the synaptic vesicle proteome.pdf

Upload: alrokk

Post on 14-Oct-2015

47 views

Category:

Documents


0 download

TRANSCRIPT

  • REVIEW The synaptic vesicle proteome

    Jacqueline Burre and Walter Volknandt

    Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe University, Frankfurt, Germany

    Abstract

    Synaptic vesicles are key organelles in neurotransmission.

    Vesicle integral or membrane-associated proteins mediate

    the various functions the organelle fulfills during its life cycle.

    These include organelle transport, interaction with the nerve

    terminal cytoskeleton, uptake and storage of low molecular

    weight constituents, and the regulated interaction with the

    pre-synaptic plasma membrane during exo- and endocytosis.

    Within the past two decades, converging work from several

    laboratories resulted in the molecular and functional char-

    acterization of the proteinaceous inventory of the synaptic

    vesicle compartment. However, up until recently and due to

    technical difficulties, it was impossible to screen the entire

    organelle thoroughly. Recent advances in membrane protein

    identification and mass spectrometry (MS) have dramatically

    promoted this field. A comparison of different techniques for

    elucidating the proteinaceous composition of synaptic vesi-

    cles revealed numerous overlaps but also remarkable dif-

    ferences in the protein constituents of the synaptic vesicle

    compartment, indicating that several protein separation

    techniques in combination with differing MS approaches are

    required to identify and characterize the synaptic vesicle

    proteome. This review highlights the power of various gel

    separation techniques and MS analyses for the characteri-

    zation of the proteome of highly purified synaptic vesicles.

    Furthermore, the newly detected protein assignments to

    synaptic vesicles, especially those proteins which are new to

    the inventory of the synaptic vesicle proteome, are critically

    discussed.

    Keywords: electrophoresis, mass spectrometry, proteome,

    proteomics, synaptic vesicle, synaptic vesicle protein.

    J. Neurochem. (2007) 101, 14481462.

    The synaptic vesicle compartment

    Neurotransmission is based primarily on the regulatedrelease of neurotransmitters from synaptic vesicles. Synapticvesicles govern essential pre-synaptic tasks such as theuptake, storage and Ca2+-regulated release of neurotrans-mitters. Upon arrival of an action potential, synapticvesicles docked and primed at the active zone of the pre-synaptic plasma membrane fuse with the membrane andrelease neurotransmitters into the synaptic cleft. Neuro-transmitters diffuse to the post-synaptic membrane toactivate neurotransmitter receptors. Synaptic vesicles areretrieved by endocytosis to restore the primed vesicle pool(Littleton 2006; Ryan 2006).These essential tasks are controlled by a unique inventory

    of integral membrane proteins and also of membrane-associated proteins that attach and detach during the vesiclecycle in a time-dependent manner (reviewed in Li and Chen2003; Sudhof 2004). The exploration of the proteinaceouscomposition of the synaptic vesicle is essential for anunderstanding of the molecular mechanisms of neurotrans-mitter release.

    Proteomic strategies

    One major advantage of proteomic approaches for the studyof tissue, cell and organelle proteomes is the sequenceinformation immediately provided by mass spectrometry(MS). Yet, many studies of the past few years indicate thatthe proteomic analysis of whole cells or tissues is often too

    Received October 16, 2006; revised manuscript received December 1,

    2006; accepted December 22, 2006.

    Address correspondence and reprint requests to Jacqueline Burre,

    Institute of Cell Biology and Neuroscience, Neurochemistry, JW Goethe

    University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.

    E-mail: [email protected]

    Abbreviations used: 1D, one-dimensional; 2D, two-dimensional; BAC,

    benzyldimethyl-n-hexadecyl ammonium chloride; CCV, clathrin-coated

    vesicle; ER, endoplasmic reticulum; GAPDH, glyceraldehyde-3-phos-

    phate dehydrogenase; LC, liquid chromatography; MAP, mitogen-acti-

    vated protein; MS, mass spectrometry; NECAP, adaptin ear-binding

    coat-associated protein; PAGE, polyacrylamide gel electrophoresis;

    SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein

    receptor; TGN, trans-Golgi network; VAMP, vesicle-associated mem-

    brane protein.

    Journal of Neurochemistry, 2007, 101, 14481462 doi:10.1111/j.1471-4159.2007.04453.x

    1448 Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • complex for the available technology to obtain a highlyresoluted protein separation and is thus unsuitable for thestudy of proteins that are present in low copy numbers(Stasyk and Huber 2004). Proteins in low abundance areinevitably masked by highly abundant proteins (Ahmed andRice 2005; Righetti et al. 2006). Therefore, an appropriateproteomic strategy to address these limitations is to enrichparticular subcellular structures by subcellular fractionation.One advantage of subcellular proteomic approaches is thatthe identied proteins can be directly assigned to denedorganelles. Especially for novel proteins, this can providevaluable information for further investigation into theirfunctional role. For the evaluation of novel proteins andproteins newly assigned to a subcellular structure, correlationproling has been proposed (Andersen et al. 2003). Thismethod assumes that constituents of the same organellereveal the same degree of enrichment during the sequentialpurication steps. In addition, for morphological analysis ofall fractions obtained during organelle isolation, electronmicroscopy can be employed. Finally, the combination ofMS, bioinformatics, and high-resolution two-dimensional(2D) gel electrophoresis provides the basis for the large-scaleidentication of proteins in complex mixtures (Dhingra et al.2005; Domon and Aebersold 2006).Hydrophobic membrane proteins are a challenge for

    proteomic approaches. Their amino acid sequences containonly a few tryptic cleavage sites, impairing their identica-tion using peptide mass ngerprinting (van Montfort et al.2002a; Tannu and Hemby 2006). In addition, these largetryptic peptides extract poorly from the gel matrix and escapedetection by MS. The combination of different proteases andchemical cleavage methods or shotgun approaches (vanMontfort et al. 2002a,b; Zhang et al. 2004) can only partiallyovercome these limitations.In proteomic studies using conventional 2D electrophoresis

    (OFarrell 1975), membrane proteins are notoriously under-represented (Rabilloud et al. 1999; Santoni et al. 2000). Thedevelopment of techniques especially designed for theseparation of hydrophobic proteins is essential. On a globalproteomic level, these efforts comprise renements of theconventional 2D polyacrylamide gel electrophoresis (PAGE)(Kashino 2003; Luche et al. 2003) and partial or fullreplacement of gel electrophoretic separation steps (Simpsonet al. 2000; Schirle et al. 2003). Moreover, non-gel shotgunmethods (Gevaert et al. 2003; Wu and Yates 2003; Zhanget al. 2004) or in-liquid pre-fractionation techniques like freeow electrophoresis (Righetti et al. 2005) have been applied.Hartinger et al. (1996) optimized benzyldimethyl-n-hexa-decyl ammonium chloride (BAC)/sodium dodecyl sulphate(SDS)PAGE (Macfarlane 1986) for the separation ofsynaptic vesicle proteins. Other gel electrophoretic tech-niques especially designed for the separation of membraneproteins including double SDSPAGE technique (Rais et al.2004), blue native/SDSPAGE (Brookes et al. 2002) and

    cetyl trimethyl ammonium bromide (CTAB)/SDSPAGE(Navarre et al. 2002) were successfully applied for theresolution of mitochondrial proteins and protein complexesand yeast plasma membrane proteins respectively.

    Neuroproteomics

    The Human Proteome Organization (HUPO) brain proteomeproject was launched to analyse human and mouse brainsamples (Hamacher et al. 2004). It became obvious that evenupon application of identical data processing guidelines, eachgroup identied, for the most part, different proteins (seeHamacher et al. 2006; Reidegeld et al. 2006 and the entireProteomics issue, Vol. 6, No. 18, Sept 2006). For example, of792 mouse brain proteins identied by seven groups, nearly80%were found in one particular study only. Differences arosefrom sample preparation protocols, separation techniques,mass spectrometers, bioinformatic tools and databases used,revealing that strict methods of quality control and assurancehave to be applied to increase the level of condence.Subjecting crude samples to proteomic analysis such as

    whole-brain tissue from human (Dumont et al. 2006; Parket al. 2006), mouse (Gauss et al. 1999; Wang et al. 2006) orrat (Fountoulakis et al. 1999; Krapfenbauer et al. 2003)resulted in a very limited number of identied proteins for aspecic organelle such as synaptic vesicles. Similarly, work-ing with brain parts such as mouse cerebellum (Beranova-Giorgianni et al. 2002), human parietal cortex (Langen et al.1999) or human hippocampus (Edgar et al. 1999) lead to theidentication of only a few synaptic vesicle proteins. Analysisof subproteomes include the synaptic plasma membranefraction of rat forebrain that resulted in the identication of six(Prokai et al. 2005) and 17 (Stevens et al. 2003) synapticvesicle proteins, respectively, whereas the proteomic analysisof synaptic membranes and post-synaptic density isolatedfrom whole rat brain upon isotope-coded afnity tagging(ICAT) labelling (Li et al. 2005) lead to the identication ofsix synaptic vesicle proteins. A proteomic analysis ofsynaptosomes derived from rat cerebral cortex (Witzmannet al. 2005) identied 246 proteins, comprising 12 proteinsbeing part of the synaptic vesicle compartment. Similarly, in aproteomic analysis using synaptosomes from mouse brain(Schrimpf et al. 2005), peptides representing a total of 1131database entries were identied, including 15 proteinsinvolved in the exocytosis, and six proteins in the endocytosis,of synaptic vesicles. This strongly suggests that synapticvesicles should be puried before proteomic analysis.

    Synaptic vesicle proteomics

    Recent studies succeeded in the elucidation of the proteina-ceous inventory of several organelles (reviewed in Yateset al. 2005). In particular, proteomic analyses of brain tissuebecame an integral component of neuroscientic research

    The synaptic vesicle proteome 1449

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • (reviewed in Abul-Husn and Devi 2006; Becker et al. 2006);however, comprehensive studies on the synaptic vesicleproteome are rare (Blondeau et al. 2004; Coughenour et al.2004; Morciano et al. 2005; Burre et al. 2006b; Takamoriet al. 2006) as synaptic vesicles have been difcult to purifyto homogeneity in large quantities and contain numeroushydrophobic proteins.

