the ulice gantry

46
The ULICE Gantry M. Pullia M. Pullia CNAO Foundation 1517 January 2014 Modern Hadrontherapy Gantry Developments

Upload: others

Post on 23-Oct-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The ULICE Gantry

The ULICE Gantry

M. PulliaM. PulliaCNAO Foundation

15‐17 January 2014 Modern Hadrontherapy Gantry Developments

Page 2: The ULICE Gantry

PresentPresentOnly one gantry worldwide: L = 25 m x  = 13 m, 600 t

It has everything, but it is

Very large, very heavy, very expensive

Fixed Isocenter360° rotationParallel scanning

(Udo Weinrich GSI)

Parallel scanning200 mm x 200 mm140 t magnets120 t shielding‐counterweight (Udo Weinrich, GSI)g g600 t total rotating mass

Page 3: The ULICE Gantry

ULICEULICE

The ULICE project was launched in 2009 and is funded for four years by the p j y yEuropean Commission with 8.4 million Euros. It involves 20 European institutions coordinated by CNAO.

3

Page 4: The ULICE Gantry

(Courtesy of M. Cirilli)

Page 5: The ULICE Gantry

ULICE WP6: Gantry designULICE WP6: Gantry design

Istituto Nazionale di Fisica Nucleare (INFN)

Work package number 6

Start date or starting event: M1

Work package title

Activity Type

Participant id

Carbon Ion Gantry

RTD

1CNAO

5MEDA

6Etoile

18INFN

4CERN

CNAO PartnershipN hi M i (100%)

Person-months per beneficiary 117 9 6 4 18

- Necchi Monica (100%)- Savazzi Simone (100%)- Viviani Claudio (100%); from the 1st September 2010 substituted by L t V l i (100%)

Involvement of industrial partners has been pursued,

other institutional and LanteValeria (100%)- Osorio Moreno Jhonnatan (100%) – PARTNER Project WP21

academic partners are participating, as well,

totally for free

5The ULICE project is co-funded by the European Commission under FP7Grant Agreement Number 228436.

Page 6: The ULICE Gantry

Firms involvedSchärSchär

Th b ilt th t t t t PSI They built the two protons gantry at PSI (Villigen)PPS and PVS for the treatment rooms at CNAO (Pavia)

MT MT MechatronicsMechatronicsIt is an experienced international specialist in designing

d t ti t k i i h t i feasibility of the mechanical structure of a mobile isocentre gantry dimensions equal to 2/3 with respect to a fixed isocentre gantry

and constructing turn-key precision mechatronicsstructures including drive control hard- and software.They built the only existing carbon ion gantry in Heidelberg: turn-key supply including development, engineering fabrication erection measurement and

g y total structure cost 20% less than a fixed isocentre gantry

engineering, fabrication, erection, measurement and adjustment, commissioning and test.

Critical issues discussion Inputs useful for the treatment cabin KoneKone Inputs useful for the treatment cabin design Comparison of costs for the 3 different mechanical structures

KoneKoneThey have competences in special lifts (e.g. escalatorsand autowalks); they set the standard for safety,reliability, visual design, space savings and

ibaibaibaibaIBA has pioneered proton therapy. With proven efficacy in more than 50 000 patients worldwide

y g genvironmental performance. They revolutionized theelevator industry through their sustainable, energy-efficient designs.Design and study for the efficacy in more than 50,000 patients worldwide,

more than 50% of the world’s PT clinical centresdesigned and equipped by IBA. Their Universal Nozzle provides 4 delivery modes with millimetre precision including Pencil Beam

g yplatform and service lift system Cost estimate for the complete system Critical issues discussionCritical issues discussion

6

with millimetre precision, including Pencil Beam Scanning

p y Critical issues discussion Inputs useful for the treatment cabin design Technical details of gantries

Critical issues discussion Inputs useful for the treatment cabin design Technical details of gantries

Page 7: The ULICE Gantry

ULULICE ICE GantrGantryy DDesiesigngn WP6WP6

Start Date M1

End Date M36

Lead Beneficiary CNAO

Effort Planned @M36: 117 m/m @M36(Sep 12): >117 m/mEffort Planned @M36: 117 m/m @M36(Sep. 12): >117 m/m

