thermodynamic aspects of heterogeneous catalysis research...thermodynamic aspects of heterogeneous...

57
Thermodynamic Aspects of Heterogeneous Catalysis Research Raimund Horn Fritz Haber Institute of the Max Planck Society Berlin Emmy Noether Research Group „High Temperature Catalysis“ 10/26/2012 Modern Methods in Heterogeneous Catalysis Research WS 2012/2013 1

Upload: others

Post on 31-Jan-2021

17 views

Category:

Documents


2 download

TRANSCRIPT

  • Thermodynamic Aspects of Heterogeneous Catalysis

    Research

    Raimund Horn

    Fritz Haber Institute of the Max Planck Society Berlin

    Emmy Noether Research Group „High Temperature Catalysis“

    10/26/2012

    Modern Methods in Heterogeneous Catalysis Research WS 2012/2013

    1

  • Introduction

    2

    One way of dealing

    with thermodynamics!

    or

  • Content

    3

    1. Why does Thermodynamics matters in Catalysis?

    2. Thermodynamic Quantities, Concepts and Tools

    3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    4. Chemical Equilibrium: Conversion and Selectivity Calculations for

    Multiple Reactions

  • 1. Why does Thermodynamics matters in Catalysis?

    4

    The best-known „catalytic reactor“:

    One reaction catalyzed bythe catalytic converter:

    In the gas phase

    MCOMOCOOCOOCO

    2

    22

    CO

    2OCO

    CO + ½ O2 CO2 rHo (298K) = -283 kJmol-1

    OCO C

    OO

    OOC OOC

    2CO 2CO

    On Pt

    Pt

  • 1. Why does Thermodynamics matter in Catalysis?

    5

    TemperatureEnergetics of CO oxidation

    RTEr exp

    E

    E

    In the gas phase

    On Pt

    Taken from: G. Ertl, Catalysis: Science and Technology Vol. 4 1983 p. 245ff, all enthalpies in kJmol-1

  • 1. Why does Thermodynamics matter in Catalysis?

    6

    Kinetics

    TEquilibrium Transport

    TCTkr AA

    RTGK R

    0

    ln TCTDJ

    AAB

    A

    0

    0

    00 T

    Tpp

    FFvv

    T

    T AKAKAads

    ads

    1

    0

  • 1. Why does Thermodynamics matters in Catalysis?

    7

    Thermodynamics matters in Catalysis because

    Thermodynamics determines the maximum extentof any given reaction

    The reaction rate decreases withapproach to thermodynamic equilibrium

    Heat release or uptake by chemical reactions leads tocomplex non-isothermal reactor behavior

    Adsorption/Desorption thermodynamics determines theconcentration of adsorbed species and in turn the rate of surface reactions (e.g. Langmuir Hinshelwood rate expressions)

    The kinetics of elementary steps are related to theirthermodynamics

    macroscopic

    microscopic

    C

    BAfA K

    CCkrBA

  • 1. Why does Thermodynamics matter in Catalysis?

    8Taken from: M. Salciccioli et al. Chem. Eng. Sci. 66 (2011) 4319

  • 9

    Equilibrium Conversion and SelectivityCalculations for Multiple Reactions

    (Examples)

    Quantities, Concepts and Tools

    First Law of TD, U, H, CV, Cp

    Entropy S and Second Law of TD

    Clausius Inequality and Gibbs Free Energy G

    Chemical Potential µ

    Chemical Equilibrium and Law of Mass Action

    Chemical Conversion for a Single Reaction (Example)

    Consequences for Reactor Design (Examples)

  • 2. Thermodynamic Quantities, Concepts and Tools?

    10

    2.1) Systems in Thermodynamics

    System Surroundings Exchange of Matter

    Exchange of Energy

    e.g. a heatedflow reactor

    e.g. an autoclave

    e.g. a thermos bottleor the universe

    open system closed system isolated system

  • 11

    2.2) Processes

    Irreversible Processes

    2. Thermodynamic Quantities, Concepts and Tools?

  • 12

    2.2) Processes

    Reversible Processes

    2. Thermodynamic Quantities, Concepts and Tools?

  • 13

    Thermodynamic Quantity Symbol Intensive or Extensive? SI Unitmass m extensive kg

    molar mass M intensive kgmol-1

    temperature T intensive Kpressure P, p intensive Pafugacity f intensive Padensity intensive kgm-3

    volume V extensive m3

    molar volume Vm, v,… intensive m3mol-1

    heat Q extensive Jwork W extensive J

    inner energy U extensive Jenthalpy H extensive J

    free energy, Helmholtz free energy F, A extensive Jfree enthalpy, Gibbs free energy G extensive J