    Isolation of synaptic vesicles

    For the proteomic analysis of synaptic vesicles, differentisolation protocols have been applied. Importantly, synapticvesicles and clathrin-coated vesicles (CCV) were isolatedfrom puried synaptosomes by hypo-osmotic shock. Thisexcludes vesicular organelles of similar biophysical orbiochemical properties from non-terminal compartments ofthe neuron.Hartinger et al. (1996) further puried synaptic vesicles by

    subcellular fractionation, according to Huttner et al. (1983),and replaced the controlled-pore glass bead column as thenal purication step with high-velocity glycerol gradientcentrifugation. Similarly, velocity gradient centrifugation wasthe nal step for the synaptic vesicle isolation protocoldescribed by Coughenour et al. (2004). Electron microscopyand immunoblot analyses of marker enzymes for mitochon-dria, plasma membrane, lysosomes, endoplasmic reticulum(ER) and cytosol were applied to screen for potentialcontamination. Low levels of ER were still detected in thepuried vesicle sample whereas no contamination of otherorganelles was observed. Contaminations with fragmentsderived from the ER were shown to be present also in otherstudies using controlled-pore glass beads (Hell et al. 1988).In addition, voltage-dependent anion channel 1, a knownmitochondrial outer membrane protein (Rostovtseva andColombini 1996; Hodge and Colombini 1997) was identiedin isolated vesicle fractions (Coughenour et al. 2004). Yet,voltage-dependent anion channel-like transport activity wasascribed to the plasma membrane of synaptosomes (Sharet al. 1998) and it is also present in phagosomes (Garin et al.2001) and Golgi-derived vesicles (Bell et al. 2001).Another protocol for the isolation of synaptic vesicles from

    rat brain is based on continuous sucrose density gradientcentrifugation and subsequent immunoprecipitation (Morci-ano et al. 2005; Burre et al. 2006b). The purity of the isolatedorganelles was evaluated by electron microscopy, markerprotein analysis (Morciano et al. 2005) and correlationproling (Burre et al. 2006b). No immunosignal was detectedfor marker proteins of organelles such as mitochondria,lysosomes, peroxisomes, nuclei, Golgi stacks, ER or constit-uents of the pre- and post-synaptic membrane. However, MSanalysis led to the identication of proteins assigned tomitochondria, ER and the pre-synaptic membrane.According to a recent proteomic study of Takamori et al.

    (2006) synaptic vesicles were isolated according to Huttner

    et al. (1983) with controlled-pore glass bead chromatographyas the nal purication step. In addition, they subjected theorganelles to carbonate treatment to remove peripherallyassociated proteins. Electron microscopy and correlationproling were performed for evaluation of organelle purity.However, MS analysis resulted in the identication of severalplasma membrane proteins.In another study, CCVs were isolated according to Maycox

    et al. (1992) with sucrose density gradient centrifugation asthe nal purication step (Blondeau et al. 2004). Correlationproling and electron microscopy for the evaluation oforganelle purity revealed a contribution of 73% of CCVs inthe preparation used for proteomic analysis. The residualuncoated structures were heterogeneous in shape and size andvaried from 13 to >200 nm in diameter. Analysis of CCVsrevealed a number of pre-synaptic plasma membrane-locatedproteins. In this context it is important to note that the pre-synaptic plasma membrane protein Na+/K+-ATPase isenriched on CCVs when compared with total brain homo-genate, suggesting that pre-synaptic plasma membrane pro-teins may be incorporated into CCVs (Blondeau et al. 2004).

    Identification of synaptic vesicle proteins

    The highest number of synaptic vesicles proteins wasidentied using one-dimensional (1D) SDSPAGE forprotein separation (Blondeau et al. 2004; Burre et al.2006b; Takamori et al. 2006). The limiting separating abilityof 1D gels was overcome using nanoscale liquid chroma-tography (LC) to resolve the extracted peptides. A proteomicanalysis of CCVs (Blondeau et al. 2004) succeeded in theidentication of 209 proteins with up to 17 proteins in onegel slice. Synaptic vesicle proteins identied includedsynaptic vesicle protein 2 (Buckley and Kelly 1985; Bajjaliehet al. 1994), synaptophysin (Calakos and Scheller 1994),synaptoporin (Brandstatter et al. 1996), synaptogyrins 1 and3 (Baumert et al. 1990; Sugita et al. 1999), synaptotagmins Iand II (Ullrich et al. 1994), secretory carrier-associatedmembrane proteins 1, 3 and 5 (Castle and Castle 2005), thesoluble N-ethylmaleimide-sensitive factor attachment proteinreceptors (SNAREs) vesicle-associated membrane protein(VAMP)-2 (Rossetto et al. 1996), soluble NSF attachmentprotein (SNAP)-25 (Hodel 1998) and syntaxin-1 (Lin andScheller 1997), the VAMP-interacting protein (Skehel et al.1995), subunits of the vATPase (Nelson and Harvey 1999), avesicular glutamate transporter (Bellocchio et al. 2000), thevesicular GABA transporter (Chaudhry et al. 1998), cysteinestring protein (Chamberlain and Burgoyne 1998), heterotri-meric G proteins (Holtje et al. 2000; Pahner et al. 2003) andrab3 (Zerial and McBride 2001) (Table 1). All these proteinswere also identied in a proteomic approach applying thesame techniques but using immunopuried synaptic vesicles(Burre et al. 2006b) and synaptic vesicle puried bycontrolled-pore glass bead chromatography (Takamori et al.

    1450 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • 2006). However, some proteins such as synaptoporin, thevesicular amine transporter (Linial et al. 1989), the vesicularzinc transporter ZnT-3 (Cole et al. 1999), synaptotagmin V(Craxton and Goedert 1999), and two subunits of thevATPase were only identied by two 1D approaches. Inaddition, tomosyn (McEwen et al. 2006) and vesicletransport through interaction with t-SNAREs homolog 1A(vti1A) (Antonin et al. 2000) was identied solely by oneanalysis.

    Two-dimensional gel-electrophoretic techniques are cap-able of resolving proteins that migrate at the same rate withina 1D gel. A direct comparison of BAC/SDSPAGE withisoelectric focussing/SDSPAGE for the separation of syn-aptic vesicle proteins was reported by Coughenour et al.(2004). Separated proteins were subjected to tryptic in-geldigestion, capillary LC and electrospray ionization quadru-pole time of ight MS. This led to the identication of themajor protein components of synaptic vesicles (compare

    Table 1 Established synaptic vesicle proteins

    Proteins Function Membrane anchorage Proteomics approach

    SV2s Transporter-like, release 12 TMH 15

    SVOP Transporter-like 12 TMH

    Synaptophysin Exocytosis 4 TMH 15

    Synaptoporin Exocytosis 4 TMH 2, 5

    Synaptogyrin 1 Exocytosis 4 TMH 2, 4, 5

    Synaptogyrin 3 Exocytosis 4 TMH 2, 4, 5

    Synaptotagmin I Exocytosis/endocytosis 1 TMH 15

    Synaptotagmin II Exocytosis 1 TMH 25

    Synaptotagmin V Exocytosis 1 TMH 4, 5

    SCAMP 1 Endocytosis 4 TMH 2, 4, 5

    SCAMP 3 Endocytosis 4 TMH 2, 4, 5

    SCAMP 5 ? 4 TMH 2, 4, 5

    VAMP-2 Exocytosis 1 TMH 15

    SNAP-25 Exocytosis Palmitoylation 1, 2, 4, 5

    Syntaxin-1 Exocytosis 1 TMH 15

    Tomosyn Exocytosis 5

    vti1A Exocytosis 1 TMH 5

    VAP Exocytosis 1 TMH 2, 4, 5

    vATPase V0 a Proton pump 6 TMH 2, 4, 5

    V0 c Proton pump 4 TMH 4, 5

    V0 d Proton pump 1, 2, 4, 5

    V1 A Proton pump 14

    V1 B Proton pump 15

    V1 C Proton pump 15

    V1 D Proton pump 15

    V1 E Proton pump 15

    V1 F Proton pump 4, 5

    V1 G Proton pump 25

    V1 H Proton pump 1, 2, 4, 5

    vAChT Neurotransmitter transport 10 TMH

    vMaT2 Neurotransmitter transport 11 TMH

    vGaT Neurotransmitter transport 9 TMH 2, 4, 5

    vGluT Neurotransmitter transport 11 TMH 1, 2, 4, 5

    VaT1 Neurotransmitter transport 4, 5

    ZnT-3 Zinc transporter 6 TMH 1, 3, 4, 5

    ClC-3 Chloride channel 11 TMH

    CSP Chaperone Palmitoylation 1, 2, 4, 5

    Heterotrimeric G proteins Signal transduction Palmitoylation 1, 2, 4, 5

    rab3 Vesicle trafficking Prenylation 1, 2, 4, 5

    TMH, transmembrane helices; SV2, synaptic vesicle protein 2; SCAMP, secretory carrier-associated membrane protein; VAMP, vesicle-associ-

    ated membrane protein; vGaT, vesicular GABA transporter; vAChT, vesicular acetylcholine transporter; VAP, vesicle-associated membrane-

    interacting protein; VaT1, vesicular amine transporter; ZnT3, vesicular zinc transporter; ClC, chloride channel; CSP, cysteine string protein; 1,

    Coughenour et al. 2004; 2, Blondeau et al. 2004; 3, Morciano et al. 2005; 4, Burre et al. 2006b; 5, Takamori et al. 2006.

    The synaptic vesicle proteome 1451

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • Fig. 1 and Table 1). Isoelectric focussing gels poorlyresolved proteins with very basic isoelectric points and onlytwo integral membrane proteins were identied. A combi-nation of 1D, BAC/SDS and double SDS for the separationof synaptic vesicle proteins resulted in the identication of185 proteins (Burre et al. 2006b). Interestingly, only 19% ofthe proteins were identied by all three techniques. Further-more, 23% of the proteins detected were identied by the 2Dtechniques and matrix-assisted laser desorption ionization(MALDI) time of ight MS only. In general, the 1Dapproach together with LC-tandem MS has proved to besuperior for integral membrane protein identication. Incontrast, the study of Takamori et al. (2006) lead to theidentication of 410 proteins with similar values for 1D(56%) and 2D (44%) electrophoresis using LC-tandem MS.However, a combination of several gel electrophoreticseparation techniques allows the most comprehensive analy-sis of the synaptic vesicle proteome.Several proteins that are assumed to be only transiently

    associated with the synaptic vesicle membrane during thesynaptic vesicle life cycle have been identied in mostproteomic studies (Table 2, Fig. 2). Coughenour et al. (2004)described the presence of calcium/calmodulin-dependentprotein kinase II (CaMKII) (Grifth et al. 2003), synapsin I(De Camilli et al. 1983; Benfenati et al. 1989), the chaper-ones N-ethyl maleimide sensitive factor (NSF) (Sollner et al.1993) and Hsc70 (Chamberlain and Burgoyne 2000; Jianget al. 2000), adaptor protein complex 2 (AP-2) (Royle andLagnado 2003), actin (Dillon and Goda 2005), tubulin

