the tin impurity in bi0.5sb1.5te3 alloys - energy.gov...the tin impurity in bi 0.5 sb 1.5 te 3...

13
The tin impurity in Bi 0.5 Sb 1.5 Te 3 alloys Christopher M. Jaworski Department of Mechanical Engineering The Ohio State University Ellen Heian & Sharp Hoang ZT Plus Joseph P. Heremans Department of Mechanical Engineering and Department of Physics The Ohio State University Supported by DOE-EERE as part of “High-Efficiency Zonal Thermoelcetric HVAC System for Automotive Applications”, Ford Program, Clay Maranville, Lead PI

Upload: others

Post on 01-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • The tin impurity in Bi0.5Sb1.5Te3 alloys

    Christopher M. JaworskiDepartment of Mechanical Engineering

    The Ohio State University

    Ellen Heian & Sharp HoangZT Plus

    Joseph P. HeremansDepartment of Mechanical Engineering and Department of Physics

    The Ohio State University

    Supported by DOE-EERE as part of “High-Efficiency Zonal Thermoelcetric HVAC System for Automotive Applications”, Ford Program, Clay Maranville, Lead PI

  • 2

    Resonant levels increase thermopower

    g(E)

    E

    FEEB

    B

    EE

    EEnEgTk

    ekS

    =

    ∂⋅+⋅⋅⋅=

    )()(

    1)()(

    3

    2 µµ

    πMott relation for degenerate statistics

    EF

    Mechanism 1Mahan and Sofo, PNAS 93 7436, 1996

    Mechanism 2: Resonant scattering A. Blandin & J. Friedel, Le Journal de Physique et le Radium 20 160, 1959In PbTe: Yu. Ravich, CRC Handbook on Thermoelectrics, D. M. Rowe, Ed. 1995In Bi2Te3: M. K. Zhitinskaya, S. A. Nemov and T. E. Svechnikova, Phys. Solid State 40 1297, 1998• Works great at cryogenic temperatures • Will NOT give high zT at operating temperatures where acoustic/optic phonon scattering dominates

    Which dominates? Can be proven experimentally by measuring Nernst effect

  • Starting Point: binary Bi2Te3 with Sn

    • Lowest Sn% -> compensated

    • Middle Sn% have increased Seebeck over Ge and Pb doped

    • Highest Sn% lose ‘resonance’

    3

    Sn Level1x1019 1x10203x1019 3x1020

    p (1019 cm-3)

    0

    100

    200

    300

    50

    150

    250

    S (µ

    V/K

    )

    PbGePbTl

    UVB λ=1

    UVB λ=1/2

    3 101 30

    Tin

    Jaworski, C.M. et al., Phys Rev B 80 233201 (2009)

    300K

  • Shubinov-de Haas oscillations -> Hall vs EF

    1: Kulbachinskii, Physical Review B, 1994, Vol. 50, 23, 16921.2: Kohler, H.: Physica Status Solidi (b), 1976, Vol. 74.

    Tin Content Oscillation Frequency

    Fermi Surface Area

    Bi2-xSnxTe3 [Δ(1/B)]-1 T (m-2)

    x=0.0025 12.7 1.21E+17

    x=0.0075 11.4 1.09E+17

    x=0.015 13.5 1.29E+17

    4

    Slope of line = effective mass

    Carrier density

    from Hall

    Fermi Level from SdH

  • 50 100 150 200 250T (K)

    0

    0.5

    1

    1.5

    λ (s

    catte

    ring

    para

    met

    er)

    50 100 150 200 250T (K)

    0

    0.4

    0.8

    1.2

    Effe

    ctiv

    e M

    ass

    m

    */m

    e

    50 100 150 200 250T (K)

    0

    5

    10

    15

    20

    25Fe

    rmi L

    evel

    (meV

    )

    Bi1.9975Sn.0025Te3Bi1.995Sn.005Te3Bi1.985Sn.015Te3

    4-parameter fit to transport properties

    Not resonant scattering, need λ~41

    Effective mass upper valence band

    5

    1. physica status solidi(RRL) -, Vol. 1, No. 6. (2007), pp. 256-258.

