theory and detonation products equations of state for a

22
Theory and Detonation Products Equations of State for a New Generation of Combined Effects Explosives Dr. Ernest L. Baker W. Balas, L.I. Stiel, C. Capellos and J. Pincay 16 OCT 2007

Upload: others

Post on 06-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Theory and Detonation Products Equations of State for a

Theory and Detonation Products Equations of State for a New Generation of Combined Effects ExplosivesDr. Ernest L. BakerW. Balas, L.I. Stiel, C. Capellos and J. Pincay

16 OCT 2007

Page 2: Theory and Detonation Products Equations of State for a

Outline

• Combined Effects Explosives• Eigenvalue Detonation• Detonation Velocities• Cylinder Velocities• Equations of State• Conclusions

Page 3: Theory and Detonation Products Equations of State for a

Combined Effects Explosive

• High Energy Explosive– High nitramine content– High early work output (before 7V/V0)

• High Blast Explosive– Typically aluminum and additional oxidizer– Later work output (after 7V/V0)

• Combined Effects Explosive– Nitramine with fine aluminum: micron & submicron– Aluminum reaction occurs very early and

contributes to early work

PAX-29: 77/15 Cl-20/AlPAX-30: 77/15 HMX/AlPAX-42 77/15 RDX/Al

Page 4: Theory and Detonation Products Equations of State for a

8.00

8.10

8.20

8.30

8.40

8.50

8.60

0 10 20 30 40 50 60 70 80 90 100Aluminum Percent Reaction, %

C-J

Det

Vel

ocity

, Km

/s

ρ0 = 1.909 g/cm3

JAGUAR

Experiment

•C-J Detonation velocity decreases with extent of Al reaction•Experiments:

–Detonation velocity agrees with 0% Al reaction–Cylinder velocity agrees with 100% Al reaction @ 7V/V0

0%: 1.69Km/s, 100%: 1.90Km/s, Experiment: 1.88Km/s

Combined Effects Explosives PAX-30 (HMX, 15%Al)

Page 5: Theory and Detonation Products Equations of State for a

Pre

ssur

e

Specific VolumeZND construction

Rayleigh line

Unreacted Hugoniot Reacted Hugoniot

Chapman-Jouguet State

larger D

smaller D

0)(2/1 00 =−−−= VVPEEΗ

0)/( 022

0 =−−= VVPDR ρRayleigh line (momentum)

Hugoniot (energy)

ZND Model

Page 6: Theory and Detonation Products Equations of State for a

Pre

ssur

e

Specific Volume ZND construction

Rayleigh line

Unreacted Hugoniot Reacted Hugoniot

Chapman-Jouguet State

Principal Isentrope(products expansion)

Von Neumann Spike

ZND Model

Page 7: Theory and Detonation Products Equations of State for a

DCJ Chapman- Jouguet state

Specific Volume (1/ρ)

(v0 , p0 )

00.5

1.0λ (reaction fraction)

D

Pres

sure

(v0 , p0 )

Reaction Zone

Distance

von Neumann point

Following flow - Taylor wave

Final CJ state

Hugoniot Curves

von Neumann point

ZND Model

Pres

sure

Page 8: Theory and Detonation Products Equations of State for a

v=1/ρ

p0

1.0

λ (reaction fraction)

What if the reacted Hugoniot lay below the unreacted Hugoniot? (opposite of normal)

Eigenvalue Detonation

Page 9: Theory and Detonation Products Equations of State for a

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy) Reacted Hugoniot (energy)

Eigenvalue State

larger D

smaller D

W-point (weak point)

100% reactionCJ State

Fickett 1979Tarver 2003

Eigenvalue Detonation

Page 10: Theory and Detonation Products Equations of State for a

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy) Reacted Hugoniot (energy)

Eigenvalue State

W-point

W-point Isentrope(products expansion)

Eigenvalue Detonation

Page 11: Theory and Detonation Products Equations of State for a

D

p

(v0 , p0 )

Al Reaction Zone von Neumann point

Following flow - Taylor

wave

Final W state

Organic Reaction

Zone

Eigenvalue point

Eigenvalue Detonation Aluminized Explosive

Page 12: Theory and Detonation Products Equations of State for a

Pre

ssur

e

Specific Volume

Rayleigh line (momentum)

Unreacted Hugoniot (energy)

Reacted Al Hugoniot (energy)

Eigenvalue State

W-point

W-point Isentrope(products expansion)

Von Neumann Spike

Inert Al Hugoniot (energy)

Eigenvalue Detonation Aluminized Explosive

Page 13: Theory and Detonation Products Equations of State for a

JAGUAR CalculationsPAX-29 (CL-20, 15%Al)

15

20

25

30

35

40

0.7 0.75 0.8 0.85 0.9 0.95Relative Specific Volume

Pres

sure

, GPa

Rayleigh Line0% Al Reaction50% Al Reaction100% Reaction

Eigenvalue State

W-point: 50% Al reaction

ρ0 = 1.999 g/cm3

W-point: 100% Al reaction

Aluminum reaction produces lower Hugoniots

Eigenvalue Detonation Combined Effects Explosive

Page 14: Theory and Detonation Products Equations of State for a

100

150

200

250

300

350

400

0.35 0.4 0.45 0.5VOLUME cc/gm

P, k

Bar

0% AL REACTION100% AL REACTIONRAYLEIGH LINE

JAGUAR CalculationsPAX-30 (HMX, 15%AL)

Eigen State

W-point

Detonation velocity controlled by 0% AL reaction Hugoniot!

