thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf ·...

15
Thermodynamics of rare-earth sesquioxides Matvei Zinkevich Max-Planck Institut für Metallforschung Stuttgart, Germany Now at Heraeus Sensor Technology GmbH, Kleinostheim, Germany Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52 (4) 597-647 (2007) Realise Workshop Dresden, September 19, 2008 2 Crystal Structures A-type, e.g. La 2 O 3 B-type, e.g. Sm 2 O 3 C-type, e.g. Y 2 O 3 High-temperature phases H-type X-Type

Upload: dinhlien

Post on 31-Jan-2018

229 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Thermodynamics of rare-earth sesquioxides

Matvei Zinkevich

Max-Planck Institut für MetallforschungStuttgart, Germany

Now at Heraeus Sensor Technology GmbH, Kleinostheim, Germany

Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52 (4) 597-647 (2007)

Realise Workshop Dresden, September 19, 2008 2

Crystal Structures

A-type, e.g. La2O3 B-type, e.g. Sm2O3 C-type, e.g. Y2O3

High-temperature phases

H-type X-Type

Page 2: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 3

Polymorphism

Realise Workshop Dresden, September 19, 2008 4

Objectives

Gibbs energy is a fundamental thermodynamic function, from which many important materials properties can be derived:

Enthalpy, entropy, heat capacity

Isothermal compressibility, thermal expansion

Aim of the work: to revise the Gibbs energy functions of rare-earth sesquioxides as well as to estimate the unknown energetics of phase transformations

0

( , ) ( ) ( , ) ( )P

physm m m m

PG T P G T V T P dP G T° = ° + + ∆∫

( ) ln( ) nm n

nG T a bT cT T d T° = + + +∑

Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science, 52 (4) 597-647 (2007)

Page 3: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 5

The molar volume of solid phases

Filled symbols: measured values

Open symbols: extrapolated values

C

BA

C ⇒ B

B ⇒ A

Realise Workshop Dresden, September 19, 2008 6

High-pressure phase transitions

transH SP TV V

∆° ∆°= − +∆ ∆

Enthalpies and entropies of phase transitions were estimated from high-pressure data using thermodynamic relationships

transH VT PS S

∆° ∆= +∆° ∆°

dP SdT V

∆=∆

Page 4: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 7

Enthalpies and entropies

Low-temperature phases

Filled symbols: measured values

Open symbols: derived from high-pressure transition data

Correlated behaviour of the volume change and the entropy change

∆S/∆V = const.

Realise Workshop Dresden, September 19, 2008 8

Enthalpies and entropies

High-temperature phases

Calculated under assumption of a constant entropy change for given phase transition

Page 5: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 9

The molar volume of liquid phases

Realise Workshop Dresden, September 19, 2008 10

The entropy of fusion

∆Sfus = nRln2 + γGCV(∆V/V)

metals: n = 1oxides: n = 2.5

Entropies of fusion of rare-earth sesquioxides are estimated based on the known values for yttria

Page 6: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 11

The enhalpy of fusion

Realise Workshop Dresden, September 19, 2008 12

Heat capacity

Effect of cation size on the lattice heat capacity of R2O3

Page 7: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 13

Heat capacity

Effect of f-electrons on the heat capacity of A-R2O3

La3+ ⇒ 4f 0

Ce3+ ⇒ 4f 1

Pr3+ ⇒ 4f 2

Nd3+ ⇒ 4f 3

Realise Workshop Dresden, September 19, 2008 14

Heat capacity

Effect of f-electrons on the heat capacity of B-R2O3

Sm3+ ⇒ 4f 5

Eu3+ ⇒ 4f 6

Gd3+ ⇒ 4f 7

Page 8: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 15

Heat capacity

Effect of f-electrons on the heat capacity of C-R2O3

Tb3+ ⇒ 4f 8

Dy3+ ⇒ 4f 9

Ho3+ ⇒ 4f 10

Er3+ ⇒ 4f 11

Tm3+ ⇒ 4f 12

Yb3+ ⇒ 4f 13

Lu3+ ⇒ 4f 14

Realise Workshop Dresden, September 19, 2008 16

Phase diagram calculation

Regular solution model

Minimizing Gm at each temperature ⇒ phase diagram

ln αrefm i i i i ij i j

i i i j iG xG RT x x x x

>° = + +∑ ∑ ∑∑

mechanical mixture of oxides

ideal entropy of mixing

interaction parameter

Page 9: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 17

Phase diagram calculation

Similar ionic radii ⇒ ideal mixing behaviourno interactions in solution phases

Realise Workshop Dresden, September 19, 2008 18

Phase diagram calculation

large differences in the sizes of Sc+3 and Yb+3/Er+3

repulsive interactions in solid solution phases

Page 10: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 19

Phase diagram calculation

small differences in ionic radii of Sm+3/Gd3+ and Y+3

weak repulsive interactions in B, H, and X-phasesweak attractive interactions in C and A-phases ⇒ SRO