    2.3) Important Quantities

    2. Thermodynamic Quantities, Concepts and Tools?

  • 14

    Thermodynamic Quantity Symbol Intensive orExtensive SI Unit

    entropy S extensive JK-1

    molare inner energy Um,u intensive Jmol-1

    molar enthalpy Hm,h intensive Jmol-1

    molar free energy Am, a, Fm, f intensive Jmol-1

    molar free enthalpy Gm, g intensive Jmol-1

    chemical potential µ intensive Jmol-1

    molar entropy Sm,s intensive JK-1mol-1

    heat capacity at constant volume CV extensive JK-1

    heat capacity at constant pressure CP extensive JK-1

    specific heat capacity c(V,p) intensive Jkg-1K-1

    molar heat capacity Cm(V,p), cm(V,p) intensive Jmol-1K-1

    2.4) Important Quantities

    2. Thermodynamic Quantities, Concepts and Tools?

  • 15

    2.4.1) Internal Energy U in J

    ..... magnelnucchemrotvibtrans UUUUUUUU

    VC (internal pressure )0 for ideal gases

    WQU First Law of Thermodynamics:

    2. Thermodynamic Quantities, Concepts and Tools?

  • 16

    2.4.2) Internal Energy U in J

    WQU

    The First Law of Thermodynamics is important for describing non-isothermalreactors (energy balance) but says nothing about the direction of a physical orchemical process!

    2. Thermodynamic Quantities, Concepts and Tools?

  • 17

    2.4.3) Enthalpy H in J

    weight

    area

    ....

    ),....,,,,(

    1,,1,,

    21

    1

    dnnHdp

    pHdT

    THdH

    nnnpTHH

    jjj nTpnTnp

    k

    pC (isothermer drosseleffekt in m3) 0 for ideal gases

    2. Thermodynamic Quantities, Concepts and Tools?

  • 18

    2.4.3) Enthalpy H in J

    2. Thermodynamic Quantities, Concepts and Tools?

    iiiii

    DCBA nndndDCBA 0, 1 extent of reaction

    H

    Tp,

    H

    enthalpy of reaction i

    ii HH

    322 23

    21 NHHN example:

    3221

    23

    21

    NHHN HHHH

    The standard enthalpy of formation Hf° or standard heat of formation of acompound is the change of enthalpy that accompanies the formation of 1mole of the compound from its elements, with all substances in their standardstates. The standard state of a gas is the (hypothetical) ideal gas at 1bar and298.15K. For liquids and solids it is the pure substance at 1bar and 298.15K.

    32231

    23

    21)( 3 NHHNfNH HHHNHHH

    Hess Law

  • 19

    2.4.4) Heat capacities CV, Cp in J/K RCC mVmp ,,for ideal gases

    2. Thermodynamic Quantities, Concepts and Tools?

  • 20

    2.4.4) Heat capacities CV, Cp in J/K

    2. Thermodynamic Quantities, Concepts and Tools?

    KmolJCC

    molkJNHHN

    ipiipr

    186.22 9.45H 23

    21

    r322

    22 23

    21 HN

    barpKT

    115.298

    31NHbarp

    KT1

    15.298

    molkJ9.45

    22 23

    21 HN

    barpKT

    1400

    31NHbarp

    KT1400

    molkJ2.48

    2

    1

    r12 )(H)(HT

    Tprr dTCTT

    Kirchhoff‘s law

    pCT

    Hr

    p

    r

  • 21

    2.4.5) EntropyExample: 3 Molecules (A,B,C) distributed among 4 energy states(0=0, 1= 1, 2=21, 3=31) with a total energy of total=31 (isolated system)

    Energy State Energy Macrostate

    I II III

    3 31 A B C

    2 21 C B C A B A

    1 11 B C A C A B ABC

    0 01 BC AC AB A A B B C C

    # of Microstates(statistical weight W) 3 6 1

    WkS ln

    2. Thermodynamic Quantities, Concepts and Tools?

  • 22

    2.4.5) Entropy

    Second Law of Thermodynamics

    2. Thermodynamic Quantities, Concepts and Tools?

  • 23

    2.4.5) Entropy

    irreversibleprocess

    high

    low

    TT

    1

    reversibleprocess

    2. Thermodynamic Quantities, Concepts and Tools?

    Sadi Carnot

  • 24

    2.4.5) Entropy Rudolph Clausius

    Clausius Inequality

    2. Thermodynamic Quantities, Concepts and Tools?

    TdQdS

  • 25

    2.4.6) Helmholtz Free Energy (Free Energy) andGibbs Free Energy (Free Enthalpy)

