theory of the pairbreaking superconductor-metal transition

49
Theory of the pairbreaking superconductor-metal transition in nanowires Talk online: sachdev.physics.harvard.edu

Upload: others

Post on 16-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Theory of the pairbreaking superconductor-metal transition

Theory of the pairbreaking superconductor-metal transition

in nanowires Talk online: sachdev.physics.harvard.edu

Page 2: Theory of the pairbreaking superconductor-metal transition

Theory of the pairbreaking superconductor-metal transition

in nanowiresAdrian Del Maestro, Bernd Rosenow, Nayana Shah, and Subir Sachdev, Physical Review B 77, 180501 (2008).

Adrian Del Maestro, Bernd Rosenow, Markus Mueller, and Subir Sachdev, Physical Review Letters 101, 035701 (2008).

Adrian Del Maestro, Bernd Rosenow, and Subir Sachdev, Annals of Physics 324, 523 (2009).

Page 3: Theory of the pairbreaking superconductor-metal transition

Adrian Del MaestroUniversity of British Columbia

Page 4: Theory of the pairbreaking superconductor-metal transition

T

Superconductor

α

Metal

Tc

αc

Page 5: Theory of the pairbreaking superconductor-metal transition

Pair-breaking in nanowires

Evidence for magnetic moments on the wire’s surface

A. Rogachev et al., PRL (2006)

B. Spivak et. al, PRB (2001)R! ξ

V > 0

V < 0Inhomogeneity in the pairing interaction

Page 6: Theory of the pairbreaking superconductor-metal transition

T

Superconductor

α

Metal

Tc

αc

Page 7: Theory of the pairbreaking superconductor-metal transition

Field theory for pair-breakingsuperconductor-metal transition

Outline

Dirty wires and the strong disorder renormalization group

Field theory for pair-breaking superconductor-metal transition

Evidence for an infinite randomness fixed point

Finite temperature transport (weak disorder)

Page 8: Theory of the pairbreaking superconductor-metal transition

Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc

Page 9: Theory of the pairbreaking superconductor-metal transition

Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc

Page 10: Theory of the pairbreaking superconductor-metal transition

Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc

Page 11: Theory of the pairbreaking superconductor-metal transition

Computation of fluctuation conductivity in metal at low temperatures

T

Superconductor

α

Metal

Tc

αc

Page 12: Theory of the pairbreaking superconductor-metal transition

Theory for quantum-critical region, and beyond

T

Superconductor

α

Metal

Tc

αc

Quantum critical

Page 13: Theory of the pairbreaking superconductor-metal transition

Theory for quantum-critical region, and beyond

T

Superconductor

α

Metal

Tc

αc

Quantum critical

In one dimension, theory reduces to the Langer-Ambegaokar-McCumber-Halperin theory (Model A dynamics), near mean-field Tc

Page 14: Theory of the pairbreaking superconductor-metal transition

Role of charge conservation in quantum critical theory

Dynamics of quantum theory (and model A) does not conserve total charge.

Analogous to the Fermi-liquid/spin-density-wave transition (Hertz theory), where dynamics of critical

theory does not conserve total spin.

Page 15: Theory of the pairbreaking superconductor-metal transition

Role of charge conservation in quantum critical theory

Dynamics of quantum theory (and model A) does not conserve total charge.

Analogous to the Fermi-liquid/spin-density-wave transition (Hertz theory), where dynamics of critical

theory does not conserve total spin.

Cooper pairs (SDW) fluctuations decay into fermionic excitations at a finite rate, before any appreciable phase precession due to changes in

chemical potential (magnetic field).

Page 16: Theory of the pairbreaking superconductor-metal transition

α

T

αc

MetalAL, MT, DoS fluctuations

Phase fluctuations realize the Mooij-Schön mode

Quantum critical

LAMH

Fluctuating superconductor

Page 17: Theory of the pairbreaking superconductor-metal transition

Field theory for pair-breaking superconductor-metal transition

Outline

Dirty wires and the strong disorder renormalization group

Evidence for an infinite randomness fixed point

Finite temperature transport (weak disorder)Finite temperature transport (weak disorder)