    (Honda et al. 2002) and glyceraldehyde-3-phosphate dehy-drogenase (GAPDH) (Schlafer et al. 1994; Ikemoto et al.2003) on the synaptic vesicle membrane. The presence of allthese proteins was conrmed in other investigations (Blond-eau et al. 2004; Burre et al. 2006b; Takamori et al. 2006). Inaddition, these studies reported the presence of synapsin II(Hosaka and Sudhof 1998), the small G proteins ADP-ribosylation factor (ARF) (Sewell and Kahn 1988) and rac(Didsbury et al. 1989), ral (Chardin and Tavitian 1986), rabGTPase-activating proteins (GAPs)/Guanine nucleotide ex-change factors (GEFs)/Guanine nucleotide dissociationinhibitors (GDIs) (Schimmoller et al. 1998), rabconnectin-3(Nagano et al. 2002), rabphilin-3A (Mollard et al. 1991),munc-18 (Ciufo et al. 2005), the chaperone Hsp90 (Sakisakaet al. 2002), AP-1 (reviewed in Boehm and Bonifacino2001), AP-180 (Bao et al. 2005), AP-2-associated kinase(Conner and Schmid 2002), clathrin (Kirchhausen andHarrison 1981), phosphatidylinositol binding clathrin assem-bly protein (PICALM) (Yao et al. 2005), dynamin (Severet al. 2000), synaptojanin (Haffner et al. 2000), alpha-internexin (Yuan et al. 2006), complex of actin relatedproteins 2 and 3 (ARP2/3) (Merrield 2004), capping protein(Hart et al. 1997), p25 (Tirian et al. 2003), microtubuleassociated protein 6 (Eastwood et al. 2006), elongation factor1 (EF-1) (Yang et al. 1993), myosin-Va (Doussau andAugustine 2000), dynein (Holleran et al. 2001a) and 3-phosphoglycerate kinase (Ikemoto et al. 2003). Proteins iden-tied in one or two investigation only were synapsin III (Fenget al. 2002), spectrin (Sikorski et al. 1991), neurolament

    Fig. 1 Established synaptic vesicle pro-

    teins.

    1452 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • proteins (Lariviere and Julien 2004), the actin-interactingprotein prolin (Schluter et al. 1997), and the microtubuleinteracting proteins MAP-1 (Halpain and Dehmelt 2006),kinesin (Bloom 2001) and dynactin 1 (Holleran et al. 2001b).Endocytosis is described as a fast event and the endocytic

    proteins clathrin, dynamin, synaptojanin and AP-2 are

    assumed to associate with the vesicular membrane onlytransiently (Sudhof 2004). However, the data obtained byproteomic analyses of synaptic vesicles and CCVs indicatethat the apparatus for endocytosis might remain associatedwith the vesicle membrane for a longer period of time thanpreviously anticipated. It has recently been demonstated that

    Table 2 Proteins transiently associated with the synaptic vesicle membrane during the vesicle life cycle

    Proteins Function Interaction Proteomics approach

    CaMKII Reserve pool regulation Cytoskeleton, SV 15

    Synapsin I Reserve pool regulation Cytoskeleton, SV, PK 1, 35

    Synapsin II Reserve pool regulation Cytoskeleton, SV 35

    Synapsin III Reserve pool regulation Cytoskeleton, SV 5

    Small G protein ARF-like Vesicle trafficking GP-MP 2, 4, 5

    Small G protein rac Exocytosis SV, PK 2, 4, 5

    Small G protein ralA Vesicle pool regulation GP-MP, PL, exocyst 4, 5

    Rab GAP/GEF/GDI Vesicle trafficking Rab 2, 4, 5

    Rabconnectin-3 Vesicle trafficking Rab3 4, 5

    Rabphilin-3A Vesicle trafficking Rab3, SV 35

    Munc18 Docking/priming Syntaxin-1 25

    Chaperone NSF SNARE complex disassembly SNARE complex 15

    Chaperone Hsc70 Clathrin coat disassembly CSP, SNAREs, synaptotagmin I 1, 2, 4

    Chaperone Hsp90 Rab recycling Rab a-GDI 2, 4

    AP-1 Endocytosis Synaptophysin, microtubule 2, 5

    AP-2 Endocytosis

    AP-2, AP180, amphiphysin, clathrin,

    dynamin, synaptojanin, phospholipids

    15

    AP-180 Endocytosis 2, 4, 5

    AP-2-associated kinase Endocytosis 4, 5

    Amphiphysin Endocytosis

    Clathrin Endocytosis 24

    PICALM Endocytosis 2, 5

    Dynamin Endocytosis 35

    Synaptojanin Endocytosis 4, 5

    Actin Cytoskeleton Synapsin 15

    Tubulin Cytoskeleton Synaptotagmin I 15

    Spectrin Cytoskeleton Cytoskeleton, synapsin I, munc13 4

    Neurofilament proteins Cytoskeleton Neurofilament proteins, dynein 4

    Alpha-internexin Cytoskeleton 4, 5

    ARP2/3 Cytoskeleton dynamics Actin, dynamin 4, 5

    Capping protein Cytoskeleton dynamics Actin 4, 5

    Profilin Cytoskeleton dynamics Actin, ARP2/3 2

    p25 Cytoskeleton dynamics Microtubules 2, 5

    MAP-1 Cytoskeleton dynamics Microtubules 5

    MAP-6 (STOP) Cytoskeleton dynamics Microtubules 4, 5

    EF1 Cytoskeleton dynamics,

    protein translation

    Cytoskeleton 4, 5

    Myosin-Va Molecular motor Actin, VAMP-2/synaptophysin complex, syntaxin-1A 4, 5

    Dynein Molecular motor Microtubules, dynactin 2, 4, 5

    Kinesin Molecular motor Microtubules 5

    Dynactin 1 Molecular motor Dynein, Arp1 5

    GAPDH Glycolysis vATPase 15

    3-PGK Glycolysis ? 2, 4

    SV, synaptic vesicle membrane; 3-PGK, 3-phosphoglycerate kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PK, protein kinase;

    GP-MP, G protein-modulating proteins; PL, phospholipase; CSP, cysteine string protein; SNARE, soluble N-ethylmaleimide-sensitive factor

    attachment protein receptor; VAMP, vesicle-associated membrane protein; MAP, microtubule-associated protein. 1, Coughenour et al. 2004; 2,

    Blondeau et al. 2004; 3, Morciano et al. 2005; 4, Burre et al. 2006b; 5, Takamori et al. 2006.

    }

    The synaptic vesicle proteome 1453

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • a-adaptin is enriched in synaptic vesicle preparations(Murshid et al. 2006).Moreover, numerous proteins involved in cytoskeletal

    rearrangements such as prolin, capping protein, ARP2/3,EF1, STOP and p25 were identied. These proteins areinvolved in cytoskeletal organization and might also play animportant role in vesicular dynamics within the nerveterminal.

    Synaptic vesicle proteins eluding identification by

    proteomic analysis

    Several established integral synaptic vesicle proteins havenot been identied by MS in any of the vesicle proteomicanalyses, including the vesicular transporter for acetylcholine(Gilmor et al. 1996), for monoamines (Nirenberg et al.1995), the putative transporter SV2 related protein (SVOP)(Janz et al. 1998) and the chloride channel CIC-3 (Salazaret al. 2004). Moreover, the vesicle-attached amphiphysin hasnot been identied in any studies using MS although itspresence on CCVs has been demonstrated in an immunoblotanalysis by Blondeau et al. (2004).

    Novel candidates

    Numerous proteins have been identied by the proteomicapproaches that have not yet been assigned to the synapticvesicle compartment, or their putative presence has beenindicated only recently (Table 3 and Fig. 3). The identica-tion of these proteins in several proteomic analyses suggeststhat it might be worthwhile to investigate their potential

    involvement in the synaptic vesicle function in more detail.Following, a brief summary of known functions or cellularallocations of these proteins is provided.

    Isoforms of established synaptic vesicle proteins

    Additional SNARE protein isoforms were identied onboth CCVs and synaptic vesicles (Blondeau et al. 2004;Burre et al. 2006b; Takamori et al. 2006). Syntaxin-6localizes to the trans-Golgi network (TGN) and endosomesand, unlike other SNAREs, reveals a broad variety ofinteraction partners (Wendler and Tooze 2001). Syntaxin-7 isconcentrated on late endosomes and lysosomes and isrequired for the fusion of both organelles (Mullock et al.2000). Syntaxin-12/13 is also localized on endosomes andmight either function to receive vesicles from the TGN or theearly endosomes (Tang et al. 1998), or may be involved inhomotypic early endosome fusion (Brandhorst et al. 2006).Syntaxin-16b is concentrated on the TGN and involved inTGNendosome transport (Wang et al. 2005). In contrast toubiquitous VAMP-2, VAMP-1 reveals a less abundantexpression in particular brain areas, and co-localizes withsynaptophysin (Raptis et al. 2005). Cellubrevin is a ubiqui-tously expressed membrane protein that localizes to endo-somes and functions in constitutive exocytosis (Gerst 1999).SNAP-29 is present at synapses and inhibits synaptictransmission, probably by competing with a-SNAP forbinding to the SNAREs and consequently inhibiting disas-sembly of the SNARE complex (Pan et al. 2005). SNAP-47reveals a widespread distribution on intracellular membranesand is also enriched in synaptic vesicle fractions (Holt et al.2006). These results suggest that synaptic vesicles are

    Fig. 2 Proteins transiently associated with

    the synaptic vesicle membrane during the

    vesicle life cycle.

    1454 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • involved also in endosomal fusion reactions. SynaptotagminXVII (B/K protein) has been found in the ER in rathippocampus (Jang et al. 2004) and revealed an abundantpresence in the brain, kidney and prostate (Chin et al. 2006).Synaptotagmin XII, unlike most other synaptotagmins, doesnot bind syntaxin-1 and SNAP-25 in a Ca2+-dependentmanner (Chapman et al. 1995; Schiavo et al. 1997). Up untilnow, the physiological role of these proteins on the synapticvesicle compartment remains unclear.

