theorem 1-a let be a sequence: l l a) converges to a real number l iff every subsequence of converge...

21

Post on 21-Dec-2015

214 views

Category:

Documents


1 download

TRANSCRIPT

Theorem 1-a

12

1)

1)

nii

ni

,.....1000000

1,.....,3

1,2

1,1

Let <S<Snn>> be a sequence:

a) <S<Snn>> converges to a real number LL iff every subsequence of <Sn><Sn> converge to LL

Illustrations

,......1000001

1,.....,9

1,7

1,5

1,3

1,1

1

00

00

Theorem 1-b

If L is a limit of <Sn><Sn>, then LL is the only limit of <Sn>.<Sn>.

IllustrationsIllustrations

mitliothernohasSnn

n

n

nSn

n1

1lim

1

Example 1

8lim

4lim2

1

4lim2

1lim

4lim2

1

2

8lim

?)(limlim

:

lim,

;2

8

5

1

1

1

nn

nn

nn

nn

nn

n

n

nn

nn

n

nn

s

s

ss

s

s

Whyss

Solution

ititsfindconvergessthatngAssumi

ss

sLet

Example 2

4lim

:

?3

3)4(

0)3)(4(

012

12

12

?)(lim1212limlim

lim:

lim,

;12

12

2

2

11

1

1

nn

nn

nn

nn

nn

n

nn

s

getWe

WhylanswertheejectingR

lorl

ll

ll

ll

ll

Whysss

lsLetSolution

ititsfindconvergessthatngAssumi

ss

sLet

Example 3

divergess

ssSincennn

nn

ns

nnnn

ns

nn

n

nn

ns

nn

n

nn

ns

Solution

divergesnn

nsthatShow

n

nn

nn

nnn

n

nnn

n

n

n

n

n

n

n

122

323

3

3

12

32

3

3

2

3

3

3

312

12

3

3

3

32

2

3

3

limlim,

1008

826

)1

1(2

8lim

26)12(2

8limlim

10016

1616

16

16lim

1616

16limlim

1)12(3)12(2

8

1)12(3)12(2

)12(8)1(

1616

16

1)2(3)2(2

)2(8)1(

132

8)1(

Theorem 1-c

0lim),,0[

nn

Sthen

3

5

nn

c) If <Sn><Sn> is eventually in

053

5lim

n

nn

Illustration

d) If <Sn><Sn> is eventually in 0lim,0

n

n

SthenR

2

5

n

n

052

5lim

n

nn

Illustration

Theorem 1-d

Theorem 2

1

5

nn

Let <S<Sn>> be a sequence:

a) If <S<Snn>> is bounded from above and increasing then it converge to the supremum of the range of <S<Snn>> .

Illustration

55

It is bounded from above & increasingIt converges to the sup of its range, which is 5

Question

convergesdoeswhyExplain

ss

sLet

n

nn ;

2

8

5

1

1

Question

convergesdoeswhyExplain

ss

sLet

n

nn ;12

12

1

1

Theorem 2

b) If <S<Snn>> is bounded from below and decreasing then it converges to the infimum of the range of <S<Snn>> .

n

10

Illustration

00

It is bounded from below & decreasingIt converges to the inf of its range which is 0

Theorem 3

ennn

)1(lim 1

Nnsn ;32

A convergent sequence is bounded n

n

11

Operations On Convergent Sequences

21 limlim ltlSlet nn

nn

Nntandll

l

t

Se

Nntandllt

d

lltSc

lltSb

RlSa

then

nn

n

n

nn

n

nnn

nnn

nn

;00;lim)

;00;11

lim)

lim)

)(lim)

;)(lim)

,

22

1

22

21

21

1

Illustrations

252

14limlim3

1

3limlim

52

14

1

3

2

2

2

2

n

nk

n

ns

Kn

nS

n

n

let

nnn

nnn

nn

2

3

lim

limlim)

2

1

lim

11lim)

623lim.limlim)

523limlim)(lim)

15)3(5lim55lim)

nn

nn

n

n

n

nn

nn

nn

nn

nnn

nn

nn

nnn

nn

nn

K

s

K

Se

KKd

KsKSc

KsKSb

ssa

Find

Examples

1.1

19

1.3

2

53.2

)5

1(1.1

2

3

3

n

nn

n

e

ee

n

n

nn

n

sequencetheofmitlitheFind

Solutions

101)5

1(lim1lim))

5

1(1(lim

)5

1(1.1

nnn

n

n

n

Solutionss

7

5

20

50

2lim1

lim

5lim3

lim

21

53

lim2

53lim

2

53.2

2

3

32

3

3

3

3

3

nn

nn

nn

n

n

nn

nnn

n

nn

n

Solutionss

4

1

016

01

3lim16lim

1lim1lim

316

1lim

316

1lim

316

1.3

n

n

n

n

n

n

n

n

nn

nn

nn

Solutionss

01

0

01

00

1lim1lim

1lim

1lim

11

11

lim1

lim

1.4

2

3

2

3

2

2

nnn

nnnn

n

nn

nn

nn

n

n

nn

e

ee

e

eee

ee

e

ee

Question

1

1

:

1011

aifsequencegalternatinisa

aiftodivergesa

isa

thatCheck

n

n

toConvergent

otherwiseDinvergentn

aifaif