Deliverables Submitted

JRA6.1 – “Functional specifications” (M9)JRA6.2 – “Conceptual design of the gantry explaining the choices made” (M30)JRA6.3 – “Conceptual design of a carbon ion gantry” (M36)p g g y ( )

M9 (July 2010): A report describing the optimized functional specificationsM30 (April 2012): Conceptual design of the gantry explaining the choicesmadeM36 (October 2012): Final design of the gantry describing the device the Milestones M36 (October 2012): Final design of the gantry describing the device, the design strategy and the performances achieved. It will include the papers published, the mechanical structure aspects that are considered to be more critical and some technical details concerning magnets and power supplies

Active Delays N.A.

The ULICE project is co-funded by the European Commission under FP7Grant Agreement Number 228436.

Page 8: The ULICE Gantry

First deliverable: functional specifications

1. Online survey written with the collaboration of CNAO physicians2. Answers collection and analysisy3. Definition of the functional specifications First deliverable

Gantry functional specifications

Field size 15 x 15 cm2 or 10/15 x 20 cm2

Number of fields per session 4Penetration depth (range) 3 – 30 cm (corresponding energy: p = 60 - 220MeV;

C ion = 120 – 430 MeV/u)

Voxel dose accuracy ±1%Dose uniformity ±2.5%ose u o y .5%Voxels characterization 3 x 3 x 3 mm3

Voxels out of range 1%Field position accuracy ±0.5 mmSAD 4 mMaximum treatment time 30 minRequired space around isocentre 60 cmAchieved beam directions ALL

“Deliverable Report JRA6.1 – Functional specifications”, June 2010

Page 9: The ULICE Gantry

The second milestone: conceptual design of the gantry

Analysis of different Fixed isocentre

Analysis of different gantry typologies PSI 1 - like

Mobile isocentre

C ti l

Riesenrad - like

Optics Comparison among

the various optics layoutsMagnets simulations Superconducting

Conventional

FFAGpsimulations

Optimization of the chosen beam line

FFAG

Room dimensioning

Gantry building d h i l

for the various layouts

Preliminary shielding studies

Room dimensioning

Sketchy mechanical structure designs

9

and mechanical structure Rough cost estimates

Optimization for the chosen gantry typology

Page 10: The ULICE Gantry

Mobile isocentre gantries2)1)

Patient and magnets rotate around the central axis –

ll bl d

Isocenter moves according to the beam direction – only one 90°bending magnet

smallest possible radiusg g

10

Page 11: The ULICE Gantry

Some layouts in the CNAO areaFixed Isocentre Fixed Isocentre v2Fixed Isocentre Fixed Isocentre v2

PSI 1 - like

11Riesenrad-

like

Page 12: The ULICE Gantry

FFAG GantryFFAG Gantry

150‐400 MeV/u1500 kg of magnets1500 kg of magnetsVery large

12(courtesy of Dejan Trbojevic)

Page 13: The ULICE Gantry

Various layouts in the CNAO area

ISOCENTRICgantry radius= 6.5mroom volume= 4950m3

concrete volume=6810m3

PSI1gantry radius= 4.6mroom volume= 3387m3

concrete volume=3960m3

RIESENRADgantry radius= 8.5mroom volume= 4152m3

concrete volume=5980m3concrete volume=5980m3

ISOCENTRICRoom 22 x 15 x 15 = 4950 m3

PSI 1RIESENRADRoom 10 x 19 x 19 = 3610 m3Room 11.5 x19 x 19 = 4152 m3

13

PSI‐1Room 27 x 11.2 x 11.2 = 3387 m3

Page 14: The ULICE Gantry

14

Page 15: The ULICE Gantry

AccessAccess

M. Pullia – Carbon ion gantries – ICTR‐PHE 2012 15

Page 16: The ULICE Gantry

Access IIAccess II

Platform cabin

St iStairs

Page 17: The ULICE Gantry

Magnet analysis 90° conventional

dipoleHelical coil

FFAG SC magnet

Toroidal double h li 90°helix 90°

SC magnet

17(Caspi‐Robin)