    GTP-binding proteins

    In addition to the synaptic vesicle-associated rab3 isoformsother members of the rab family were identied in the vesicle

    proteome, although it has been demonstrated, for most rabproteins, that they reside on organelles other than synapticvesicles, e.g. early and late endosomes or TGN (Pfeffer 2001).Of these, endosome-localized rab5, in addition, was found toassociate with synaptic vesicles specically (Shimizu et al.2003). The GTP-binding protein septins 2, 5, 7 and 11 belongto a multigene family with multiple splice variants (Xue et al.2004). They associate with biological membranes through ahighly conserved polybasic region at the N-terminus of theGTP-binding domain (Casamayor and Snyder 2003; Spiliotisand Nelson 2006). Septin 2 is essential for the retention ofnormal actin levels and structures (Schmidt and Nichols2004). Septin 5 associates with membranes of GABAergic

    Table 3 Putative novel synaptic vesicle proteins

    Proteins Putative function Interaction Proteomics approach

    Rabs Vesicle trafficking GP-MP 25

    Small G protein rap Signal transduction Ras effectors 2, 4, 5

    Small G protein K-ras Signal transduction PLC, Erk 2, 4, 5

    VAMP-1 Exocytosis SNAREs 2, 4, 5

    Cellubrevin Exocytosis SNAREs 5

    SNAP-29 Endosomal fusion SNAREs 5

    SNAP-47 Endosomal fusion SNAREs 5

    Syntaxin 6 Endosomal fusion SNAREs 2, 5

    Syntaxin 7 Endosomal fusion SNAREs 4, 5

    Syntaxin 12 Endosomal fusion SNAREs 2, 4, 5

    Syntaxin 13 Endosomal fusion SNAREs 5

    Syntaxin 16b Golgi trafficking SNAREs 5

    Thy-1 Release, signalling GPI anchor 2, 4, 5

    Glucosephosphate Isomerase Glycolysis ? 2

    PFK Glycolysis vATPase 25

    FBP aldolase Glycolysis vATPase 25

    Phosphoglycerate mutase Glycolysis ? 2

    Enolase Glycolysis ? 2, 5

    Pyruvate kinase Glycolysis ? 25

    Lactate dehydrogenase Glycolysis ? 25

    Septin 2

    Cytoskeleton, plasticity, exocytosis

    Actin, PIP, exocyst, septins 4

    Septin 5 SNAREs, synaptophysin, PIP, septins 4

    Septin 7 PIP, exocyst complex, septins 2, 4, 5

    Septin 11 PIP, cytoskeleton 4

    Reticulon 1

    Membrane curvature

    AP50, SNAREs 2, 4, 5

    Reticulon 3 ? 2, 4

    Reticulon 4 ? 4

    NTT4 Neurotransmitter transport ? 2, 4, 5

    VILIP 1 Neuronal Ca2+ sensor nACh-R, guanylate cyclase receptor 2, 4, 5

    VILIP 3 Neuronal Ca2+ sensor ? 2, 4

    Proteasomal proteins Protein degradation Munc18, syntaxin-1, synaptophysin 4, 5

    Synaptotagmin XII ? ? 4, 5

    Synaptotagmin XVII ? ? 5

    Svap30 ? ? 4

    DKFZp566N034 Cation transporter ? 4, 5

    GP-MP, G protein-modulating proteins; VAMP, vesicle-associated membrane protein; NTT, neurotransmitter transporter; SNARE, soluble

    N-ethylmaleimide-sensitive factor attachment protein receptor; Svap30, synaptic vesicle-associated protein of 30 kDa; VILIP, visinin-like proteins;

    FBP, fructose bisphosphate; PFK, phosphofructokinase; PIP, phosphatidyl inositol phosphates. 1, Coughenour et al. 2004; 2, Blondeau et al.

    2004; 3, Morciano et al. 2005; 4, Burre et al. 2006b; 5, Takamori et al. 2006.

    }}

    The synaptic vesicle proteome 1455

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • synaptic vesicles (Caltagarone et al. 1998), co-localizespartially with VAMP-2 (Peng et al. 2002) and interacts withsynaptophysin (Caltagarone et al. 1998). Moreover, it bindsto SNARE complexes via syntaxin-1 (Beites et al. 1999), andcompetes with NSF and SNAPs for its binding (Beites et al.2005). Septin 5 complexes with the septins 2 and 7 (Penget al. 2002). Septin 7 in concert with other septins associatewith the exocyst complex (Hsu et al. 1998b) and might beimportant for the maintenance of neuronal polarity andsynaptic plasticity (Hsu et al. 1998a). The small G protein,ras, communicates extracellular signals to the nucleus andthereby regulates a variety of intracellular processes (Marshall1995). Sustained ras activity revealed an increase in thepackage density of synaptic vesicles docked at active zones(Seeger et al. 2004). The increased size of the readilyreleasable vesicle pool potentially results in a modulation ofthe release probability at glutamatergic synapses. Moreover,ras has been shown to be a constitutive CCV component(Howe et al. 2001). Rap is predominantly localized post-synaptically and binds the G protein, raf, which is known toactivate the MAP kinase pathway (Ohtsuka et al. 1999). Therole of these two small G proteins with respect to theregulation of the synaptic vesicle cycle must be furtherelucidated.

    Putative transporters

    The orphan neurotransmitter transporter, NTT4, belongs tothe family of Na+/Cl)-dependent transporters of the plasmamembrane (Liu et al. 1993). The protein has 12 putativetransmembrane helices, is present on synaptic vesicles insubpopulations of GABAergic and glutamatergic neuronsand might possibly be involved in the vesicular transport ofATP, calcium, zinc or chloride (Masson et al. 1999).However, a general vesicular function can be ruled out since

    the protein is only present in subpopulations of neurons. Itremains to be analysed whether this transporter activelytransports a substrate into the synaptic vesicle lumen, or if itrepresents a protein inserted into the plasma membrane ondemand. The putative novel synaptic vesicle proteinDKFZp566N034 (Burre et al. 2006b; Takamori et al.2006) with six predicted transmembrane domains revealshomology to bacterial cation transporters (Haney et al.2005). No functional data exists for the latter protein.

    Glycolytic machinery for ATP production

    The presence of almost all enzymes of the glycolyticmachinery has been reported both for CCVs and synapticvesicles (Blondeau et al. 2004; Burre et al. 2006b; Takamoriet al. 2006). In addition to GAPDH and 3-phosphoglyceratekinase, these include phosphofructokinase, fructose bisphos-phate (FBP) aldolase, enolase, pyruvate kinase and lactatedehydrogenase. Additional proteins identied on CCVsincluded glucose phosphate isomerase and phosphoglyceratemutase. ATP produced by glycolysis rather than mitochond-rial ATP has been demonstrated to drive the vATPase(Ikemoto et al. 2003). In support of the notion of anassociation of these proteins with the vesicular surface,interactions of the fructose bisphosphate aldolase andphosphofructokinase with subunits of the vATPase havebeen described (Lu et al. 2001; Su et al. 2003). Moreover,GAPDH has been found to be a part of the fusion complextogether with the vATPase and Ca2+/calmodulin (Peters et al.2001).

    Membrane curvature

    The reticulons 1, 3 and 4 were identied on CCVs andsynaptic vesicles. Reticulons are a family of integralmembrane proteins (GrandPre et al. 2000) that are predom-

    Fig. 3 Recently assigned and putative

    novel synaptic vesicle proteins.

    1456 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • inantly localized to the ER (Velde et al. 1994; Ortle andSchwab 2003). Their physiological function has yet to beelucidated. Reticulon 1A and 1B interact with AP50, acomponent of the AP-2 adaptor complex required forendocytosis (Iwahashi and Hamada 2003). Reticulon 1Cprecipitates with individual SNARE proteins but does notbind the SNARE complex (Steiner et al. 2004), possiblybeing involved in the biosynthesis or targeting of SNAREproteins. Reticulon 3 presumably plays a role in membranetrafcking of the early secretory pathway (Wakana et al.2005), and reticulon 4 (Nogo-A) is an important regulator ofregeneration and plasticity within the adult CNS (Simonenet al. 2003) and is present in Golgi and ER membranes ofneurons (Oertle et al. 2003). Recent results indicate thatreticulons play an important role in creating membranecurvature at the ER and might help to sustain these structures(Voeltz et al. 2006). Possibly, they also exert these functionson synaptic vesicles.

    Visinin-like proteins and thy-1

    The visinin-like proteins (VILIPs) are neuronal Ca2+ sensorproteins which attach to membranes by Ca2+-dependentmyristoylation (Ames et al. 1997). They are involved inCa2+-dependent signalling cascades, such as the metabolismof cyclic nucleotides, the release of neurotransmitters, themodulation of ion channels, the regulation of gene expres-sion and possibly also synaptic plasticity (Braunewell et al.2001; Burgoyne and Weiss 2001; Brackmann et al. 2005).Whereas VILIP-1 is primarily associated with neuronalplasma membranes, VILIP-3 is localized on intracellularmembranes where it exerts an effect on signal cascades viaMAP kinase (Spilker et al. 2002). VILIP-1 has beendemonstrated to be associated with CCVs and might beinvolved in endocytosis via interaction with AP-2 (Blondeauet al. 2004). The GPI-anchored membrane protein, thy-1,involved in cellcell and cellmatrix interaction such asinhibition of neurite outgrowth, apoptotic signalling, leuco-cyte and melanoma cell adhesion and migration, tumoursuppression and broblast proliferation (reviewed in Regeand Hagood 2006), was identied both on CCVs andsynaptic vesicles (Blondeau et al. 2004; Burre et al. 2006a;Takamori et al. 2006). Besides its localization at the plasmamembrane (Green and Kelly 1992) more than 50% of theprotein is localized in intracellular vesicles (Jeng et al. 1998).After fusion of vesicles with the plasma membrane, asignicant part remains at the membrane and does notrecycle. A functional implication in cellular signalling hasbeen proposed because antibodies against thy-1 reduce theamount of released neurotransmitter (Jeng et al. 1998).

    Proteasomal degradation in the nerve terminal

    Most cellular proteins are degraded by the ubiquitinproteasome system. Pre-synaptic proteins regulated by theubiquitinproteasome system include munc18 (Speese et al.

    2003), syntaxin-1 (Chin et al. 2002) and synaptophysin(Wheeler et al. 2002). The physiological consequence ofdegradation of these proteins is not yet understood, but theubiquitinproteasome system may acutely determine thelocal concentration of key regulatory proteins at neuronalsynapses as a means for locally modulating synaptic efcacyand the strength of neurotransmission.

    Proteins in search for a function

    Eight of the numerous proteins identied in CCVs werehypothetical gene products that had not been detectedpreviously at the protein level (Blondeau et al. 2004).Enthoprotin has been demonstrated to be a novel clathrin-associated protein (Wasiak et al. 2002) that stimulatesclathrin assembly. Adaptin ear-binding coat-associated pro-tein (NECAP)-1 and NECAP-2 are proteins present on CCVsthat interact with AP-2 (Ritter et al. 2003). In clathrin heavychain depleted Hela cells NECAP-1 is approximatelythreefold less abundant compared with wild type (Borneret al. 2006). It has been demonstrated that NECAP-1 isenriched during synaptic vesicle preparation and might play arole in pre-synaptic endocytosis (Murshid et al. 2006).Similarly, 9 (Burre et al. 2006b) and 15 (Takamori et al.2006) novel proteins, where only the DNA sequence isknown, have been reported to reside on synaptic vesicles.Synaptic vesicle-associated protein of 30 kDa has recentlybeen identied in an approach where functional differencesbetween synaptic vesicle proteins under conditions of restand activation were observed (Burre et al. 2006a). Theprotein revealed an increase in abundance following stimu-lation.

