thermoelectric generators (teg) with high power … - kober - v1...thermoelectric generators (teg)...

32
Thermoelectric Generators (TEG) with high power density for application in hybrid cars www.DLR.de • Chart 1 M. Kober H. Friedrich German Aerospace Center Institute of Vehicle Concepts Pfaffenwaldring 38-40 70569 Stuttgart Germany EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Upload: others

Post on 21-Jan-2020

23 views

Category:

Documents


0 download

TRANSCRIPT

Thermoelectric Generators (TEG) with high power density for application in hybrid cars

www.DLR.de • Chart 1

M. Kober H. Friedrich German Aerospace Center Institute of Vehicle Concepts Pfaffenwaldring 38-40 70569 Stuttgart Germany

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 2 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Motivation Waste Heat Recovery Energy flow of Combustion Engines

1) Treffinger P., Häfele Ch., Weiler T. DLR e.V. Stuttgart; Eder A., Richter R., Mazar B. BMW Group München: Energierückgewinnung durch Wandlung von Abwärme in Nutzenergie. 2008 VDI Tagung „Innovative Fahrzeugantriebe“, Dresden

1)

www.DLR.de • Chart 3 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

About 2/3 of the chemical energy is transferred to heat

www.DLR.de • Chart 4

The Evolution of the TEG at the DLR

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 5 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

WLTC – driving cycle Opel Ampera 1.4 l Hybrid (63 kW)

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

0,00E+00

5,00E-03

1,00E-02

1,50E-02

2,00E-02

2,50E-02

3,00E-02

3,50E-02

4,00E-02

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800 1000 1200 1400 1600 1800

Mas

sens

trom

[kg/

s]

Tem

pera

tur [

°C]

Zeit [s]

T_HG [°C] m_p HG [kg/s]1) Oetringer, Kerstin und Kober, Martin (2014) Hat der TEG noch eine Berechtigung in einer Zeit der Elektromobilität? VDI-Fachkonferenz Thermische Rekuperation in Fahrzeugen, 31. März - 01. April 2014, Nürtingen, Deutschland..

Exh

aust

gas

tem

pera

ture

[°C

]

Exh

aust

gas

mas

sflo

w [k

g/s]

www.DLR.de • Chart 6

Choosing a TEG-Design-Point Which Design-Point contains most energy?

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

200400

600800 0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

6000

Massenstromauslegungspunkt [g/s]

Verwertbare Energiemenge im WLTP

emperaturausegungspunkt [°C]

Ene

rgie

men

ge [k

J]

𝐸𝐸 = ��̇�𝑚𝑢𝑢 ⋅ 𝑐𝑐𝑝𝑝 ⋅ (𝑇𝑇𝑢𝑢−𝑇𝑇𝑐𝑐)

Temperaturauslegungspunkt [°C] Temperaturauslegungspunkt [°C]

Design-Point 17g/s 582°C

1) Oetringer, Kerstin und Kober, Martin (2014) Hat der TEG noch eine Berechtigung in einer Zeit der Elektromobilität? VDI-Fachkonferenz Thermische Rekuperation in Fahrzeugen, 31. März - 01. April 2014, Nürtingen, Deutschland..

Ene

rgy

[kJ]

Massflow - Point [g/s]

Potentially useable Energy in WLTC [g/s]

www.DLR.de • Chart 7

Comparison of Different Vehicle Concepts

www.DLR.de • Chart 8

Conventional Vehicle Mild Hybrid Full Hybrid / Rex

max. 2500 kJ

max. 3000 kJ

max. 5000 kJ

200400

600800 0 5 10 15 20 25 30 35 40

0

1000

2000

3000

4000

5000

6000

Massenstromauslegungspunkt [g/s]

Verwertbare Energiemenge im WLTP

emperaturausegungspunkt [°C]

Ene

rgie

men

ge [k

J]

200400

600800 0 5 10 15 20 25 30 35 40

0

500

1000

1500

2000

2500

3000

Massenstromauslegungspunkt [g/s]