Page 18: The ULICE Gantry

Conventional magnets90° dipole

Comparison between the 90° bending magnet with reduced aperture (GRF 15 x 15 cm2) and the reference 90° CNAO bending magnet (GFR 20 x 20 cm2)

GFRGFR (( 1515 xx 1515 cmcm22)) GFRGFR (( 2020 xx 2020 cmcm22))

MagneticMagnetic fieldfield [T][T] 11..814814 11..8787ΔB/B0 at GFR [-0.58x10-4, 1.375x10-4] [-0.8x10-4, 1.03x10-

4]Stored Energy [J] 882227.24 1213924.48Inductance [H] 0.26 0.47DissipatedDissipated DCDC powerpower [kW][kW] 426426..6464 613613..6565DC voltage [V] 164 1 269 16DC voltage [V] 164.1 269.16Inducted Voltage [V] 150.6 236.8Feeding current[A] 2600 2800Ampere-turns 156000 182400M tM t W i htW i ht [t ][t ] 7070 8282MagnetMagnet WeightWeight [tons][tons] 7070 8282

The (15 x 15 cm2) reduced magnet gap allows to save approximately 10 tons

18

( ) g g p pp yand to save 30% of power consumption

Page 19: The ULICE Gantry

Price estimate: magnets

Magnet typologyMagnet typologyFeature Conventional

CNAOSC

ÉtoileIron dominated

SCINFN Genova

FFAG helical coil

INFN Genova

90° dipole weight (tons)

80 17(1) 41

90° dipole cost (M€)

1.5 1+1.3(2) 2.5 - 3

Overall bending 120 41+2x16.5=74 3.5(3) + 5 Overall bending dipoles (tons)

120 41 2x16.5 74 3.5 5 cryostat

Overall magnets line cost (M€)

1.9(4) 3.0 (5) 5 5line cost (M€)

(1) Active shielding and cryostat included(2) M t (1 M€) t t d l (1 M€) PS

(3) FFAG magnets are combined function magnets(4) F 22 5° di l t i t(2) Magnet (1 M€), cryostat and cryocoolers (1 M€), PS,

instrumentation and miscellaneous ((0.3 M€). Manpower included, except MP from labs.

(4) Four 22.5° dipoles, two scanning magnets(5) 8 conv. quad, 2 conv. 45 d° dipole, 1 SC 90° dipole and 2

scanning magnets 19

Page 20: The ULICE Gantry

Price estimate: power supplies

Power supply cost

ConventionalCNAO

SCÉtoile

Iron dominated SC INFN Genova

FFAG helical coilINFN Genova

l t b di 400 125(1) 500(2) t li bllast bending magnet (k€)

400 125(1) 500(2) not applicable

scanning magnets (k€)

2 x 90 2 x 80 As for CNAO As for CNAOmagnets (k€)

for total magnet line (k€)

1100 + quads (3) 700(4) As for CNAO 300

(1) 1 kA, 250 V, single quadrant, stability in the 1.E-4 range(2) High cost in the order of 500 k€, 400 V - 1000 A ( for ramping at 0.2 T/s)(3) PS cost for four 22.5° dipoles=4 x 130 k€, PS cost for single quadrupole=40 k€. Two quadrants PS considered.(4) PS f d l i l d d Si l d t PS id d(4) PS for quadrupoles included. Single quadrant PS considered.

20

Page 21: The ULICE Gantry

Price estimate: operational costs

Power consumption (1 year)Conventional

CNAOSC

ÉtoileIron dominated

SC FFAG helical coil

INFN GenovaINFN Genova

last bending magnet (k€)

165 MWh(1) 110 MWh 30 kW continuous + 100 MWh/year(2)

not applicable

scanning N/Agmagnets (k€)

/

for total magnet line (k€)

450MWh per year for

cryocoolers

9 cryocoolers - 90 kW continuosly

(1) P =400KW working days=330 working hours (2) 3 cryocoolers + power supply active power(1) Pave=400KW, working days=330, working hours per day=10, using factor carbon ion gantry=0.25. Power dissipated ONLY ramping (half of the time).

