC surface to estimate e- extraction eff. in real conditions

• large diffusion e- collection efficiency into holes should be measured. optimize transfer field Maybe need to increase hole size (loss eff. surface) Max gain in rimless THGEM

• Raether limit verify if lower sensitivity to heavily ionizing BGND