    Summary and outlook

    The number of proteins identied by proteomic approachesin both synaptic vesicles and CCVs is unexpectedly high.Only about one quarter of these proteins are well-establishedplayers in the synaptic vesicle life cycle. An additionalsurprising outcome of these studies is the large number ofvesicle-associated proteins, many of which are expected toassociate only transiently with synaptic vesicles. In thiscontext, it is important to note that not all the proteins mayreside on the same vesicles. Some proteins, such astransporters, are contained only in subpopulations of synapticvesicles. Other proteins may be primarily localized toendosomes, or the plasma membrane, and may be capturedduring cycles of exo- and endocytosis. A proteomic analysisof subpopulations of synaptic vesicles might clarify thisissue. Similarly, proteins expressed in subpopulations ofneurons that to date eluded identication by proteomicapproaches might be detected more easily when subpopula-tions of synaptic vesicles are screened. Further investigationis required to elucidate whether vesicular transport systemsthat have previously been characterized in functional terms,

    The synaptic vesicle proteome 1457

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • such as the transporters for nucleotides or calcium, can beattributed to the novel vesicle proteins.The functional characterization of the novel synaptic

    vesicle proteins, and of proteins previously not assigned tothe synaptic vesicle compartment, will be an important issuefor future studies. It is expected that the precise functionalrole of individual synaptic vesicle proteins will be resolvedleading to a deeper understanding of the regulation of thesynaptic vesicle compartment regarding both neurotransmit-ter release and the plasticity of the nerve terminal compart-ment.

    Acknowledgements

    We thank the Deutsche Forschungsgemeinschaft for nancial

    support (SFB628, P16). We are indebted to Herbert Zimmermann

    for helpful discussions and critical reading of the manuscript. We

    thank Jeremy Hack for critically editing the manuscript.

    References

    Abul-Husn N. S. and Devi L. A. (2006) Neuroproteomics of the synapseand drug addiction. J. Pharmacol. Exp. Ther. 318, 461468.

    Ahmed N. and Rice G. E. (2005) Strategies for revealing lower abun-dance proteins in two-dimensional protein maps. J. Chromatogr. BAnalyt. Technol. Biomed. Life Sci. 815, 3950.

    Ames J. B., Ishima R., Tanaka T., Gordon J. I., Stryer L. and Ikura M.(1997) Molecular mechanics of calciummyristoyl switches. Nat-ure 389, 198202.

    Andersen J. S., Wilkinson C. J., Mayor T., Mortensen P., Nigg E. A. andMann M. (2003) Proteomic characterization of the human centro-some by protein correlation proling. Nature 426, 570574.

    Antonin W., Riedel D. and von Mollard G. F. (2000) The SNARE Vti1a-beta is localized to small synaptic vesicles and participates in anovel SNARE complex. J. Neurosci. 20, 57245732.

    Bajjalieh S. M., Frantz G. D., Weimann J. M., McConnell S. K. andScheller R. H. (1994) Differential expression of synaptic vesicleprotein 2 (SV2) isoforms. J. Neurosci. 14, 52235235.

    Bao H., Daniels R. W., MacLeod G. T., Charlton M. P., Atwood H. L.and Zhang B. (2005) AP180 maintains the distribution of synapticand vesicle proteins in the nerve terminal and indirectly regulatesthe efcacy of Ca2+-triggered exocytosis. J. Neurophysiol. 94,18881903.

    BaumertM., Takei K., Hartinger J., Burger P.M.,MollardG. F. v.,MaycoxP. R., Camilli P. D. and Jahn R. (1990) P29: a novel tyrosine-phos-phorylated membrane protein present in small clear vesicles ofneurons and endocrine cells. J. Cell Biol. 110, 12851294.

    Becker M., Schindler J. and Nothwang H. G. (2006) Neuroproteomics the tasks lying ahead. Electrophoresis 27, 28192829.

    Beites C. L., Xie H., Bowser R. and Trimble W. S. (1999) The septinCDCrel-1 binds syntaxin and inhibits exocytosis. Nat. Neurosci. 2,434439.

    Beites C. L., Campbell K. A. and Trimble W. S. (2005) The septin Sept5/CDCrel-1 competes with alpha-SNAP for binding to the SNAREcomplex. Biochem. J. 385, 347353.

    Bell A. W., Ward M. A., Blackstock W. P. et al. (2001) Proteomicscharacterization of abundant Golgi membrane proteins. J. Biol.Chem. 276, 51525165.

    Bellocchio E. E., Reimer R. J., Fremeau R. T. J. and Edwards R. H.(2000) Uptake of glutamate into synaptic vesicles by an inorganicphosphate transporter. Science 289, 957960.

    Benfenati F., Bahler M., Jahn R. and Greengard P. (1989) Interactions ofsynapsin I with small synaptic vesicles: distinct sites in synapsin Ibind to vesicle phospholipids and vesicle proteins. J. Cell Biol.108, 18631872.

    Beranova-Giorgianni S., Pabst M. J., Russell T. M., Giorgianni F.,Goldowitz D. and Desiderio D. M. (2002) Preliminary analysis ofthe mouse cerebellum proteome. Brain Res. Mol. Brain Res. 98,135140.

    Blondeau F., Ritter B., Allaire P. D. et al. (2004) Tandem MS analysis ofbrain clathrin-coated vesicles reveals their critical involvement insynaptic vesicle recycling. Proc. Natl Acad. Sci. USA 101, 38333838.

    Bloom G. S. (2001) The UNC-104/KIF1 family of kinesins. Curr. Opin.Cell Biol. 13, 3640.

    Boehm M. and Bonifacino J. S. (2001) Adaptins: the nal recount. Mol.Biol. Cell 12, 29072920.

    Borner G. H., Harbour M., Hester S., Lilley K. S. and Robinson M. S.(2006) Comparative proteomics of clathrin-coated vesicles. J. CellBiol. 175, 571578.

    Brackmann M., Schuchmann S., Anand R. and Braunewell K. H. (2005)Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling ofguanylyl cyclase B by regulating clathrin-dependent receptorrecycling in hippocampal neurons. J. Cell Sci. 118, 24952505.

    Brandhorst D., Zwilling D., Rizzoli S. O., Lippert U., Lang T. and JahnR. (2006) Homotypic fusion of early endosomes: SNAREs do notdetermine fusion specicity. Proc. Natl Acad. Sci. USA 103, 27012706.

    Brandstatter J. H., Lohrke S., Morgans C. W. and Wassle H. (1996)Distributions of two homologous synaptic vesicle proteins, syn-aptoporin and synaptophysin, in the mammalian retina. J. Comp.Neurol. 370, 110.

    Braunewell K. H., Brackmann M., Schaupp M., Spilker C., Anand R.and Gundelnger E. D. (2001) Intracellular neuronal calciumsensor (NCS) protein VILIP-1 modulates cGMP signalling path-ways in transfected neural cells and cerebellar granule neurones.J. Neurochem. 78, 12771286.

    Brookes P. S., Pinner A., Ramachandran A., Coward L., Barnes S., KimH. and Darley-Usmar V. M. (2002) High throughput two-dimen-sional blue-native electrophoresis: a tool for functional proteomicsof mitochondria and signaling complexes. Proteomics 2, 969977.

    Buckley K. and Kelly R. B. (1985) Identication of a transmembraneglycoprotein specic for secretory vesicles of neural and endocrinecells. J. Cell Biol. 100, 12841294.

    Burgoyne R. D. and Weiss J. L. (2001) The neuronal calcium sensorfamily of Ca2+-binding proteins. Biochem. J. 353, 112.

    Burre J., Beckhaus T., Corvey C., Karas M., Zimmermann H. andVolknandt W. (2006a) Synaptic vesicle proteins under conditionsof rest and activation: analysis by 2-D difference gel electrophor-esis. Electrophoresis 27, 34883496.

    Burre J., Beckhaus T., Schagger H., Corvey C., Hofmann S., Karas M.,Zimmermann H. and Volknandt W. (2006b) Analysis of the syn-aptic vesicle proteome using three gel-based protein separationtechniques. Proteomics. 6, 62506262.

    Calakos N. and Scheller R. H. (1994) Vesicle-associated membraneprotein and synaptophysin are associated on the synaptic vesicle.J. Biol. Chem. 269, 24 53424 537.

    Caltagarone J., Rhodes J., Honer W. G. and Bowser R. (1998) Local-ization of a novel septin protein, hCDCrel-1, in neurons of humanbrain. Neuroreport 9, 29072912.

    Casamayor A. and Snyder M. (2003) Molecular dissection of a yeastseptin: distinct domains are required for septin interaction, local-ization, and function. Mol. Cell. Biol. 23, 27622777.

    Castle A. and Castle D. (2005) Ubiquitously expressed secretory carriermembrane proteins (SCAMPs) 1-4 mark different pathways and

    1458 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • exhibit limited constitutive trafcking to and from the cell surface.J. Cell Sci. 118, 37693780.

    Chamberlain L. H. and Burgoyne R. D. (1998) Cysteine string proteinfunctions directly in regulated exocytosis. Mol. Biol. Cell 9, 22592267.

    Chamberlain L. H. and Burgoyne R. D. (2000) Cysteine-string protein:the chaperone at the synapse. J. Neurochem. 74, 17811789.

    Chapman E. R., Hanson P. I., An S. and Jahn R. (1995) Ca2+ regulatesthe interaction between synaptotagmin and syntaxin 1. J. Biol.Chem. 270, 23 66723 671.

    Chardin P. and Tavitian A. (1986) The ral gene: a new ras related geneisolated by the use of a synthetic probe. EMBO J. 5, 22032208.

    Chaudhry F. A., Reimer R. J., Bellocchio E. E., Danbolt N. C., Osen K. K.,Edwards R. H. and Storm-Mathisen J. (1998) The vesicular GABAtransporter, VGAT, localizes to synaptic vesicles in sets of glycin-ergic as well as GABAergic neurons. J. Neurosci. 18, 97339750.

    Chin L. S., Vavalle J. P. and Li L. (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J. Biol. Chem.277, 35 07135 079.

    Chin H., Choi S. H., Jang Y. S. et al. (2006) Protein kinase A-dependentphosphorylation of B/K protein. Exp. Mol. Med. 38, 144152.