Verwertbare Energiemenge im WLTP

mperaturauslegungspunkt [°C]

Ener

giem

enge

[kJ]

200400

600800 0 5 10 15 20 25 30 35 40

0

500

1000

1500

2000

2500

3000

3500

4000

Massenstromauslegungspunkt [g/s]

Verwertbare Energiemenge im WLTP

mperaturauslegungspunkt [°C]

Ener

giem

enge

[kJ]

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

1) Oetringer, Kerstin und Kober, Martin (2014) Hat der TEG noch eine Berechtigung in einer Zeit der Elektromobilität? VDI-Fachkonferenz Thermische Rekuperation in Fahrzeugen, 31. März - 01. April 2014, Nürtingen, Deutschland..

There is already a heat recovery system in a hybrid car

• Toyota Prius III – Exhaust Heat Recirculation (EHR)

• Coolant passed through the exhaust silencer: standard equipment in the Toyota Prius III - Plug-in Hybrid

• Shortening of warm-up

• More efficient heating of the passengers compartment

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Demonstration model: Prius III – Exhaust Heat Recirculation (without thermoelectricity) Reference: www.priuswiki.de - Exhaust Heat Recovery

1) www.priuswiki.de - Exhaust Heat Recovery

1)

www.DLR.de • Chart 9

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 10 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Procedural method for increasing of power density

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Goal 1: Power Increase + Cost Reduction Solution:

Holistic Thermodynamic Design-Method for TEG

Goal 2: Weight / Volume Reduction + Cost Reduction Solution:

Highly Integrated TEG-Design

www.DLR.de • Chart 11

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 12 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

www.DLR.de • Chart 13

Electrical TEG power

Cooling load / pump power

Rolling

and acceleration resistance

Back pressure

Cooling of the exhaust gas

System Development Shortening the cold start phase

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Holistic Design-Method for TEG

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

• Thermodynamic TEG optimization under consideration of all relevant overall vehicle system interactions (1D)

• CFD simulation (3D) in combination with design data e.g. the TEG weight

• Multi-objectiv optimization to find the best design within targets conflicts

www.DLR.de • Chart 14

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 15 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Procedural method VDI Guideline 2221

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober www.DLR.de • Chart 16

TEG concept development – Principle-solutions

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

1 2 3 4 5 6 7

feed/dissipate exhaust

heat transfer

conduct heat

distribute heat smoothly

dissipate electric energy

conduct heat

feed/dissipate coolant

provide force

distribute contact pressure smoothly

sub-functionssub-solutions

A2 E1 A4 B2 B1 C1 A1 D1 A31) Kober, M. ; Häfele, C. ; Friedrich, H. E. (2012) Methodical Concept Development of Automotive Thermoelectric Generators (TEG) 3. International Conference 'Thermoelecrics goes Automotive', 2012, Berlin, Deutschland.

1)

www.DLR.de • Chart 17

Procedural method VDI Guideline 2221

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober www.DLR.de • Chart 18

Preliminary layout of the modular structure as cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Hot gas heat exchanger

Coolant heat exchanger

Thermoelectric module

www.DLR.de • Chart 19

Preliminary layout of the modular structure as cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Hot gas

Hot gas heat exchanger

Coolant heat exchanger

Thermoelectric module

www.DLR.de • Chart 20

Preliminary layout of the modular structure as cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Hot gas Coolant

Hot gas heat exchanger

Coolant heat exchanger

Thermoelectric module

www.DLR.de • Chart 21

Definitive layout Highly integrated TEG-Design including the cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

TEG-housing • Protection against external

influences • Protective atmosphere

(protective gas / vacuum)

www.DLR.de • Chart 22

Definitive layout Highly integrated TEG-Design including the cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

TEG-housing • Protection against external

influences • Protective atmosphere

(protective gas / vacuum)

