thermodynamic signatures of topological transitions in nodal superconductors

127
Thermodynamic signatures of topological transitions in nodal superconductors arXiv:1302.2161 Bayan Mazidian 1,2 , Jorge Quintanilla 2,3 James F. Annett 1 , Adrian D. Hillier 2 1 University of Bristol 2 ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent Birmingham, UK, 14 November 2013 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 1 / 95

Upload: jorge-quintanilla

Post on 19-Jun-2015

490 views

Category:

Technology


0 download

DESCRIPTION

Research seminar given to the University of Birmingham Theory Group, England, 14 November 2013.

TRANSCRIPT

Page 1: Thermodynamic signatures of topological transitions in nodal superconductors

Thermodynamic signaturesof topological transitionsin nodal superconductors

arXiv:1302.2161

Bayan Mazidian1,2, Jorge Quintanilla2,3

James F. Annett1, Adrian D. Hillier2

1University of Bristol2ISIS Facility, STFC Rutherford Appleton Laboratory

3SEPnet and Hubbard Theory Consortium, University of Kent

Birmingham, UK, 14 November 2013

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 1 / 95

Page 2: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 2 / 95

Page 3: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 4: Thermodynamic signatures of topological transitions in nodal superconductors

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodes

Cv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.1

Widely used to fit experimental data on unconventional superconductors.2

1Anderson & Morel (1961), Leggett (1975)2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 4 / 95

Page 5: Thermodynamic signatures of topological transitions in nodal superconductors

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 5 / 95

Page 6: Thermodynamic signatures of topological transitions in nodal superconductors

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(

kx||

2 + ky

||2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√

I1√

I2

n = 3 n = 2

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 5 / 95

Page 7: Thermodynamic signatures of topological transitions in nodal superconductors

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(

kx||

2 + ky

||2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√

I1√

I2

n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 5 / 95

Page 8: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95

Page 9: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + k

y

||2)2 ∆2

k = I1kx||

4

g(E ) = E

2(2π)2√

I1√

I2g(E ) = L

√E

(2π)3I14

1

√I2

n = 2 n = 1.5

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95

Page 10: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + k

y

||2)2 ∆2

k = I1kx||

4

g(E ) = E

2(2π)2√

I1√

I2g(E ) = L

√E

(2π)3I14

1

√I2

n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95

Page 11: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + k

y

||2)2 ∆2

k = I1kx||

4

g(E ) = E

2(2π)2√

I1√

I2g(E ) = L

√E

(2π)3I14

1

√I2

n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2u

pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95

Page 12: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + k

y

||2)2 ∆2

k = I1kx||

4

g(E ) = E

2(2π)2√

I1√

I2g(E ) = L

√E

(2π)3I14

1

√I2

n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2u

pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 6 / 95

Page 13: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow nodes

Relax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + k

y

||2)2 ∆2

k = I1kx||

4

g(E ) = E

2(2π)2√

I1√

I2g(E ) = L

√E

(2π)3I14

1

√I2

n = 2 n = 1.5

Shallow point nodes first discussed (speculatively) by Leggett [1979].

A shallow point node may be required by symmetry e.g. the proposed E2u

pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].

A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 7 / 95

Page 14: Thermodynamic signatures of topological transitions in nodal superconductors

Line crossings

A different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(

kx||

2 − ky

||2)2

or I1kx||

2ky

||2

g(E ) =

E (1+2ln| L+√

E/I

141

√E/I

141

|)

(2π)3√

I1I2

∼ E0.8

n = 1.8 (< 2 !!)

+

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 8 / 95

Page 15: Thermodynamic signatures of topological transitions in nodal superconductors

Crossing of shallow line nodes

When shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(

kx||

2 − ky

||2)4

or I1kx||

4ky

||4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1

√I2

∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant ⇒ n = 1

+

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 9 / 95

Page 16: Thermodynamic signatures of topological transitions in nodal superconductors

Numerics

n = d ln Cv /d ln T

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 10 / 95

Page 17: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 18: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at topological phase

transitions in superocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 12 / 95

Page 19: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 13 / 95

Page 20: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 14 / 95

Page 21: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Lin

ear

nodes

Lin

ear

nodes

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 15 / 95

Page 22: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 16 / 95

Page 23: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 17 / 95

Page 24: Thermodynamic signatures of topological transitions in nodal superconductors

A generic mechanism

We propose that shallow nodes will exist generically at quantum phase

transitions in superocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Shallow

node

Shallow

node

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 18 / 95

Page 25: Thermodynamic signatures of topological transitions in nodal superconductors

Note: no broken symmetry

Ph

oto

: E

dd

ie H

ui-

Bo

n-H

oa

, w

ww

.sh

iro

mi.