Realise Workshop Dresden, September 19, 2008 20

Phase diagram calculation

large differences in ionic radii of Y+3/Yb3+ and Nd+3

strong repulsive interactions in solid solution phasesinterim monoclinic phase (B), entropy-stabilized

Page 11: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 21

Phase diagram calculation

XXL differences in ionic radii of Dy+3/Ho3+ and La+3

strong repulsive interactions in solid solution phasesinterim monoclinic phase (B), entropy-stabilized

Realise Workshop Dresden, September 19, 2008 22

Conclusions I

Reexamination of all known thermodynamic data for rare earth sesquioxides lead to improved values of the Gibbs energy functions.

Using ionic radius of a trivalent rare earth cation as an universal parameter, it was possible to generate a new knowledge.

In this way, reasonable estimates for the relative stabilities of different structures, including metastable modifications as wellas for the enthalpies and entropies of melting were obtained.

It is hoped that all these data will be useful for many practical applications of rare earth sesquioxides, but also for thermodynamic calculations of phase diagrams.

Page 12: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 23

Thermodynamics of rare-earthoxides - zirconia systems

Wang Ch., Zinkevich M., Aldinger F., Phase diagrams and thermodynamics of rare-earth doped zirconia ceramics, Pure and Applied Chemistry, 79 (10) 1731-1753 (2007)

Realise Workshop Dresden, September 19, 2008 24

Research objectives

Chemistry

ZrO2 − YO1.5

ZrO2 − LaO1.5ZrO2 − NdO1.5ZrO2 − SmO1.5ZrO2 − GdO1.5ZrO2 − DyO1.5ZrO2 − YbO1.5

ExperimentalMethods

XRDSEMEDX

EPMAWDXDSCTEMDTA

Modeling and Calculations

Page 13: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 25

Thermodynamic models

Liquid: (Zr+4,RE+3)p(O-2,Va-q)q

Cubic, Tetragonal, Monoclinic:

(Zr+4,RE+3)2(O-2,Va)4

C, B, A, X and H − RE2O3:

(Zr+4,RE+3)2(O-2)3(O-2,Va)1

Pyrochlore:

(RE+3,Zr+4)2(Zr+4,RE+3)2(O-2,Va)6(O-2)1(Va,O-2)1

(RE+3,Zr+4)2(Zr+4,RE+3)2(O-2,Va)8 (for RE=Gd)

RE4Zr3O12 (δ):

(Zr+4)1(RE+3,Zr+4)6(O-2,Va)12(Va,O-2)2

Realise Workshop Dresden, September 19, 2008 26

ZrO2 - La2O3/Nd2O3

highly-stable pyrochlore phaselow solubility of Zr in the A-form

Page 14: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 27

ZrO2 - Sm2O3/Gd2O3

pyrochlore phase domain widens and becomes less stableZrO2-Gd2O3: second-order phase transition, the C-phase emerges

Realise Workshop Dresden, September 19, 2008 28

ZrO2 - Dy2O3/Yb2O3

pyrochlore phase becomes unstable, δ-phase appearshigh solubility of Zr in the C-phase

Page 15: Thermodynamics of rare-earth sesquioxidesproject.tyndall.ie/realise/workshop/zinkevich.pdf · Zinkevich M., Thermodynamics of rare earth sesquioxides, Progress in Materials Science,

Realise Workshop Dresden, September 19, 2008 29

Enthalpy of formation

Realise Workshop Dresden, September 19, 2008 30

Conclusions II

Phase equilibria in ZrO2-REO1.5 (RE = La, Nd, Sm, Gd, Dy, Yb) systems have been experimentally investigated in the temperature range 1400-1700°C.

Thermodynamic modeling and calculations have been carried out for above systems to obtain self-consistent thermodynamic parameters.

The characteristic evolutions in those ZrO2-REO1.5 systems are established for the first time, including the phase relations, solubility ranges, thermodynamic properties and ordering.

These rules can be generalized for other uninvestigated binary and even multicomponent systems.