Eigenvalue Detonation Combined Effects Explosive

Page 15: Theory and Detonation Products Equations of State for a

Experiment Inert Al Reacting AlEXPLOSIVE Al% ρ0

(gm/cc) D (Km/s) D (Km/s) D (Km/s)------------------------------------------ ------------- ------------------------------ ---------------------------------- ----------------------------- --------------------------------

HMX 5 1.84 8.71 8.66 8.53HMX 15 1.87 8.45 8.42 7.95HMX 25 1.95 8.55 8.35 7.32BTNEN 15 1.96 8.29 8.38 7.45BTNEN 15 1.91 8.06 8.16 7.24NG 15 1.74 7.94 8.07 7.93TNT 20 1.64 6.41 6.38 5.77TNT 30 1.84 6.74 6.63 4.92TNT 10 1.67 6.51 6.68 6.52PAX-3 18 1.87 7.96 8.05 7.65PAX-29 15 2.0 8.95 8.79 8.16PAX-30 15 1.91 8.51 8.43 8.09PAX-42 15 1.83 8.25 8.14 7.75

_________ _________

AVERAGE ERROR % 1.22 7.52Detonation velocities agree with little or no aluminum reaction

Detonation Velocity Aluminized Explosives Data

JAGUAR Calculations

Page 16: Theory and Detonation Products Equations of State for a

( )1*1C*

*R*R

1A +−⎟⎠⎞

⎜⎝⎛ −++−∑ ⎟

⎠⎞

⎜⎝⎛ −= ω

ωλλλ V

VEVe

i VP i

ii

( )λ ωλ λλ≡ +∑ − +A i B i R

Vi

e Vi* *

JWLB Equation of State:

Gruneisen Parameter:

Analytic Model:• Reference Frame at

Detonation Velocity• Isentropic Products

Expansion• Constant Properties Along

Spherical Surfaces• New: Modified for Eigen

Detonation W-pointProvides excellent agreement with hydrocodes!

Cylinder Velocity Analytic Cylinder Model

Page 17: Theory and Detonation Products Equations of State for a

1.21.31.41.51.6

1.71.81.92.0

0 2 4 6 8 10 12 14 16 18 20AREA EXPANSIONS

Vcyl

, km

/s

EXPERIMENTAL0%AL REACTION100%AL REACTION

HMX with large particle size Aluminum: AL reacts late!

Cylinder Test Results PAX-3 (HMX, 18%AL - large)

Page 18: Theory and Detonation Products Equations of State for a

1.30

1.40

1.50

1.60

1.70

1.80

1.90

1 2 3 4 5 6 7 8AREA EXPANSIONS

Vcyl

, km

/s

0% Al REACTION100%Al REACTIONW-POINTEXPERIMENTAL

HMX with small particle size aluminum: AL reacts early!

Cylinder Test Results PAX-30 (HMX, 15%AL - small)

Page 19: Theory and Detonation Products Equations of State for a

1.4

1.5

1.6

1.7

1.8

1.9

2.0

1 2 3 4 5 6 7 8AREA EXPANSIONS

Vcyl

, km

/s

0% Al REACTION100% Al REACTIONW-POINTEXPERIMENTAL

CL-20 with small particle size Aluminum: AL reacts early!

Cylinder Test Results PAX-29 (CL-20, 15%AL - small)

Page 20: Theory and Detonation Products Equations of State for a

JWLB Equations of State

PAX-3 (Al INERT)

PAX-29 PAX-30 PAX-42

ρ0 (g/cc) 1.866 1.999 1.885 1.827 E0 (Mbar) 0.08223 0.14611 0.13568 0.13109 D (cm/μs) 0.8023 0.8784 0.8342 0.8137 P (Mbar) 0.2937 0.2599 0.2419 0.2339 A1 (Mbar) 601.643 400.407 406.224 400.717 A2 (Mbar) 3.9482 82.630 135.309 16.5445 A3 (Mbar) 0.9403 1.5507 1.311 1.45169 A4 (Mbar) 0.049688 0.006126 0.006772 0.006103 R1 13.6055 20.9887 26.9788 13.6945 R2 3.69901 9.6288 10.6592 8.67402 R3 24.9093 24.2441 2.52342 2.5320 R4 1.04285 0.328128 0.335585 0.33570 C (Mbar) 0.007691 0.014626 0.013561 0.014057 ω 0.27780 0.24286 .234742 0.242371

D and P are from W-Point (not C-J values)

Page 21: Theory and Detonation Products Equations of State for a

JWL Equations of State

LX14 PAX-2A PAX-29 PAX-30 PAX-42 ρ0 (g/cc) 1.819 1.770 1.999 1.885 1.827 E0 (Mbar) 0.10213 0.09953 0.14714 0.135755 0.12994 D (cm/μs) 0.8630 0.8391 0.8784 0.8342 0.8137 P (Mbar) 0.3349 0.3124 0.2599 0.2419 0.2339 A1 (Mbar) 26.1406 27.0134 8.58373 7.19151 13.8484 A2 (Mbar) .763619 .762675 0.168261 0.097112 0.145102 R1 6.93245 7.22237 4.7726 4.59098 5.74864 R2 1.94159 1.95979 1.03613 0.84089 0.99404 C (Mbar) 0.010994 0.010919 0.014556 0.013492 0.015193 ω 0.384193 0.375812 0.242252 0.233665 0.253095

Combined effects explosives: note large blast energies!

Page 22: Theory and Detonation Products Equations of State for a

• New combined effects explosives produce both high metal pushing (early) and high blast (late) work output.

• Detonation velocities agree with little or no Al reaction even with sub-micron particles

• However, with small particles, complete Al reaction is indicated during early products expansion

• Eigen detonation theory used for EOS development

Conclusions