    FEEB

    B

    EE

    EEnEgTk

    ekS

    =

    ∂⋅+⋅⋅⋅=

    )()(

    1)()(

    3

    2 µµ

    π

    It’s this | Not that

    Ionized Impurity

    Optical phononλττ E0=

  • 0

    40

    80

    120

    160

    200

    S (µ

    V/K

    )

    .08%Sn

    .18%Sn

    .30%Sn

    .30%Sn +1%Te

    .30%Sn +3%Te

    0 100 200 300 400 500T (K)

    1x10-6

    1x10-5

    1x10-4

    Res

    istiv

    ity (Ω

    m)

    0 100 200 300 400 500T (K)

    0 100 200 300 400 500T (K)

    0

    10

    20

    30

    40

    Pow

    er F

    acto

    r (µW

    / cm

    K2 )

    0 100 200 300 400 500T (K)

    1E+19

    1E+20

    Car

    rier D

    ensi

    ty (c

    m-3)

    (Bi.25Sb.75)2-x SnxTe3+δSingle Crystal

    Carrier concentration too high

  • 7

    Powder Metallurgy: Measurement

    All properties measured in same direction along pressing

    thermal conductivity = specific heat * density * flash diffusivity

    •Thermopower•electrical resistivity•low temperature thermal conductivity•Hall Coefficient•Nernst CoefficientNo issue with anisotropy error in zT

  • 8

    Cold Press + Sintered Bi10Sb30Te60 +SnTex

    20 30 40 50 60 702θ (degrees)

    Inte

    nsity

    (Arb

    itrar

    y U

    nits

    )

    Bi10Sb30Te60SnTe

    0.0% SnTe

    0.05% SnTe

    0.18% SnTe

    0.25% SnTe

    x= 0.05%, 0.10%, 0.18%, 0.25%Inorg. Mater., vol: 22 pg: 515, (1986)Inorg. Chem., vol: 36 pg: 260, (1997)

  • Idea: increase S by maximizing ionized impurity scattering

    Add both tin and iodine to alloys

    9

    Seebeck, in general: dEEf

    TkEEE

    qkS

    B

    FB ∫∞

    ∂∂−

    =0

    )()(1 σσ

    ( )

    ++=n

    Tkmh

    qkS

    BdB

    *3 2

    2

    ln25 πλ

    1. Heremans J.P. et al., Phys. Rev. B 14, 5156 (1976)

    Non-degenerate statistics: The Pisarenko relation

    Works in bismuth1, but will it increase power factor in BiSbTe?-Tradeoff between increased thermopower and decreased mobility

    λττ E0=

  • 10

    100 200 300 400T (K)

    0.1

    1

    10ρ

    (mΩ

    cm

    )

    12 x 1019 cm-3

    6 x 1019 cm-3

    3 x 1019 cm-3

    0 x 1019 cm-3

    100 200 300 400T (K)

    1x1019

    1x1020

    p (c

    m-3)

    100 200 300 400T (K)

    10

    100

    1000

    mob

    ility

    (cm

    2 / V

    s)

    SPS: Bi.5Sb1.5Te3 + Tin + Iodine

    Iodineatoms

    4.5 x 1019 cm-3

    Sn atoms +

  • 100 200 300 400T (K)

    0

    5

    10

    15

    20

    25

    PF

    (µW

    /cm

    K2 )

    100 200 300 400T (K)

    0

    50

    100

    150

    200

    250

    S (µ

    V/K

    )

    12 x 1019 cm-3

    6 x 1019 cm-3

    3 x 1019 cm-3

    0 x 1019 cm-3

    11

    SPS Bi.5Sb1.5Te3 + Tin + Iodine

    No iodine

    Iodine

    Iodine atoms

  • 12

    SPS Bi.5Sb1.5Te3 + Tin + Iodine

    100 200 300 400T (K)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    zT

    100 200 300 400 500 600T (K)

    0

    0.4

    0.8

    1.2

    1.6

    κ (W

    /mK

    )

    12 x 1019 cm-3

    6 x 1019 cm-3

    3 x 1019 cm-3

    0 x 1019 cm-3

    Iodineatoms

    4.5 x 1019 cm-3

    Sn atoms +

  • Summation

    • Dilute amounts of Sn lead to high zT

    • Influence of porosity needs to be further investigated

    • Ionized impurity scattering decreases mobility more than increases thermopower– Bad for power factor

    13