    Ciufo L. F., Barclay J.W., BurgoyneR.D. andMorganA. (2005)Munc18-1 regulates early and late stages of exocytosis via syntaxin-inde-pendent protein interactions.Mol. Biol. Cell 16, 470482.

    Cole T. B., Wenzel H. J., Kafer K. E., Schwartzkroin P. A. and PalmiterR. D. (1999) Elimination of zinc from synaptic vesicles in theintact mouse brain by disruption of the ZnT3 gene. Proc. NatlAcad. Sci. USA 96, 17161721.

    Conner S. D. and Schmid S. L. (2002) Identication of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediatedendocytosis. J. Cell Biol. 156, 921929.

    Coughenour H. D., Spaulding R. S. and Thompson C. M. (2004) Thesynaptic vesicle proteome: a comparative study in membraneprotein identication. Proteomics 4, 31413155.

    Craxton M. and Goedert M. (1999) Alternative splicing of synaptotag-mins involving transmembrane exon skipping. FEBS Lett. 460,417422.

    De Camilli P., Harris S. M. J., Huttner W. B. and Greengard P. (1983)Synapsin I (protein I), a nerve terminal-specic phosphoprotein. II.Its specic association with synaptic vesicles demonstrated byimmunocytochemistry in agarose-embedded synaptosomes. J. CellBiol. 96, 13551373.

    Dhingra V., Gupta M., Andacht T. and Fu Z. F. (2005) New frontiers inproteomics research: a perspective. Int. J. Pharm. 299, 118.

    Didsbury J., Weber R. F., Bokoch G. M., Evans T. and Snyderman R.(1989) Rac, a novel ras-related family of proteins that are botuli-num toxin substrates. J. Biol. Chem. 264, 16 37816 382.

    Dillon C. and Goda Y. (2005) The actin cytoskeleton: integrating formand function at the synapse. Annu. Rev. Neurosci. 28, 2555.

    Domon B. and Aebersold R. (2006) Mass spectrometry and proteinanalysis. Science 312, 212217.

    Doussau F. and Augustine G. J. (2000) The actin cytoskeleton andneurotransmitter release: an overview. Biochimie 82, 353363.

    Dumont D., Noben J. P., Verhaert P., Stinissen P. and Robben J. (2006)Gel-free analysis of the human brain proteome: application ofliquid chromatography and mass spectrometry on biopsy andautopsy samples. Proteomics 6, 49674977.

    Eastwood S. L., Lyon L., George L., Andrieux A., Job D. and HarrisonP. J. (2006) Altered expression of synaptic protein mRNAs inSTOP (MAP6) mutant mice. J. Psychopharmacol. [Epub ahead ofprint].

    Edgar P. F., Douglas J. E., Knight C., Cooper G. J., Faull R. L. and KyddR. (1999) Proteome map of the human hippocampus. Hippocam-pus 9, 644650.

    Feng J., Chi P., Blanpied T. A. et al. (2002) Regulation of neurotrans-mitter release by synapsin III. J. Neurosci. 22, 43724380.

    Fountoulakis M., Schuller E., Hardmeier R., Berndt P. and Lubec G.(1999) Rat brain proteins: two-dimensional protein database andvariations in the expression level. Electrophoresis 20, 35723579.

    Garin J., Diez R., Kieffer S., Dermine J. F., Duclos S., Gagnon E.,Sadoul R., Rondeau C. and Desjardins M. (2001) The phagosomeproteome: insight into phagosome functions. J. Cell Biol. 152,165180.

    Gauss C., Kalkum M., Lowe M., Lehrach H. and Klose J. (1999)Analysis of the mouse proteome. (I) Brain proteins: separation bytwo-dimensional electrophoresis and identication by massspectrometry and genetic variation. Electrophoresis 20, 575600.

    Gerst J. E. (1999) SNAREs and SNARE regulators in membrane fusionand exocytosis. Cell. Mol. Life Sci. 55, 707734.

    Gevaert K., Goethals M., Martens L., Van Damme J., Staes A., ThomasG. R. and Vandekerckhove J. (2003) Exploring proteomes andanalyzing protein processing by mass spectrometric identicationof sorted N-terminal peptides. Nat. Biotechnol. 21, 566569.

    Gilmor M. L., Nash N. R., Roghani A., Edwards R. H., Yi H., HerschS. M. and Levey A. I. (1996) Expression of the putative vesicularacetylcholine transporter in rat brain and localization in cholinergicsynaptic vesicles. J. Neurosci. 16, 21792190.

    GrandPre T., Nakamura F., Vartanian T. and Strittmatter S. M. (2000)Identication of the Nogo inhibitor of axon regeneration as areticulon protein. Nature 403, 439444.

    Green S. A. and Kelly R. B. (1992) Low density lipoprotein receptor andcation-independent mannose 6-phosphate receptor are transportedfrom the cell surface to the Golgi apparatus at equal rates in PC12cells. J. Cell Biol. 117, 4755.

    Grifth L. C., Lu C. S. and Sun X. X. (2003) CaMKII, an enzyme on themove: regulation of temporospatial localization. Mol. Interv. 3,386403.

    Haffner C., Paolo G. D., Rosenthal J. A. and Camilli P. D. (2000) Directinteraction of the 170 kDa isoform of synaptojanin 1 with clathrinand with the clathrin adaptor AP-2. Curr. Biol. 10, 471474.

    Halpain S. and Dehmelt L. (2006) The MAP1 family of microtubule-associated proteins. Genome Biol. 7, 224.

    Hamacher M., Klose J., Rossier J., Marcus K. and Meyer H. E. (2004)Does understanding the brain need proteomics and does under-standing proteomics need brains? Second HUPO HBPPWorkshop hosted in Paris. Proteomics 4, 19321934.

    Hamacher M., Apweiler R., Arnold G. et al. (2006) HUPO BrainProteome Project: summary of the pilot phase and introduction of acomprehensive data reprocessing strategy. Proteomics 6, 48904898.

    Haney C. J., Grass G., Franke S. and Rensing C. (2005) New devel-opments in the understanding of the cation diffusion facilitatorfamily. J. Ind. Microbiol. Biotechnol. 32, 215226.

    Hart M. C., Korshunova Y. O. and Cooper J. A. (1997) Vertebrates haveconserved capping protein alpha isoforms with specic expressionpatterns. Cell Motil. Cytoskeleton 38, 120132.

    Hartinger J., Stenius K., Hogemann D. and Jahn R. (1996) 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitablefor the separation of integral membrane proteins. Anal. Biochem.240, 126133.

    Hell J. W., Maycox P. R., Stadler H. and Jahn R. (1988) Uptake ofGABA by rat brain synaptic vesicles isolated by a new procedure.EMBO J. 7, 30233029.

    Hodel A. (1998) SNAP-25. Int. J. Biochem. Cell Biol. 39, 10691073.Hodge T. and Colombini M. (1997) Regulation of metabolite ux

    through voltage-gating of VDAC channels. J. Membr. Biol. 157,271279.

    The synaptic vesicle proteome 1459

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • Holleran E. A., Ligon L. A., Tokito M., Stankewich M. C., Morrow J. S.and Holzbaur E. L. (2001a) Beta III spectrin binds to the Arp1subunit of dynactin. J. Biol. Chem. 276, 36 59836 605.

    Holleran E. A., Ligon L. A., Tokito M., Stankewich M. C., Morrow J. S.and Holzbaur E. L. (2001b) Beta III spectrin binds to the Arp1subunit of dynactin. J. Biol. Chem. 276, 36 59836 605.

    Holt M., Varoqueaux F., Wiederhold K., Takamori S., Urlaub H.,Fasshauer D. and Jahn R. (2006) Identication of SNAP-47, anovel Qbc-SNARE with ubiquitous expression. J. Biol. Chem. 281,17 07617 083.

    Holtje M., Jagow B. v., Pahner I., Lautenschlager M., Hortnagl H.,Nurnberg B., Jahn R. and Ahnert-Hilger G. (2000) The neuronalmonoamine transporter VMAT2 is regulated by the trimericGTPase Go(2). J. Neurosci. 20, 21312141.

    Honda A., Yamada M., Saisu H., Takahashi H., Mori K. J. and Abe T.(2002) Direct, Ca2+-dependent interaction between tubulin andsynaptotagmin I: a possible mechanism for attaching synapticvesicles to microtubules. J. Biol. Chem. 277, 20 23420 242.

    Hosaka M. and Sudhof T. C. (1998) Synapsins I and II are ATP-bindingproteins with differential Ca2+ regulation. J. Biol. Chem. 273,14251429.

    Howe C. L., Valletta J. S., Rusnak A. S. and Mobley W. C. (2001) NGFsignaling from clathrin-coated vesicles: evidence that signalingendosomes serve as a platform for the Ras-MAPK pathway. Neu-ron 32, 801814.

    Hsu S. C., Hazuka C. D., Roth R., Foletti D. L., Heuser J. and SchellerR. H. (1998a) Subunit composition, protein interactions, andstructures of the mammalian brain sec6/8 complex and septin l-aments. Neuron 20, 11111122.

    Hsu S.-C., Hazuka C. D., Roth R., Foletti D. L., Heuser J. and SchellerR. H. (1998b) Subunit composition, protein interactions, andstructure of the mammalian brain sec6/8 complex and septin la-ments. Neuron 20, 11111122.

    Huttner W. B., Schiebler W., Greengard P. and Camilli P. D. (1983)Synapsin I (protein I), a nerve terminal-specic phosphoprotein.III. Its association with synaptic vesicles studied in a highly puri-ed synaptic vesicle preparation. J. Cell Biol. 96, 13741388.

    Ikemoto A., Bole D. G. and Ueda T. (2003) Glycolysis and glutamateaccumulation into synaptic vesicles. J. Biol. Chem. 278, 59295940.

    Iwahashi J. and Hamada N. (2003) Human reticulon 1-A and 1-Binteract with a medium chain of the AP-2 adaptor complex. Cell.Mol. Biol. (Noisy-le-grand) 49, OL467471.

    Jang Y. S., Lee M. Y., Choi S. H., Kim M. Y., Chin H., Jeong S. W., KimI. K. and Kwon O. J. (2004) Expression of B/K protein in thehippocampus of kainate-induced rat seizure model. Brain Res. 999,203211.

    Janz R., Hofmann K. and Sudhof T. C. (1998) SVOP, an evolutionarilyconserved synaptic vesicle protein, suggests novel transport func-tions of synaptic vesicles. J. Neurosci. 18, 92699281.

    Jeng C. J., McCarroll S. A., Martin T. F., Floor E., Adams J., Krantz D.,Butz S., Edwards R. and Schweitzer E. S. (1998) Thy-1 is acomponent common to multiple populations of synaptic vesicles.J. Cell Biol. 140, 685698.