Page 18: Theory of the pairbreaking superconductor-metal transition

T

Superconductor

α

Metal

Tc

αc

Quantum critical

Theory for quantum-critical region, and beyond in d=1

Page 19: Theory of the pairbreaking superconductor-metal transition

T

Superconductor

α

Metal

Tc

αc

Quantum critical

Theory for quantum-critical region, and beyond in d=1

Page 20: Theory of the pairbreaking superconductor-metal transition

Accuracy of large-N expansion

In the metallic phase, exactagreement is found between the large-N and microscopic calculations for the electrical and thermal conductivity

δ

M

QC

T

SC

Lopatin, Shah and Vinokur (2005,2007)

σ =π

3e2

h

√DT 2

R5/2T < δ2

Page 21: Theory of the pairbreaking superconductor-metal transition

0 1 2 3 4

Temperature0.00

0.04

0.08

0.12

Conductivity

δ = 0.10δ = 0.20δ = 0.50

T 2T−1/2

σ/√

DNon-monotonic temp. dependance

δ > 0

A crossover is observed as the temperature is reduced for

Bollinger, Rogachev and Bezryadin (2005)

T

SC M

QC

δ

(σ−

σm

etal)/√

D

Page 22: Theory of the pairbreaking superconductor-metal transition

The Wiedemann-Franz law

The large-N results can be used to evaluate both the electrical and thermal conductivity

QC M

σκ/T T 2

T 2

T−1/2

T−1/2

T

SC M

QC

δ

Page 23: Theory of the pairbreaking superconductor-metal transition

0.00 0.05 0.10 0.15 0.20

Λ−1T 1/2

−0.15

−0.10

−0.05

0.00

0.05

NδW

δW | Λ√T→∞ =

0.038

N

δW =(

kB

e

)2 (0.2820 +

0.0376N

)

Corrections to the WF law

All couplings between bosons and fermions scale to universal values and we are left with a universal correction to the WF law

Page 24: Theory of the pairbreaking superconductor-metal transition

Field theory for pair-breaking superconductor-metal transition

Outline

Dirty wires and the strong disorder renormalization group

Evidence for an infinite randomness fixed point

Finite temperature transport (weak disorder)

Dirty wires and the strong disorderrenormalization group

Page 25: Theory of the pairbreaking superconductor-metal transition

S =∫

dx

∫dτ

[D(x)|∂xΨ(x, τ)|2 + α(x)|Ψ(x, τ)|2 +

u(x)2

|Ψ(x, τ)|4]

+∫

2πγ(x)|ω||Ψ(x,ω)|2

Spatially dependent random couplings

Hoyos, Kotabage and Vojta, PRL 2007

Real space RG predicts the flow to a strong randomness fixed point for z = 2

QC

SC N

T

!IRFP αRTFIM

Fisher’s

T = 0

Page 26: Theory of the pairbreaking superconductor-metal transition

strong field

h1 h2 h3 h4 h5

J4J1 J = J2J3/h3

strong bond

h1 h2 h3 h4 h5

J4

J1 J2 J3 J4

h = h2h3/J2

J1 J3

J1 J2 J3 J4

H = −∑

i

Jiσzi σz

i+1 −∑

i

hi σxi

Strong disorder renormalization group

D. Fisher, PRL, (1992); PRB (1995)

First developed by Ma, Dasgupta and Hu, applied to the RTFIM by D.S. Fisher

Clusters are createdor decimated as the energy is reduced

Page 27: Theory of the pairbreaking superconductor-metal transition

Manifestations of strong disorder

Under renormalization, probability distributions for observables become extremely broad

Dynamics are highly anisotropic in space and time: activated scaling

Averages become dominated by rare events(spurious disorder configurations)

ln ξτ ∼ ξψ

Page 28: Theory of the pairbreaking superconductor-metal transition

ln(1/Ω) ∼ Lψ µ ∼ ln(1/Ω)φ

ξ ∼ |δ|−ν

Exact predictions from the RTFIM

For a finite size system

D. Fisher, PRL (1992); PRB (1995)

critical exponents

ψ = 1/2

ν = 2

φ = (1 +√

5)/2

In the disordered phase

C(x) ∼exp

[−(x/ξ)− (27π2/4)1/3(x/ξ)1/3

]