com

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 19 / 95

Page 26: Thermodynamic signatures of topological transitions in nodal superconductors

Note: no broken symmetry

Ph

oto

: E

dd

ie H

ui-

Bo

n-H

oa

, w

ww

.sh

iro

mi.

com

Ph

oto

: K

en

ne

th G

. Li

bb

rech

t, s

no

wfl

ak

es.

com

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 19 / 95

Page 27: Thermodynamic signatures of topological transitions in nodal superconductors

Note: no broken symmetry

Ph

oto

: E

dd

ie H

ui-

Bo

n-H

oa

, w

ww

.sh

iro

mi.

com

Ph

oto

: K

en

ne

th G

. Li

bb

rech

t, s

no

wfl

ak

es.

com

Ph

oto

: co

mm

on

s.w

ikim

ed

ia.o

rg

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 19 / 95

Page 28: Thermodynamic signatures of topological transitions in nodal superconductors

Note: no broken symmetry

Ph

oto

: E

dd

ie H

ui-

Bo

n-H

oa

, w

ww

.sh

iro

mi.

com

Ph

oto

: K

en

ne

th G

. Li

bb

rech

t, s

no

wfl

ak

es.

com

Ph

oto

: co

mm

on

s.w

ikim

ed

ia.o

rg

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 19 / 95

Page 29: Thermodynamic signatures of topological transitions in nodal superconductors

Note: no broken symmetry

Ph

oto

: E

dd

ie H

ui-

Bo

n-H

oa

, w

ww

.sh

iro

mi.

com

Ph

oto

: K

en

ne

th G

. Li

bb

rech

t, s

no

wfl

ak

es.

com

Ph

oto

: co

mm

on

s.w

ikim

ed

ia.o

rg

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 19 / 95

Page 30: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 31: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 32: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.

Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 33: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.

Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 34: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.

Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 35: Thermodynamic signatures of topological transitions in nodal superconductors

These are topological transitions

G. E. Volovik in “Quantum Analogues: From Phase Transitions to Black Holes and Cosmology“, William G.

Unruh and Ralf Schützhold (Eds.), Springer (2007).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 20 / 95

Page 36: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 37: Thermodynamic signatures of topological transitions in nodal superconductors

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

ˆ k 0 00 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95

Page 38: Thermodynamic signatures of topological transitions in nodal superconductors

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

ˆ k 0 00 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95

Page 39: Thermodynamic signatures of topological transitions in nodal superconductors

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

ˆ k 0 00 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated, purely triplet superconductors: +

LaNiC25 (c.f. centrosymmetric LaNiGa26) + , CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 22 / 95

Page 40: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: tunable singlet-triplet mixing

The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95

Page 41: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: tunable singlet-triplet mixing

The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95

Page 42: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: tunable singlet-triplet mixing

The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,

Phys. Rev. Lett. 97, 017006 (2006).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95

Page 43: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: tunable singlet-triplet mixing

The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)

Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

The series goes from fully-gapped(x = 3) to nodal (x = 0):

H.Q. Yuan et al.,

Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests nodal state a triplet:

M.Nishiyama et al.,

Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 23 / 95

Page 44: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =

(h(k) ∆(k)

∆†(k) −hT (−k)

)

h(k) = εkI + γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95

Page 45: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =

(h(k) ∆(k)

∆†(k) −hT (−k)

)

h(k) = εkI + γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| ≫ |γk| ≫ |d (k)| the quasi-particle spectrum is

E =

±√

(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√

(εk − µ − |γk|)2 + (∆0 (k)− |d (k)|)2.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95

Page 46: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =

(h(k) ∆(k)

∆†(k) −hT (−k)

)

h(k) = εkI + γk · σ

∆ (k) = [∆0 (k) + d (k) · σ] i σy (most general gap matrix)

Assuming |εk| ≫ |γk| ≫ |d (k)| the quasi-particle spectrum is

E =

±√

(εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2; and

±√

(εk − µ − |γk|)2 + (∆0 (k)− |d (k)|)2.

