thermomechanical modeling of dislocation density increase … · 2015-11-20 · context ah model...

23
Thermomechanical modeling of dislocation density increase during PVT growth of SiC crystals David Jauffrès Jean-Marc Dedulle Didier Chaussende Kanaparin Ariyawong (present affiliation)

Upload: others

Post on 27-Jul-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Thermomechanical modeling of dislocation density increase during PVT growth of SiC crystals

    David Jauffrès Jean-Marc Dedulle Didier Chaussende Kanaparin Ariyawong

    (present affiliation)

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 2

    Context and motivation : Physical Vapor Transport and dislocations

    Alexander-Haasen model & COMSOL implementation

    Cooling of a mono-crystal and increase of dislocation density

    Prospects : crystal growth and 3D modeling

    Conclusion

    Outline

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 3

    Physical Vapor Transport growth of single SiC crystals

    Applications : abrasives, wafers for power electronic devices …

    Plasticity (T=2300 °C !)

    Induction heating Very high temperatures (2300 °C)

    Dislocation density increase

    Thermal gradients

    Thermal stresses

    Context

    (Wikipedia)

    LMGP PVT reactor

    (Wikipedia)

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 4

    Mechanical behavior of SiC at very high temperature

    Highly anisotropic viscoplasticity

    Lara et al., Ceram. Int. 38, 1381–1390 (2012).

    Single hcp crystal Dislocations glide along basal plane (0001)

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 5

    Alexander-Haasen model : viscoplasticity with internal variable

    −=

    TkQbNm

    B

    neff

    vp exp 0 τνγ

    (mobile) dislocation density / m-2

    Effective stress

    Shear strain rate / s-1

    NmDeff −=ττ

    −=

    ∂∂ +

    TkQNmK

    tNm

    B

    neff exp0

    λτν

    5 parameters to be fitted

    λν ; ; ; ; 0 KQn

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 6

    Alexander-Haasen model : COMSOL implementation

    Calibration compression test (3D)

    Coordinate system associated with behavior law

    NB : nonlinear structural materials module is required

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 7

    Alexander-Haasen model : COMSOL implementation

    Calibration compression test (3D)

    Coordinate system associated with behavior law

    NB : nonlinear structural materials module is required

    −=

    ∂∂ +

    TkQNmK

    tNm

    B

    neff exp0

    λτν

    Domain ODE governing dislocation density rate

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 8

    Alexander-Haasen model : COMSOL implementation

    Calibration compression test (3D)

    Coordinate system associated with behavior law

    NB : nonlinear structural materials module is required

    −=

    ∂∂ +

    TkQNmK

    tNm

    B

    neff exp0

    λτν

    Domain ODE governing dislocation density rate

    Anisotropic elasticity + creep strain rate

    −=

    TkQbNm

    B

    neff

    vp exp 0 τνγ

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 9

    Alexander-Haasen model : calibration / validation

    Calibration compression test (3D)

    Coordinate system associated with behavior law

    NB : nonlinear structural materials module is required Gao et al., Cryst. Growth Des., 14, 1272-1278 (2014)

    Strain

    Stre

    ss /

    Pa

    1.1 ; 5-7E ; 3.3 ; 2.8 ; 15-8.5E 0 ===== λν KeVQn

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 10

    Alexander-Haasen model : calibration / validation

    Calibration compression test (3D)

    Coordinate system associated with behavior law

    NB : nonlinear structural materials module is required Gao et al., Cryst. Growth Des., 14, 1272-1278 (2014)

    Strain

    Stre

    ss /

    Pa

    1.1 ; 5-7E ; 3.3 ; 2.8 ; 15-8.5E 0 ===== λν KeVQn

    T = 2300 K

    phi = pi/4

    OK with Schmid law

    AH model

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 11

    Crystal shape and thermal field from thermo-chemical simulation[1]

    Cooling

    Time-dependant heat transfer simulation of the whole reactor +

    Time-dependant mechanical simulation of thermal stresses with temperature dependant behavior for the crystal

    [1] Ariyawong, K. et al., Materials Science Forum, 778-780, 35-38 (2014).