    Clausius Inequality dHQ

    dUQ

    p

    V

    spontaneous process at constant volume

    spontaneous process at constant pressure 00

    TdSdHTdSdU

    Helmholtz Free Energy (Free Energy):

    Gibbs Free Energy (Free Enthalpy):

    2. Thermodynamic Quantities, Concepts and Tools?

    TdSdQTdQdS 0

  • 26

    2.4.7) Dependencies of G by Combining the First and Second Law of Thermodynamics

    pdVTdSWQWQdU revrev

    VdppdVdUdHpVUH

    VdpTdSVdppdVpdVTdSdH

    SdTVdPSdTTdSVdpTdSSdTTdSdHdG

    STGV

    pG

    pT

    2. Thermodynamic Quantities, Concepts and Tools?

  • 27

    2.4.8) Gibbs Free Energy in Mixtures and the Chemical Potential

    inTpinTpnTp

    dnnGdn

    nGdn

    nGSdTVdPdG

    ijjj

    ,,

    2,,2

    1,,1

    ....21

    ijnTpii n

    G

    ,,

    chemical potential of i

    0 ,,,,,,,

    BiAiBi

    BiBiAiAi

    dndndndG

    T,p=const.

    2. Thermodynamic Quantities, Concepts and Tools?

  • 28

    2.4.8) Gibbs Free Energy in Mixtures and the Chemical Potential

    im

    nTpip

    i Sn

    ST

    ij

    ,,,

    imnTpiT

    i VnV

    pij

    ,,,

    Example: pure ideal gas

    2. Thermodynamic Quantities, Concepts and Tools?

    pRT

    nVVnRTpV m

  • 29

    2.4.8) Gibbs Free Energy in Mixtures and the Chemical Potential

    Membrane permeable for i (e.g. Pd and i=H2)

    for ideal gaseous andliquid mixtures

    for real systems

    in any case

    2. Thermodynamic Quantities, Concepts and Tools?

  • 30

    2.5) Chemical Equilibrium

    iiiDCBA nnDCBA 0, extent of reaction

    2. Thermodynamic Quantities, Concepts and Tools?

    in equilibrium

  • 31

    G

    R e a k tio n s k o o rd in a te

    T = k o n s t.p = ko n s t.

    d G = 0

    G T=const.p=const.

    G=0

    2.5) Chemical Equilibrium

    2. Thermodynamic Quantities, Concepts and Tools?

  • 32

    standard state for all gases is the pure ideal gas at 1bar

    activity of an ideal gas

    pK

    2.5) Chemical Equilibrium

    2. Thermodynamic Quantities, Concepts and Tools?

    law of mass action

  • 33

    pK

    2.5) Chemical Equilibrium

    )( pfK p

    )( pfK

    ii

    iii

    ppK

    ppxppxK x

    ii

    ii

    RTcpRTnVp iiii

    ii

    iii

    ppK

    pRTcpRTcK c

    ii

    ii

    )( pfK x

    )( pfK c

    2. Thermodynamic Quantities, Concepts and Tools?

  • 34

    2.5) Chemical Equilibrium

    2. Thermodynamic Quantities, Concepts and Tools?

    Temperature Dependance of K:

    Gibbs Helmholtz Equation

    van‘t Hoff Equation

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    35

    Example: Calculate the maximum NH3 yield of the Haber-Bosch-Process for25°C 600 °C and 1bar p 500 bar! Assume a stoichiometric feed andideal gases for simplicity!

    )()(23

    21

    322 gNHgHgN Equation:

    Thermodynamic Data (NIST Chemistry Webbook, CRC Handbook, PC books...):

    Species Hf° / kJmol-1 S° / Jmol-1K-1 Cp°/ Jmol-1K-1

    A B / 10-3 K-1 C / 10-6 K-2

    N2 0 191.6 24.98 5.912 -0.3376H2 0 130.7 29.07 -0.8368 2.012NH3 -45.9 192.8 25.93 32.58 -3.046

    211/ TCTBAmolKJC p

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    36

    Calculate K for 25°C: STHG

    73815.298314.8

    1037.16expexp

    37.161005.9915.2989.45

    05.998.19217.130)2/3(6.1912/1

    9.45)9.45(10)2/3(02/1

    3

    3

    KJmolKmolJ

    RTGK

    molkJ

    KmolkJK

    molkJG

    KmolJ

    KmolJS

    molkJ

    molkJH

    Species i Hf° / kJmol-1 S° / Jmol-1K-1 Cp°/ Jmol-1K-1

    A B / 10-3 K-1 C / 10-6 K-2

    N2 -1/2 0 191.6 24.98 5.912 -0.3376H2 -3/2 0 130.7 29.07 -0.8368 2.012NH3 1 -45.9 192.8 25.93 32.58 -3.046

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    37

    Calculate X from K:

    Species i ni0/mol ni/mol xi

    N2 -1/2 1/2 1/2-1/2 (1/2-1/2)/(2-)H2 -3/2 3/2 3/2-3/2 (3/2-3/2)/(2-)NH3 1 0 /(2-) 2 2- 1

    iiii

    n

    nii

    i

    nnddndndi

    i

    000

    1

    2/1)2/1(

    0,2

    2

    0,2

    20,2

    N

    N

    N

    NN

    n

    nnn

    X

    2/32/1

    1

    2/3

    2

    2/1

    2

    13

    22/32/3

    22/12/1

    2

    pp

    pp

    pp

    pp

    pp

    pp

    aKHN

    NH

    ii

    i

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    38

    Solution: Graphical Solution (e.g. with Excel, Origin....)

    T=298.15 K and p=1 bar

    2/32/1

    1

    22/32/3

    22/12/1

    2738

    pp

    pp

    pp

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    39

    T dependance of K:

    T

    Tp

    TdTR

    THTKTKRT

    HT

    K

    1

    212 lnlnln

    T

    Tp TdTCTHTH

    1

    1

    Speciesi

    Hf° / kJmol-1

    S° / Jmol-1K-1

    Cp°/ Jmol-1K-1

    A B CN2 -1/2 0 191.6 24.98 5.912 -0.3376H2 -3/2 0 130.7 29.07 -0.8368 2.012NH3 1 -45.9 192.8 25.93 32.58 -3.046

    2630

    20

    1090.5109.3017.30

    ....

    TTTC

    AATCTBATC

    p

    iiip

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    40

    T dependance of K: T

    Tp TdTCTHTH

    1

    1

    32312111

    31

    321

    211

    21

    3232

    32

    1

    TCTBTATCTBTATH

    TTCTTBTTATH

    TdTCTBATHTHT

    T

    20 TCTBATC p

    T

    Tp

    TdTR

    THTKTKRT

    HT

    K

    1

    212 lnlnln

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    41

    T dependance of K:

    312111

    22

    3231

    2111

    32.

    32.

    3232

    TCTBTATHconst

    TRC

    RB

    RTA

    RTconst

    RTTH

    TCTBTATCTBTATHTH

    212111

    1

    21

    62ln11.lnln

    32.lnln

    1

    TTRCTT

    RB

    TT

    RA

    TTRconstTKTK

    TdTRC

    RB

    RTA

    TRconstTKTK

    T

    T

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    42

    T dependance of K:

    2/32/1

    1

    22/32/3

    22/12/1

    2)(lnexp

    pp

    pp

    pp

    TK

    212111

    1 62ln11.lnln TT

    RCTT

    RB

    TT

    RA

    TTRconstTKTK

    Solve

    numerically or graphically with p and T as parameters gives = (p,T)!

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    43

    Solution: Numerical Solution (e.g. with Matlab, Mathematica....)

    KT /barp /

    typical process conditions forindustrial ammonia synthesis

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    44

    Thermodynamics says nothing about the rate at which a process proceeds!

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    45

    molkJH

    SOOSO

    r

    CSOKOV

    /99

    2/1 3600400,22 4252

    Te

    Ta

  • 3. Chemical Equilibrium: Reactor Conversion for a Single Reaction

    46

    molkJKHOHCHHCO r / 8.90300 2 32 Linde Isothermal Reactor, e.g. for

    methanol synthesis

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    47

    4.1 Theory min,.....,, 21, NpT nnnGGbut the ni cannot vary independently because they have to fulfill thematerials balances

    N

    ikiki bna

    1

    number of atoms of element k in species i

    moles of species i in the reaction mixture

    total moles of atoms of elementk in the reaction mixtures

    N

    i

    M

    k

    N

    ikiki

    N

    ikikikiki bnabnabna

    1 1 1k

    1k 0 0 0

    Lagrange Multipliers

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    48

    M

    k

    N

    ikikipT bnaGF

    1 1k,

    Lagrange Function

    01

    k1

    k,,,,

    M

    kkii

    M

    kki

    npTinpTi

    aanG

    nF

    ijij

    0ln1

    0

    M

    kkikii aaRTG

    01

    k

    N

    ikiki bna

    set of N equations(1 for each of the N species)

    set of M equations(1 for each of the M elements)