(2) 3 cryocoolers + power supply active power(3) During a treatment, magnets are used at 60%

of their nominal rating (depth scanning)

21

Page 22: The ULICE Gantry

March 2011: choice of typologyThe ULICE WP6 collaboration decided to realize the conceptual design of a 180°, normal conducting, mobile isocenter gantry, 20 x 20 cm2 field, revisiting the

layout of the Riesenrad gantry investigated by the PIMMSlayout of the Riesenrad gantry investigated by the PIMMS

Page 23: The ULICE Gantry

Choice of the ULICE gantry layout

Reasons driving the choice

Innovative layout Cheaper mechanical structure

Well known magnet technologyL t l bl t SC t

g

Cheaper mechanical structure Design conceived for conventional

magnets

Layout scalable to SC magnets Less magnets in the gantry line

COSTS (M€) Fixed isocenter PSI-1 like Riesenrad-like( )

Mechanical Structure 120% Ries 5,1 105%

HIT 6,8 11,570%HIT

100%HIT

* D i S l MT M h t i S hä

Civil works 1,66 1,15 1,48

23

* Darimec Srl MT- Mechatronics Schär

*(considering mechanical structure ONLY!)

Page 24: The ULICE Gantry

Beam line

S h tS h tMatch 1

SynchrotronSynchrotronPhase shifter stepper

hMatch 2

RotatorRotator

Gantry

24

Page 25: The ULICE Gantry

PIMMS modular optics approachPIMMS modular optics approach

• Phase shifter‐stepper• Telescopic match2+gantry sectionTelescopic match2+gantry section• Rotator

0

00100001 x

'x

0

0

0

100001000010

zzx

z'zx'

1000010000100001

cos0sin00cos0sin

sin0cos00sin0cos

1000010000100001

cos0sin00cos0sin

sin0cos00sin0cos

25

Page 26: The ULICE Gantry

Optics studies: misalignments and correctionsmisalignments and corrections

Error sourcesError sources

• random misalignments• structural deformationsstructural deformations

• field excitation errors

Random error type Sigma

Ali t t l [ ] 0 3 10 3Alignment tolerances: x, s, y [m] 0.3 x 10-3

Tilt about all three co-ordinate axes, , , [rad] 0.3 x 10-3

Relative excitation error B/B and g/g 0.3 x 10-3

Relative excitation error B/B for the 90° dipole 0.1 x 10-3

26

Page 27: The ULICE Gantry

Magnet misalignment effectMagnet misalignment effect

Isocenter displacement for structuredeformation at various gantry angles

Isocenter displacement for randommagnet alignment errors in the gantry

0.60

0.80

1.00DY dipole tilt

all6.00E‐03

8.00E‐03

1.00E‐02 0°

30°

60°

90°

0 00

0.20

0.40

DX

dipole shift

quads shift2.00E‐03

4.00E‐03

‐0.40

‐0.20

0.00‐1.00 ‐0.50 0.00 0.50 1.00

‐4.00E‐03

‐2.00E‐03

0.00E+00‐1.00E‐02 ‐5.00E‐03 0.00E+00 5.00E‐03 1.00E‐02

‐1.00

‐0.80

‐0.60

‐1.00E‐02

‐8.00E‐03

‐6.00E‐03

27

1.00E 02

Page 28: The ULICE Gantry

Orbit margin and aperture after correction

rotator gantry Orbit correction independent of gantry angle

rotator gantry

Well inside magnet good field region

28

Page 29: The ULICE Gantry

Monitor misalignment effectMonitor misalignment effect0 0005

0

0.0005DY

DX Strict alignment tolerance for

‐0.0005

‐0.0025 ‐0.002 ‐0.0015 ‐0.001 ‐0.0005 0 0.0005g

four dedicated monitors(0.2 mm for 0.6 mm at isocenter)