    Jiang R., Gao B., Prasad K., Greene L. E. and Eisenberg E. (2000)Hsc70 chaperones clathrin and primes it to interact with vesiclemembranes. J. Biol. Chem. 275, 84398447.

    Kashino Y. (2003) Separation methods in the analysis of protein mem-brane complexes. J. Chromatogr. B Analyt. Technol. Biomed. LifeSci. 797, 191216.

    Kirchhausen T. and Harrison S. C. (1981) Protein organization inclathrin trimers. Cell 23, 755761.

    Krapfenbauer K., Fountoulakis M. and Lubec G. (2003) A rat brainprotein expression map including cytosolic and enriched mitoch-ondrial and microsomal fractions. Electrophoresis 24, 18471870.

    Langen H., Berndt P., Roder D., Cairns N., Lubec G. and FountoulakisM. (1999) Two-dimensional map of human brain proteins. Elec-trophoresis 20, 907916.

    Lariviere R. C. and Julien J. P. (2004) Functions of intermediate lamentsin neuronal development and disease. J. Neurobiol. 58, 131148.

    Li L. and Chen L. S. (2003) The molecular machinery of synaptic vesicleexocytosis. Cell. Mol. Life Sci. 60, 942960.

    Li K., Hornshaw M. P., van Minnen J., Smalla K. H., Gundelnger E. D.and Smit A. B. (2005) Organelle proteomics of rat synaptic pro-teins: correlation-proling by isotope-coded afnity tagging inconjunction with liquid chromatography-tandem mass spectrome-try to reveal post-synaptic density specic proteins. J. ProteomeRes. 4, 725733.

    Lin R. C. and Scheller R. H. (1997) Structural organization of thesynaptic exocytosis core complex. Neuron 19, 10871094.

    Linial M., Miller K. and Scheller R. H. (1989) VAT-1: an abundantmembrane protein from Torpedo cholinergic synaptic vesicles.Neuron 2, 12651273.

    Littleton J. T. (2006) Mixing and matching during synaptic vesicleendocytosis. Neuron 51, 149151.

    Liu Q. R., Mandiyan S., Lopez-Corcuera B., Nelson H. and Nelson N.(1993) A rat brain cDNA encoding the neurotransmitter transporterwith an unusual structure. FEBS Lett. 315, 114118.

    Lu M., Holliday L. S., Zhang L., Dunn W. A. J. and Gluck S. L. (2001)Interaction between aldolase and vacuolar H+-ATPase: evidencefor direct coupling of glycolysis to the ATP-hydrolyzing protonpump. J. Biol. Chem. 276, 30 40730 413.

    Luche S., Santoni V. and Rabilloud T. (2003) Evaluation of nonionic andzwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 3, 249253.

    Macfarlane D. E. (1986) Phorbol diester-induced phosphorylation ofnuclear matrix proteins in HL60 promyelocytes. J. Biol. Chem.261, 69476953.

    Marshall M. S. (1995) Ras target proteins in eukaryotic cells. FASEB J.9, 13111318.

    Masson J., Riad M., Chaudhry F. et al. (1999) Unexpected localizationof the Na+/Cl)dependent-like orphan transporter, Rxt1, on syn-aptic vesicles in the rat central nervous system. Eur. J. Neurosci.11, 13491361.

    Maycox P. R., Link E., Reetz A., Morris S. A. and Jahn R. (1992)Clathrin-coated vesicles in nervous tissue are involved primarily insynaptic vesicle recycling. J. Cell Biol. 118, 13791388.

    McEwen J. M., Madison J. M., Dybbs M. and Kaplan J. M. (2006)Antagonistic regulation of synaptic vesicle priming by Tomosynand UNC-13. Neuron 51, 303315.

    Merrield C. J. (2004) Seeing is believing: imaging actin dynamics atsingle sites of endocytosis. Trends Cell Biol. 14, 352358.

    Mollard G. F. v., Sudhof T. C. and Jahn R. (1991) A small GTP-bindingprotein dissociates from synaptic vesicles during exocytosis.Nature 349, 7981.

    van Montfort B. A., Canas B., Duurkens R., Godovac-Zimmermann J.and Robillard G. T. (2002a) Improved in-gel approaches to generatepeptide maps of integral membrane proteins with matrix-assistedlaser desorption/ionization time-of-ight mass spectrometry.J. Mass Spectrom. 37, 322330.

    van Montfort B. A., Doeven M. K., Canas B., Veenhoff L. M., PoolmanB. and Robillard G. T. (2002b) Combined in-gel tryptic digestionand CNBr cleavage for the generation of peptide maps of anintegral membrane protein with MALDI-TOF mass spectrometry.Biochim. Biophys. Acta 1555, 111115.

    Morciano M., Burre J., Corvey C., Karas M., Zimmermann H. andVolknandt W. (2005) Immunoisolation of two synaptic vesiclepools from synaptosomes: a proteomics analysis. J. Neurochem.95, 17321745.

    1460 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors

  • Mullock B. M., Smith C. W., Ihrke G. et al. (2000) Syntaxin 7 islocalized to late endosome compartments, associates with Vamp 8,and is required for late endosomelysosome fusion. Mol. Biol. Cell11, 31373153.

    Murshid A., Srivastava A., Kumar R. and Presley J. F. (2006) Charac-terization of the localization and function of NECAP 1 in neurons.J. Neurochem. 98, 17461762.

    Nagano F., Kawabe H., Nakanishi H., Shinohara M., Deguchi-TawaradaM., Takeuchi M., Sasaki T. and Takai Y. (2002) Rabconnectin-3, anovel protein that binds both GDP/GTP exchange protein andGTPase-activating protein for Rab3 small G protein family. J. Biol.Chem. 277, 96299632.

    Navarre C., Degand H., Bennett K. L., Crawford J. S., Mortz E. andBoutry M. (2002) Subproteomics: identication of plasma mem-brane proteins from the yeast Saccharomyces cerevisiae. Proteo-mics 2, 17061714.

    Nelson N. and Harvey W. R. (1999) Vacuolar and plasma membraneproton-adenosinetriphosphatases. Physiol. Rev. 79, 361385.

    Nirenberg M. J., Liu Y., Peter D., Edwards R. H. and Pickel V. M.(1995) The vesicular monoamine transporter 2 is present in smallsynaptic vesicles and preferentially localizes to large dense corevesicles in rat solitary tract nuclei. Proc. Natl Acad. Sci. USA 92,87738777.

    OFarrell P. H. (1975) High resolution two-dimensional electrophoresisof proteins. J. Biol. Chem. 250, 40074021.

    Oertle T., Haar M. E. v. d., Bandtlow C. E. et al. (2003) Nogo-A inhibitsneurite outgrowth and cell spreading with three discrete regions.J. Neurosci. 23, 53935406.

    Ohtsuka T., Hata Y., Ide N., Yasuda T., Inoue E., Inoue T., Mizoguchi A.and Takai Y. (1999) nRap GEP: a novel neural GDP/GTPexchange protein for rap1 small G protein that interacts withsynaptic scaffolding molecule (S-SCAM). Biochem. Biophys. Res.Commun. 265, 3844.

    Ortle T. and Schwab M. E. (2003) Nogo and its paRTNers. Trends CellBiol. 13, 187194.

    Pahner I., Holtje M., Winter S. et al. (2003) Functional G-proteinheterotrimers are associated with vesicles of putative glutamatergicterminals: implications for regulation of transmitter uptake. Mol.Cell. Neurosci. 23, 398413.

    Pan P. Y., Cai Q., Lin L., Lu P. H., Duan S. and Sheng Z. H. (2005)SNAP-29-mediated modulation of synaptic transmission incultured hippocampal neurons. J. Biol. Chem. 280, 25 76925 779.

    Park Y. M., Kim J. Y., Kwon K. H. et al. (2006) Proling human brainproteome by multi-dimensional separations coupled with MS.Proteomics 6, 49784986.

    Peng X. R., Jia Z., Zhang Y., Ware J. and Trimble W. S. (2002) Theseptin CDCrel-1 is dispensable for normal development and neu-rotransmitter release. Mol. Cell. Biol. 22, 378387.

    Peters C., Bayer M. J., Buhler S., Andersen J. S., Mann M. and Mayer A.(2001) Trans-complex formation by proteolipid channels in theterminal phase of membrane fusion. Nature 409, 581588.

    Pfeffer S. R. (2001) Rab GTPases: specifying and deciphering organelleidentity and function. Trends Cell Biol. 11, 487491.

    Prokai L., Zharikova A. D. and Stevens S. M. Jr (2005) Effect of chronicmorphine exposure on the synaptic plasma-membrane subprote-ome of rats: a quantitative protein proling study based on isotope-coded afnity tags and liquid chromatography/mass spectrometry.J. Mass Spectrom. 40, 169175.

    Rabilloud T., Blisnick T., Heller M., Luche S., Aebersold R., Lunardi J.and Braun-Breton C. (1999) Analysis of membrane proteins bytwo-dimensional electrophoresis: comparison of the proteinsextracted from normal or Plasmodium falciparum-infected eryth-rocyte ghosts. Electrophoresis 20, 36033610.

    Rais I., Karas M. and Schagger H. (2004) Two-dimensional electro-phoresis for the isolation of integral membrane proteins and massspectrometric identication. Proteomics 4, 25672571.

    Raptis A., Torrejon-Escribano B., Gomez de Aranda I. and Blasi J.(2005) Distribution of synaptobrevin/VAMP 1 and 2 in rat brain.J. Chem. Neuroanat. 30, 201211.

    Rege T. A. and Hagood J. S. (2006) Thy-1 as a regulator of cell-cell andcell-matrix interactions in axon regeneration, apoptosis, adhesion,migration, cancer, and brosis. FASEB J. 20, 10451054.

    Reidegeld K. A., Muller M., Stephan C. et al. (2006) The power ofcooperative investigation: summary and comparison of the HUPOBrain Proteome Project pilot study results. Proteomics 6, 49975014.

    Righetti P. G., Castagna A., Herbert B. and Candiano G. (2005) How tobring the unseen proteome to the limelight via electrophoreticpre-fractionation techniques. Biosci. Rep. 25, 317.

    Righetti P. G., Boschetti E., Lomas L. and Citterio A. (2006) ProteinEqualizer Technology: the quest for a democratic proteome.Proteomics 6, 39803992.

    Ritter B., Philie J., Girard M., Tung E. C., Blondeau F. and McPhersonP. S. (2003) Identication of a family of endocytic proteins thatdene a new alpha-adaptin ear-binding motif. EMBO Rep. 4,10891095.

    Rossetto O., Gorza L., Schiavo G., Schiavo N., Scheller R. H. andMontecucco C. (1996) VAMP/synaptobrevin isoforms 1 and 2 arewidely and differentially expressed in nonneuronal tissues. J. CellBiol. 132, 167179.