Take most symmetric (A1) irreducible representation: +

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx

(k2

y + k2z

), ky

(k2

z + k2x

), kz

(k2

x + k2y

)]}

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 24 / 95

Page 47: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Treat A and B as independent tuning parameters and study quasiparticlespectrum. We find a very rich phase diagram with topollogically-distinct phases:8

8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 25 / 95

Page 48: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

We find a very rich phase diagram with topollogically-distinct phases.9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 26 / 95

Page 49: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 27 / 95

Page 50: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 28 / 95

Page 51: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 29 / 95

Page 52: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 30 / 95

Page 53: Thermodynamic signatures of topological transitions in nodal superconductors

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 31 / 95

Page 54: Thermodynamic signatures of topological transitions in nodal superconductors

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 32 / 95

Page 55: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 33 / 95

Page 56: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 34 / 95

Page 57: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 35 / 95

Page 58: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 36 / 95

Page 59: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 37 / 95

Page 60: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 61: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 62: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 63: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transition

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 64: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transition

The anomalous exponent (here n = 1.8) is seen everywhere else

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 65: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transition

The anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagram

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 66: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous power laws throughout the phase diagram

Does the observation of these effects require fine-tuning?

Let’s put these curves on a density plot:

A = 3

3.6 3.8 4 4.2 4.4

B

0

0.05

0.1

0.15

0.2

0.25T

/Tc

1.6

1.7

1.8

1.9

2

2.1

2.2

The conventional exponent (n = 2 in this example) is only seen below atemperature scale that converges to zero at the transition

The anomalous exponent (here n = 1.8) is seen everywhere else ⇒the influence of the topo transition extends throughout the phase diagram

c.f. quantum critical endpoints but here we did not have to fine-tune Tc → 0

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 38 / 95

Page 67: Thermodynamic signatures of topological transitions in nodal superconductors

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Page 68: Thermodynamic signatures of topological transitions in nodal superconductors

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 40 / 95

Page 69: Thermodynamic signatures of topological transitions in nodal superconductors

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 40 / 95

Page 70: Thermodynamic signatures of topological transitions in nodal superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 41 / 95

Page 71: Thermodynamic signatures of topological transitions in nodal superconductors

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T

(dS

dT

)

=1

2kBT 2 ∑k

Ek − TdEk

dT︸︷︷︸

≈0

Ek sech2 Ek

2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T n∫

dǫǫ2+n−1e−ǫ

︸ ︷︷ ︸

a number

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 41 / 95

Page 72: Thermodynamic signatures of topological transitions in nodal superconductors

Power laws in nodal superconductors

Ek =√

ǫ2k+ ∆2

k

≈√

I2k2⊥ + ∆

(

kx|| , k

y

||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 42 / 95

Page 73: Thermodynamic signatures of topological transitions in nodal superconductors

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 43 / 95

Page 74: Thermodynamic signatures of topological transitions in nodal superconductors

Logarithm ⇒ power law (n − 1 = 0.8)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 44 / 95

Page 75: Thermodynamic signatures of topological transitions in nodal superconductors

Logarithm ⇒ power law (n − 1 = 0.4)

The power-law expression is asymptotically very good at E → 0:

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 45 / 95

Page 76: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 46 / 95

Page 77: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 47 / 95

Page 78: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 48 / 95

Page 79: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 49 / 95

Page 80: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 50 / 95

Page 81: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 51 / 95

Page 82: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 52 / 95

Page 83: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yi ˆ0', kk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 53 / 95

Page 84: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yi ˆ0', kk or triplet

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 54 / 95

Page 85: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Iマpose Pauliげs exclusioミ priミciple:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yi ˆ0', kk or triplet yi ˆˆ.', σkdk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 55 / 95

Page 86: Thermodynamic signatures of topological transitions in nodal superconductors

Symmetry of pairing in NCS

yxz

zyx

iddd

didd

0

0ˆ0

0k

The role of spin-orbit coupling (SOC)

Gap function may have both singlet and triplet components

kk orbitspin',',

• However, if we have a centre of inversion

basis functions either even or odd under inversion

still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc) back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 56 / 95

Page 87: Thermodynamic signatures of topological transitions in nodal superconductors

LaNiC2 – a weakly-correlated, paramagnetic

superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996)

V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/TC=1.26

(BCS: 1.43)

specific heat susceptibility

0 = 6.5 mJ/mol K2

c 0 = 22.2 10-6 emu/mol

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 57 / 95

Page 88: Thermodynamic signatures of topological transitions in nodal superconductors

ISIS

muSR

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 58 / 95

Page 89: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Zero field muon spin relaxation

e

_

e

backward

detector

forward

detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 59 / 95

Page 90: Thermodynamic signatures of topological transitions in nodal superconductors

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment size ~ 0.1G (~ 0.01μB)

(longitudinal)

Timescale: > 10-4s ~

e

_

e

backward

detector

forward

detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 60 / 95

Page 91: Thermodynamic signatures of topological transitions in nodal superconductors

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment size ~ 0.1G (~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale: > 10-4s ~

e

_

e

backward

detector

forward

detector

sample

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 61 / 95

Page 92: Thermodynamic signatures of topological transitions in nodal superconductors

LaNiC2 is a non-ceontrsymmetric superconductor

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2 o

Orthorhombic Amm2 C2v

a=3.96 Å b=4.58 Å c=6.20 Å

Data from D1B @ ILL

Note no inversion centre.