Electronics • Function integrated cooling of

the electronics • Electrical conversion inside the

protective atmosphere • Electrical plug at a higher

voltage level Coolant circulation system • Function integrated in the TEG-

housing • highly integrated cross-flow

heat exchanger

www.DLR.de • Chart 23

Definitive layout Highly integrated TEG-Design including the cross-flow heat exchanger

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Coolant circulation system • Function integrated coolant

redirection • Coolant heat exchanger: 2x

parallel and 2x in series

Coolant guiding made from injection molding plastic • lightness • low cost

www.DLR.de • Chart 24

Outline

• Motivation Waste Heat Recovery

• Vehicle Measurements and Boundary Conditions

• Procedural method for increasing of power density

• Power Increase

• Weight and Volume Reduction

• Simulation and Measurement Results

www.DLR.de • Chart 25 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Simulative results Characteristics of the optimized TEG TEG: • weight < 8 kg (without bypass) • volume < 3 dm³ (without bypass and diffusers) • el. peak power > 400 W • el. power at Design-Point (low load) > 160 W

Power density TEG: • gravimetric power density > 50 W/kg • volumetric power density > 130 W/dm³

Thermoelectric Module (TEM): • Material class: Skutterudite 1)

• Efficiency: 7,9% @ ΔT=480 K 1)

www.DLR.de • Chart 26 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

1) Kober, Martin und Heber, Lars und Heuer, Jana und Rinderknecht, Frank und König, Jan und Friedrich, Horst E. (2015) RExTEG Neuartiger Thermoelektrischer Generator zur Steigerung der Effizienz von Hybrid- und Range Extender Fahrzeugen

This results represent the actual world highest power density for automotive TEG.

Results of Current Projects Measured Results – Validation of Simulation

• Target value: < 8kg incl. electronics (not implemented in project)

excl. bypass excl. measurement equipment

• Functional prototype: 8,3 kg measurement equipment: - 2,1 kg electronics (assumption): + <1,5 kg achieved weight <7,7 kg

www.DLR.de • Chart 27 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Measurement results validation of simulation - design-point

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Comparison of measurement and CFD simulation of the hot side (Th) and cold side (Tc) at the measurement point 1 - design-point

cutting plane in TEG-longitudinal direction

Z X

Y

design-point: measured data show an even better equalization in longitudinal direction adapting the simulation for future projects

tem

pera

ture

[K]

heat exchanger length x [mm]

Measured_Th_surface_hex_substitute_module

www.DLR.de • Chart 28

Measured_Tc_surface_hex_TEM

Measured_Tc_surface_hex_substitute_module Measured_Th_surface_hex_TEM

Simulated_Th_surface_hex_TEM Simulated_Tc_surface_hex_TEM

Measurement results validation of simulation - max-point

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Comparison of measurement and CFD simulation of the hot side (Th) and cold side (Tc) at the measurement point 9 - max-point

cutting plane in TEG-longitudinal direction

Z X

Y

max-point: Observations show a good agreement with the results of simulation te

mpe

ratu

re [K

]

heat exchanger length x [mm]

www.DLR.de • Chart 29

Measured_Th_surface_hex_substitute_module

Measured_Tc_surface_hex_TEM

Measured_Tc_surface_hex_substitute_module Measured_Th_surface_hex_TEM

Simulated_Th_surface_hex_TEM Simulated_Tc_surface_hex_TEM

Impressions

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober www.DLR.de • Chart 30

Summary

• Procedure to increase the power density

• Presentation of a new holistic design method

• Presentation of

highly integrated

TEG-construction

• Comparison of

measurement and

simulation results

EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober www.DLR.de • Chart 31

Institute of Vehicle Concepts Pfaffenwaldring 38-40 70569 Stuttgart Martin Kober Tel.: +49 - 711 6862 - 457 [email protected] www.DLR.de/fk

Projekt RExTEG

www.DLR.de • Chart 32 EMN Orlando > 2016-02-23 > TEG with high power density for application in hybrid cars > Martin Kober

Acknowledgement This work is supported by the Ministry of Finance and Economics of

Baden-Württemberg by funds of the Baden-Württemberg Stiftung.