‐0.001CosLike_x

SinLike x

‐0 002

‐0.0015SinLike_x

CosLike_y

SinLike y

‐0.0025

0.002SinLike_y

29 2222 /2/2 dySdxSyCxCRISO

Page 30: The ULICE Gantry

Dipole and stiffening structureDipole and stiffening structure

30

Page 31: The ULICE Gantry

The ULICE gantry: mechanical structurewithout bracketswithout brackets

31

London Eye

Page 32: The ULICE Gantry

10th March 2011 32

Page 33: The ULICE Gantry

The ULICE gantry: mechanical structurewith half bracketswith half brackets

‐1.37 mm

Gantry mass: 350 t

33

Page 34: The ULICE Gantry

The ULICE gantry: mechanical structurewith bracketswith brackets

34< 0.5 mm deformation

Page 35: The ULICE Gantry

Gantry room

35

Page 36: The ULICE Gantry

Gantry room

Even shorter and save one shelf/support

Modern Hadrontherapy Gantry Developments 36

Page 37: The ULICE Gantry

The rotator frame

steel, 20 mm thick

Mass = 12.4 tons2 Length x width x height) = 9.8 x 1.3 x 1.9 m3

Rings inner diameter = 850 mm

37

Page 38: The ULICE Gantry

Stress analysis and deformations

Maximum stress concentration (18 MPa) in the connection areas between the rings and the two external wings. Maximum deformation (0.3 mm) at the end of the

38

two wings. The deformations order of magnitude is compatible with the optics constraints.

Page 39: The ULICE Gantry

Effect of the rotator on the magnet fieldEffect of the rotator on the magnet field

Tension bars

RotatorRotator structure

CAD design of the rotator structure

2D geometry implemented in the FEM code

39

Page 40: The ULICE Gantry

Bracket gantry: offer from Schaer

±0.5 mm isocenter

Mechanical structure &

assembling (k€)5920

assembling (k€)

Patient cabin &

PPS (k€)3960

40

PPS (k€)

PVS (k€) 1360

Page 41: The ULICE Gantry

Platform and lift: Kone study & offerPlatform provides access to the treatment cabin Access to thePlatform provides access to the treatment cabin. Access to theplatform is guaranteed by an auxiliary lift connecting the entrancefloor to the platform, wherever the platform is.The platform follows the cabin keeping the cabin floor and thep p gplatform at the same height, during the gantry rotation. A sliding doorsystem provides access to the patient enclosure following thehorizontal cabin position while keeping the rest of the platform closed.p p g p

Load Speed Travel Doors Hoist Power Landing

Functional specifications

(kg) (m/s) (m) W x H (mm) (kW)Platform 3000 0.15 14 1400 x 2100 hydraulic 42 Variable

Lift 2000 1.6 14 1400x2100 electric 18.5 Variable

The lift is powered from an uninterruptable power source, with battery backup

Budgetary quotation

41

Page 42: The ULICE Gantry

The ULICE gantry: Beam Based Alignment

Isocenter position moves and is not easy to measure/verify/define

Measure where the beam isand put the isocenter there…

PVS BPIS

COUCH

One robot arm with two “tools”

42CNAO treatment room #2: PPS and PVS

Page 43: The ULICE Gantry

Final delivery Oct 2012Final delivery Oct 2012

Modern Hadrontherapy Gantry Developments 43

Page 44: The ULICE Gantry

The ULICE gantry: cost estimates(conservative/rigid case)(conservative/rigid case)Magnets (k€) 1705

Magnets PS (k€) 975

Mechanical structure &

assembling (k€)5920

(-1300 first pillar)assembling (k€)

Patient cabin &

PPS (k€)3960

PPS (k€)

PVS (k€) 1360

P ti t h dli g (k€) 225Patient handling (k€) 225

Gantry room (k€) 1500

Platform and lift (k€) 1740Platform and lift (k€) 1740TOTAL (k€) 16085

+ conventional plants, cooling and ventilation, access control…

44

p , g ,common to any solution

Page 45: The ULICE Gantry

Conclusions

whether cost or space or other aspect have to whether cost or space or other aspect have to be privileged depends on the user

appreciable sa ings in the total cost rtappreciable savings in the total cost wrtstandard design are possible

ti d bit ti i d d t f th optics and orbit corrections independent of the gantry angle are possible

b b d i li h l i beam based patient alignment may help in reducing weight and cost.

45

Page 46: The ULICE Gantry

Thank you for your attentionThank you for your attention

Modern Hadrontherapy Gantry Developments 46