    N + M unknowns (n - mole numbers + m - lambdas)

    4.1 Theory

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    49

    4.2 Example: Calculate the equilibrium composition of a steam reformingmixture consisting of CH4, H2O, CO, CO2 and H2 at T=1000K and p=1bar. n0,CH4=2mol, n0,H2O=3mol. Ideal gases can be assumed.

    From thermodynamic tables (e.g. CRC Handbook) we extract:

    Species CH4 H2O CO CO2 H2Gf° (1000K) / Jmol-1 19475 -192603 -200281 -395865 0

    Species CH4 H2O CO CO2 H2# of C atoms aC,CH4=1 aC,H2O=0 aC,CO=1 aC,CO2=1 aC,H2=0# of O atoms aO,CH4=0 aO,H2O=1 aO,CO=1 aO,CO2=2 aO,H2=0# of H atoms aH,CH4=4 aH,H2O=2 aH,CO=0 aH,CO2=0 aH,H2=2

    From the species formulas we obtain:

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    50

    4.2 Example: Formulating the equations

    0ln1

    0,

    M

    kki

    ki

    if aRT

    aRTG

    ii

    i

    ii

    ii

    ii n

    nbarbar

    nn

    ppx

    ppa

    11

    01000314.8

    41000314.8

    ln1000314.8

    19475 4

    HC

    ii

    CH

    nn

    01000314.81000314.8

    2ln1000314.8

    192603 2

    OH

    ii

    OH

    nn

    01000314.81000314.8

    ln1000314.8

    200281

    OC

    ii

    CO

    nn

    01000314.8

    21000314.8

    ln1000314.8

    395865 2

    OC

    ii

    CO

    nn

    0224 COCOCH nnn

    032 22 COCOOH nnn

    014224 224 HOHCH nnn

    CH4:

    H2O:

    CO:

    CO2:

    H2: 01000314.82ln 2

    H

    ii

    H

    nn

    atom balance on C

    atom balance on O

    atom balance on H

    starting valuesn0,CH4 = 2 moln0,H2O = 3 mol.

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    51

    4.2 Example: Solving the system of nonlinear equations e.g in Matlab (fsolve)

    ii

    H

    CO

    CO

    OH

    CH

    nnnnnn

    651.8795.5319.0

    507.1856.0175.0

    2

    2

    2

    4

    ii

    H

    CO

    CO

    OH

    CH

    xxxxxx

    16698.00368.0

    1742.00990.00202.0

    2

    2

    2

    4

    The most difficult thing is to find starting values that work. Make educatedguesses based on physical or chemical knowledge (0 xi 1), e.g.

    28812

    5.0ln1000314.801000314.8

    2ln 0,2

    HH

    ii

    H

    nn

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    52

    4.3 Another Example: Equilibrium Calculations with CHEMKIN

    Methan Oxidation on Rh and Pt Coated Foam Catalysts (T 1000°C)

    CH4 + O2

    H2, CO, H2O, CO2

    ~ 10-3 s

    p, H const.

  • 5 wt% Rh on 80ppi -Al2O3 foam, feed 5 ln/min, C/O = 1.0, Ar/O2 = 79/21, 1 bar

    R. Horn*, K. A. Williams, N. J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S. A. Tupy, L. D. Schmidt J. Catal. 249 (2007) 380-393

    4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    4.3 Another Example: Equilibrium Calculations with CHEMKIN

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    4.4 Take home message: Some months in the Lab can save you one day in the Library!!!

    typical transient experiment

  • 4. Chemical Equilibrium: Conversion and Selectivity Calculations for Multiple Reactions?

    4.4 Take home message: Some months in the Lab can save you one day in the Library!!!

    tr/ss = 98%

    tr/ss = 99%

  • Thermodynamics matters in Catalysis!!!

    56

    Kinetics

    TEquilibrium Transport

    TCTkr AA

    RTGK R

    0

    ln TCTDJ

    AAB

    A

    0

    0

    00 T

    Tpp

    FFvv

    T

    T AKAKAads

    ads

    1

    0

  • Maybe the better way to deal with Thermodynamics?

    57

    Thank you very much for your attention!!!