C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 62 / 95

Page 93: Thermodynamic signatures of topological transitions in nodal superconductors

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 63 / 95

Page 94: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 64 / 95

Page 95: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 65 / 95

Page 96: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 66 / 95

Page 97: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

180o

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 67 / 95

Page 98: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v Symmetries and their characters

Sample basis functions

Irreducible representation

E C2 v ’v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 68 / 95

Page 99: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v Symmetries and their characters

Sample basis functions

Irreducible representation

E C2 v ’v Even Odd

A1 1 1 1 1 1 Z

A2 1 1 -1 -1 XY XYZ

B1 1 -1 1 -1 XZ X

B2 1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

These must be combined with the singlet and triplet

representations of SO(3).

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 69 / 95

Page 100: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function (unitary)

Gap function (non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 70 / 95

Page 101: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function (unitary)

Gap function (non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 71 / 95

Page 102: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function (unitary)

Gap function (non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Possible order parameters

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 72 / 95

Page 103: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function (unitary)

Gap function (non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Non-unitary

d x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 73 / 95

Page 104: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v Gap function (unitary)

Gap function (non-unitary)

1A1 (k)=1 -

1A2 (k)=kxkY -

1B1 (k)=kXkZ -

1B2 (k)=kYkZ -

3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ

3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ

3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX

3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY

Non-unitary

d x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B,

H. Q. Yuaミ et al. P‘Lげ0ヶ

*

Hillier, Quintanilla & Cywinski,

PRL 102 117007 (2009)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 74 / 95

Page 105: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid

coexisting with spin-

down Fermi liquid.

The A1 phase of

liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 75 / 95

Page 106: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 76 / 95

Page 107: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 77 / 95

Page 108: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 78 / 95

Page 109: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 79 / 95

Page 110: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 80 / 95

Page 111: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 81 / 95

Page 112: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 82 / 95

Page 113: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 83 / 95

Page 114: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 84 / 95

Page 115: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 85 / 95

Page 116: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 86 / 95

Page 117: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 87 / 95

Page 118: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

This affects d(k) (a vector under

spin rotations).

x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 88 / 95

Page 119: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

E.g. reflection through a vertical

plane perpendicular to the y axis:

yJJv CI ,2,

This affects d(k) (a vector under

spin rotations).

It does not affect 0(k) (a scalar). x y

z

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 89 / 95

Page 120: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t Gap function, singlet component

Gap function, triplet component

A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)

A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz)

B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)

B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 90 / 95

Page 121: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t Gap function, singlet component

Gap function, triplet component

A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)

A2 (k) = AkxkY d(k) = (Bkx,Cky,Dkz)

B1 (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)

B2 (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 91 / 95

Page 122: Thermodynamic signatures of topological transitions in nodal superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic

instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A1 1A2

3A1(a) 3A2(a)

A2 B2

1B1 1B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

Quintanilla, Hillier, Annett and Cywinski,

PRB 82, 174511 (2010)

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 92 / 95

Page 123: Thermodynamic signatures of topological transitions in nodal superconductors

LaNiGa2 - a centrosymmetric cousin of LaNiC2

A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95

Page 124: Thermodynamic signatures of topological transitions in nodal superconductors

LaNiGa2 - a centrosymmetric cousin of LaNiC2

A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing.

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95

Page 125: Thermodynamic signatures of topological transitions in nodal superconductors

LaNiGa2 - a centrosymmetric cousin of LaNiC2

A similar muSR effect is seen in centrosymmetric LaNiGa2:

[A. D. Hillier, JQ, Mazidian, Annett & Cywinski, PRL 109, 097001 (2012)]

Simlarly to LaNiC2, we find only 1D irreps ⇒ non-unitary triplet pairing.

Lack of inversion symmetry seems to be a red herring in the case of LaNiC2.

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 93 / 95

Page 126: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =

(h(k) ∆(k)

∆†(k) −hT (−k)

)

h(k) = εk I + γk · σ

Assuming |εk| ≫ |γk| ≫ |d (k)| the quasi-particle spectrum is

E =

±√

(εk − µ + |γk |)2 + (∆0 + |d(k)|)2; and

±√

(εk − µ − |γk |)2 + (∆0 − |d(k)|)2.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2

),Y

(Z2 + X2

),Z

(X2 + Y 2

))

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 94 / 95

Page 127: Thermodynamic signatures of topological transitions in nodal superconductors

Li2PdxPt3−xB:order parameter

back

Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 B’ham 2013 95 / 95