(x/ξ)5/6

H = −∑

i

Jiσzi σz

i+1 −∑

i

hi σxi

Page 29: Theory of the pairbreaking superconductor-metal transition

S =∫

L−1∑

j=1

Dj |Ψj(τ)−Ψj+1(τ)|2 +L∑

j=1

[αj |Ψj(τ)|2 +

uj

2|Ψj(τ)|4

]

+ cl|Ψ1(τ)|2 + cr|ΨL(τ)|2

+∫

L∑

j=1

γj |ω||Ψj(ω)|2

P (Dj) P (αj)

Discretize to a chain of L sites

Measure all quantities with respect to andset uj = 1

γ2

Page 30: Theory of the pairbreaking superconductor-metal transition

SN =∫

L∑

i,j=1

Ψ∗i (ω) [ |ω|δij + Mij ]Ψj(ω)

Take the large-N limit

Enforce a large-N constraint by solving the self-consistent saddle point equations numerically

Y. Tu and P. Weichman, PRL (1994); J. Hartman and Weichman, PRL (1995)

rj = αj + 〈|Ψj(τ)|2〉SN

Page 31: Theory of the pairbreaking superconductor-metal transition

Numerical investigation of observables

Measure observables for L = 16, 32, 64, 128 averaged over 3000 realizations of disorder

δ ∼ α− αc

Tune the transition by shifting the mean of the distribution,

αj

Equal time correlators are easily determined from the self-consistency condition

C(x) = 〈Ψ∗x(τ)Ψ0(τ)〉SN

Numerical solution by solve-join-patch method

Page 32: Theory of the pairbreaking superconductor-metal transition

C(x) ∼exp

[−(x/ξ)− (27π2/4)1/3(x/ξ)1/3

]

(x/ξ)5/6

Equal time correlation functions

Fisher’s asymptotic scaling form

5 10 15 20 25 30x

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

C(x

)

αc = −0.93(3)ν = 1.9(2)

α0.00-0.25-0.50-0.65-0.75

−2.0 −1.5 −1.0 −0.5 0.0

ln δ

0

1

2

3

lnξ

αc ! −0.93ν = 1.9(2)

ξ ∼ δ−νL = 64

Page 33: Theory of the pairbreaking superconductor-metal transition

P (x) =1β

e

»( x−µ

β )−e(x−µ

β )–

Energy gap statistics

Juhász, Lin and Iglói (2006)

−20 −15 −10 −5

ln Ω10−3

10−2

10−1

P(l

)

L = 128

δ = 0.18Gumbel

The minimum excitation energy is due to a rare event, an extremal value

Page 34: Theory of the pairbreaking superconductor-metal transition

ψ = 0.53(6)

Activated scaling

| lnΩ| ∼ Lψ ∼ δ−νψ

0.5 1.0 1.5 2.0 2.5

δ

0

2

4

6

8

10

12

14

16

|lnΩ|

ψ = 0.53(6)

−2.0 −1.5 −1.0 −0.5 0.0

ln δ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ln|ln

Ω|

Divergence cannot be fit

with any power law!

Page 35: Theory of the pairbreaking superconductor-metal transition

Im χ(ω) =1L

x

Im 〈Ψ∗x(iω)Ψ0(iω)〉SN

∣∣∣iω→ω+iε

Im χloc(ω) = Im 〈Ψ∗0(iω)Ψ0(iω)〉SN

∣∣∣iω→ω+iε

Dynamic susceptibilites

We have direct access to real dynamical quantities

real frequency

Page 36: Theory of the pairbreaking superconductor-metal transition

Im χloc =1L

L∑

i=1

ω

ω2 + λ2i

Local order parameter suceptibility

10−510−410−310−210−1 100 101 102 103 104 105

ω10−3

10−2

10−1

100

101

102

103

104

105

χlo

0.93

0.68

0.43

0.28

0.18

0 2 4 6 8 10

δνψ| ln ω|

100

101

102

103

ωλ

1δλ

loc

δ ∼ 0

δ ∼ 1

∼ ω−1

∼ ω ∼ ω−1

Page 37: Theory of the pairbreaking superconductor-metal transition

Im χ =1L2

L∑

i,j,k=1

ωVikVjk

ω2 + λ2j

Average order parameter suceptibility

10−510−410−310−210−1 100 101 102 103 104 105

ω10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

χδ

0.93

0.68

0.43

0.28

0.18

0 2 4 6 8 10

δνψ| ln ω|

0.0

0.5

1.0

1.5

2.0

2.5

ωλ

1δλ

Page 38: Theory of the pairbreaking superconductor-metal transition

Susceptibility scaling forms

The scaling forms for the disorder averaged order parameter susceptibilities follow from an analysis of a single cluster