    Cooling simulation

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 12

    Effect cooling velocity

    Cooling profiles

    Induction heating = internal heat source

    Slow cooling minimize axial temperature gradient

    T drop / K

    Axia

    l T g

    radi

    ent /

    K.m

    -1

    Dislocation density increase very low under 1800K

    T drop / K

    Dislo

    catio

    n de

    nsity

    m

    ultip

    licat

    ion

    rate

    / m

    -2s-1

    Cooling simulation

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 13

    Induction heating = internal heat source

    Cooling simulation

    Effect cooling velocity

    Cooling profiles

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 14

    Prospects : dynamic crystal growth simulation

    Motivation : dislocations actually mainly develop during growth !

    Growth velocity Thermal field

    Thermo-chemical simulation[1]

    [1] Ariyawong, K. et al., Materials Science Forum, 778-780, 35-38 (2014).

    Deformed mesh node with prescribed mesh velocity

    + Mechanical modeling (AH)

    Prospects

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 15

    Prospects : 3D modeling

    Motivation : off-axis orientation of the crystal

    3D thermal field

    2D axisymetric heat transfer simulation of the whole reactor

    3D mechanical model 3 basal slip systems α

    -> 3 additional ODE for Nm(α)

    Prospects

    Cylindrical crystal with simple convection cooling on top

    Dislocation density increase after 50s cooling / m-2

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 16

    Prospects : 3D modeling

    Motivation : off-axis orientation of the crystal

    3D thermal field

    2D axisymetric heat transfer simulation of the whole reactor

    3D mechanical model 3 basal slip systems α

    -> 3 additional ODE for Nm(α)

    Prospects

    Off-axis cylindrical crystal with simple convection cooling on top

    Dislocation density increase after 50s cooling / m-2

    8° disorientation

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 17

    COMSOL implementation of AH model for crystal plasticity (basal slip systems) Additional domain ODE + user-defined creep law

    Dislocation density is tracked with an internal variable Nm

    Effect of cooling velocity can be studied

    Two directions for future work : (1) simulation of dislocation increase during growth (2) 3D modeling for off-axis crystals

    Conclusion

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015

    18

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015

    19

    Extra slide : Schmid law

    Gao et al., Cryst. Growth Des., 14, 1272-1278 (2014)

    Strain

    Stre

    ss /

    Pa

    1.1 ; 5-7E ; 3.3 ; 2.8 ; 15-8.5E 0 ===== λν KeVQn

    T = 2300 K

    phi = pi/4 Schmid law λφστ coscos=

    )2/cos()cos(21

    4/ phiphiphiphi

    −=

    = πσσ

    π

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015

    20

    Extra slide : CRSS decrease with T

    0

    10

    20

    30

    40

    50

    60

    70

    80

    1000 1500 2000 2500

    CR

    SS [M

    Pa]

    Temperature [K]

    Exp. Data @ 1.5e-4s-1 (Lara 2012)

    exp(13656/T-6.688)

    CRSS ~ 0.5 MPa @ 2300 K

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015

    21

    Extra slide : mesh convergence

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 22

    Cylindrical crystal

    Radial cooling vs axial cooling

    Axisymetric model ; imposed quadratic thermal fields

  • Context AH model Cooling simulation Prospects Conclusion

    [email protected] COMSOL Conference Grenoble 2015 23

    Cylindrical crystal

    Effect of crystal height

    Axisymetric model ; cylindric crystal ; imposed quadratic thermal fields

    Diapositive numéro 1Diapositive numéro 2Diapositive numéro 3Diapositive numéro 4Diapositive numéro 5Diapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13Diapositive numéro 14Diapositive numéro 15Diapositive numéro 16Diapositive numéro 17 Diapositive numéro 22Diapositive numéro 23