Im χ ∼ δ1/ψ−φνψ(1+δ/ψ)

ω1−δ/ψΦ

(δνψ| lnω|

)

Im χloc ∼δ1/ψ−φνδ

ω1−δ/ψΦloc

(δνψ| lnω|

)

Page 39: Theory of the pairbreaking superconductor-metal transition

Susceptibility scaling collapse

10−510−410−310−210−1 100 101 102 103 104 105

ω10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

χ

δ0.93

0.68

0.43

0.28

0.18

0 2 4 6 8 10

δνψ| ln ω|

0.0

0.5

1.0

1.5

2.0

2.5

ωλ

1δλ

10−510−410−310−210−1 100 101 102 103 104 105

ω10−3

10−2

10−1

100

101

102

103

104

105

χlo

c

δ0.93

0.68

0.43

0.28

0.18

0 2 4 6 8 10

δνψ| ln ω|

100

101

102

103

ωλ

1δλ

loc

average susceptibility

local susceptibility

Observe data collapse consistent with expectations from scaling

Page 40: Theory of the pairbreaking superconductor-metal transition

Susceptibility ratioToo much parameter freedom in data collapse to confidently extract the tunneling exponent φ

The ratio of the average to local susceptibility is related to the average cluster moment

R(ω) =Imχ(ω)

Imχloc(ω)∼ δνψ(1−φ)| lnω|

Page 41: Theory of the pairbreaking superconductor-metal transition

φ = 1.6(2)

R(ω) =Imχ(ω)

Imχloc(ω)∼ δνψ(1−φ)| lnω|

Activated dynamical scaling

6 8 10 12 14

| ln ω|

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R

φ = 1.6(2)

δ0.430.280.18

−2.0 −1.5 −1.0 −0.5

ln δ

−6

−5

−4

−3

lnR

| lnω|16.114.513.812.2

dynamic confirmation of infinite randomness

Page 42: Theory of the pairbreaking superconductor-metal transition

Putting it all together

ν ψ φ

RTFIM 2 1/2 (1+√5)/2

SMT 1.9(2) 0.53(6) 1.6(2)

Numerical confirmation of the strong disorder RG calculations of Hoyos,

Kotabage and Vojta

Page 43: Theory of the pairbreaking superconductor-metal transition

ConclusionsField theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

Page 44: Theory of the pairbreaking superconductor-metal transition

α

T

αc

MetalAL, MT, DoS fluctuations

Phase fluctuations realize the Mooij-Schön mode

Quantum critical

LAMH

Fluctuating superconductor

Page 45: Theory of the pairbreaking superconductor-metal transition

ConclusionsField theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

Page 46: Theory of the pairbreaking superconductor-metal transition

ConclusionsField theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

New Wiedemann-Franz ratio in the quantum critical region.

Page 47: Theory of the pairbreaking superconductor-metal transition

Conclusions

First dynamical confirmation of activated scaling from numerical simulations in disordered systems.

Field theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

New Wiedemann-Franz ratio in the quantum critical region.

Page 48: Theory of the pairbreaking superconductor-metal transition

Conclusions

SMT has an infinite randomness fixed point in the RTFIM universality class

First dynamical confirmation of activated scaling from numerical simulations in disordered systems.

Field theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

New Wiedemann-Franz ratio in the quantum critical region.

Page 49: Theory of the pairbreaking superconductor-metal transition

Conclusions

SMT has an infinite randomness fixed point in the RTFIM universality class

First dynamical confirmation of activated scaling from numerical simulations in disordered systems.

Scratching the surface of transport calculations near a strong disorder fixed point

Field theory for quantum critical transport near the superconductor-metal transition. Crosses over to phase fluctuation theory (in the superconductor) and conventional pairing fluctuation theory (in the metal) at low temperatures.

New Wiedemann-Franz ratio in the quantum critical region.