    Rostovtseva T. and Colombini M. (1996) ATP ux is controlled by avoltage-gated channel from the mitochondrial outer membrane.J. Biol. Chem. 271, 28 00628 008.

    Royle S. J. and Lagnado L. (2003) Endocytosis at the synaptic terminal.J. Physiol. 553, 345355.

    Ryan T. A. (2006) A pre-synaptic to-do list for coupling exocytosis toendocytosis. Curr. Opin. Cell Biol. 18, 416421.

    Sakisaka T., Meerlo T., Matteson J., Plutner H. and Balch W. E. (2002)Rab-alphaGDI activity is regulated by a Hsp90 chaperone com-plex. EMBO J. 21, 61256135.

    Salazar G., Love R., Styers M. L., Werner E., Peden A., Rodriguez S.,Gearing M., Wainer B. H. and Faundez V. (2004) AP-3-dependentmechanisms control the targeting of a chloride channel (ClC-3) inneuronal and non-neuronal cells. J. Biol. Chem. 279, 25 43025 439.

    Santoni V., Molloy M. and Rabilloud T. (2000) Membrane proteins andproteomics: un amour impossible? Electrophoresis 21, 10541070.

    Schiavo G., Stenbeck G., Rothman J. E. and Sollner T. H. (1997)Binding of the synaptic vesicle v-SNARE, synaptotagmin, to theplasma membrane t-SNARE, SNAP-25, can explain docked vesi-cles at neurotoxin-treated synapses. Proc. Natl Acad. Sci. USA 94,9971001.

    Schimmoller F., Simon I. and Pfeffer S. R. (1998) Rab GTPases,directors of vesicle docking. J. Biol. Chem. 273, 22 16122 164.

    Schirle M., Heurtier M. A. and Kuster B. (2003) Proling core proteo-mes of human cell lines by one-dimensional PAGE and liquidchromatography-tandem mass spectrometry. Mol. Cell. Proteomics2, 12971305.

    Schlafer M., Volknandt W. and Zimmermann H. (1994) Putative synapticvesicle nucleotide transporter identied as glyceraldehyde-3-phosphate dehydrogenase. J. Neurochem. 63, 19241931.

    Schluter K., Jokusch B. M. and Rothkegel M. (1997) Prolins as reg-ulators of actin dynamics. Biochim. Biophys. Acta 1359, 97109.

    Schmidt K. and Nichols B. J. (2004) Functional interdependence bet-ween septin and actin cytoskeleton. BMC Cell Biol. 5, 43.

    Schrimpf S. P., Meskenaite V., Brunner E., Rutishauser D., Walther P.,Eng J., Aebersold R. and Sonderegger P. (2005) Proteomic analysis

    The synaptic vesicle proteome 1461

    2007 The AuthorsJournal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462

  • of synaptosomes using isotope-coded afnity tags and massspectrometry. Proteomics 5, 25312541.

    Seeger G., Yan L., Gartner U., Huemmeke M., Barmashenko G., Mitt-mann T., Heumann R. and Arendt T. (2004) Activation of Ras inneurons modies synaptic vesicle docking and release. Neurore-port 15, 26512654.

    Sever S., Damke H. and Schmid S. L. (2000) Dynamin: GTP controls theformation of constricted coated pits, the rate limiting step inclathrin-mediated endocytosis. J. Cell Biol. 150, 11371148.

    Sewell J. L. and Kahn R. A. (1988) Sequences of the bovine and yeastADP-ribosylation factor and comparison to other GTP-bindingproteins. Proc. Natl Acad. Sci. USA 85, 46204624.

    Shar I., Feng W. and Shoshan-Barmataz V. (1998) Voltage-dependentanion channel proteins in synaptosomes of the torpedo electricorgan: immunolocalization, purication, and characterization.J. Bioenerg. Biomembr. 30, 499510.

    Shimizu H., Kawamura S. and Ozaki K. (2003) An essential role ofrab5 in uniformity of synaptic vesicle size. J. Cell Sci. 116,35833590.

    Sikorski A. F., Terlecki G., Zagon I. S. and Goodman S. R. (1991)Synapsin I-mediated interaction of brain spectrin with synapticvesicles. J. Cell Biol. 114, 313318.

    Simonen M., Pedersen V., Weinmann O. et al. (2003) Systemic deletionof the myelin-associated outgrowth inhibitor Nogo-A improvesregenerative and plastic responses after spinal cord injury. Neuron38, 201211.

    Simpson R. J., Connolly L. M., Eddes J. S., Pereira J. J., Moritz R. L.and Reid G. E. (2000) Proteomic analysis of the human coloncarcinoma cell line (LIM 1215): development of a membraneprotein database. Electrophoresis 21, 17071732.

    Skehel P. A., Martin K. C., Kandel E. R. and Bartsch D. (1995) VAMP-binding protein from Aplysia required for neurotransmitter release.Science 269, 15801583.

    Sollner T., Bennett M. K., Whiteheart S. W., Scheller R. H. and RothmanJ. E. (1993) A protein assembly-disassembly pathway in vitro thatmay correspond to sequential steps of synaptic vesicle docking,activation, and fusion. Cell 75, 409418.

    Speese S. D., Trotta N., Rodesch C. K., Aravamudan B. and Broadie K.(2003) The ubiquitin proteasome system acutely regulates presy-naptic protein turnover and synaptic efcacy. Curr. Biol. 13, 899910.

    Spiliotis E. T. and Nelson W. J. (2006) Here come the septins: novelpolymers that coordinate intracellular functions and organization.J. Cell Sci. 119, 410.

    Spilker C., Gundelnger E. D. and Braunewell K. H. (2002) Evidencefor different functional properties of the neuronal calcium sensorproteins VILIP-1 and VILIP-3: from subcellular localization tocellular function. Biochim. Biophys. Acta 1600, 118127.

    Stasyk T. and Huber L. A. (2004) Zooming in: fractionation strategies inproteomics. Proteomics 4, 37043716.

    Steiner P., Kulangara K., Sarria J. C., Glauser L., Regazzi R. and HirlingH. (2004) Reticulon 1-C/neuroendocrine-specic protein-C inter-acts with SNARE proteins. J. Neurochem. 89, 569580.

    Stevens S. M. Jr, Zharikova A. D. and Prokai L. (2003) Proteomicanalysis of the synaptic plasma membrane fraction isolated from ratforebrain. Brain Res. Mol. Brain Res. 117, 116128.

    Su Y., Zhou A., Al-Lamki R. S. and Karet F. E. (2003) The a-subunit ofthe V-type H+-ATPase interacts with phosphofructokinase-1 inhumans. J. Biol. Chem. 278, 20 01320 018.

    Sudhof T. C. (2004) The synaptic vesicle cycle. Annu. Rev. Neurosci. 27,509547.

    Sugita S., Janz R. and Sudhof T. C. (1999) Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells. J. Biol. Chem. 274, 18 89318 901.

    Takamori S., Holt M., Stenius K. et al. (2006) Molecular anatomy of atrafcking organelle. Cell 127, 831846.

    Tang B. L., Tan A. E., Lim L. K., Lee S. S., Low D. Y. and Hong W.(1998) Syntaxin 12, a member of the syntaxin family localized tothe endosome. J. Biol. Chem. 273, 69446950.

    Tannu N. S. and Hemby S. E. (2006) Chapter 3: methods for proteomicsin neuroscience. Prog. Brain Res. 158, 4182.

    Tirian L., Hlavanda E., Olah J., Horvath I., Orosz F., Szabo B., KovacsJ., Szabad J. and Ovadi J. (2003) TPPP/p25 promotes tubulinassemblies and blocks mitotic spindle formation. Proc. Natl Acad.Sci. USA 100, 13 97613 981.

    Ullrich B., Li C., Zhang J. Z., McMahon H., Anderson R. G., GeppertM. and Sudhof T. C. (1994) Functional properties of multiplesynaptotagmins in brain. Neuron 13, 12811291.

    Velde H. J. v. d., Roebroek A. J., Senden N. H., Ramaekers E. C. andVen W. J. v. d. (1994) NSP-encoded reticulons, neuroendocrineproteins of a novel gene family associated with membranes of theendoplasmic reticulum. J. Cell Sci. 107, 24032416.

    Voeltz G. K., Prinz W. A., Shibata Y., Rist J. M. and Rapoport T. A.(2006) A class of membrane proteins shaping the tubular endo-plasmic reticulum. Cell 124, 573586.

    Wakana Y., Koyama S., Nakajima K., Hatsuzawa K., Nagahama M., TaniK., Hauri H. P., Melancon P. and Tagaya M. (2005) Reticulon 3 isinvolved in membrane trafcking between the endoplasmic reticu-lum and Golgi. Biochem. Biophys. Res. Commun. 334, 11981205.

    Wang Y., Tai G., Lu L., Johannes L., Hong W. and Luen Tang B. (2005)Trans-Golgi network syntaxin 10 functions distinctly from syn-taxins 6 and 16. Mol. Membr. Biol. 22, 313325.

    Wang H., Qian W. J., Chin M. H. et al. (2006) Characterization of themouse brain proteome using global proteomic analysis comple-mented with cysteinyl-peptide enrichment. J. Proteome Res. 5,361369.

    Wasiak S., Legendre-Guillemin V., Puertollano R. et al. (2002) Ent-hoprotin: a novel clathrin-associated protein identied throughsubcellular proteomics. J. Cell Biol. 158, 855862.

    Wendler F. and Tooze S. (2001) Syntaxin 6: the promiscuous behaviourof a SNARE protein. Trafc 2, 606611.

    Wheeler T. C., Chin L. S., Li Y., Roudabush F. L. and Li L. (2002)Regulation of synaptophysin degradation by mammalian homo-logues of seven in absentia. J. Biol. Chem. 277, 10 27310 282.

    Witzmann F. A., Arnold R. J., Bai F. et al. (2005) A proteomic survey ofrat cerebral cortical synaptosomes. Proteomics 5, 21772201.

    Wu C. C. and Yates J. R. (2003) The application of mass spectrometry tomembrane proteomics. Nat. Biotechnol. 21, 262267.

    Xue J., Tsang C. W., Gai W. P., Malladi C. S., Trimble W. S., RostasJ. A. and Robinson P. J. (2004) Septin 3 (G-septin) is a develop-mentally regulated phosphoprotein enriched in presynaptic nerveterminals. J. Neurochem. 91, 579590.

    Yang W., Burkhart W., Cavallius J., Merrick W. C. and Boss W. F.(1993) Purication and characterization of a phosphatidylinositol4-kinase activator in carrot cells. J. Biol. Chem. 268, 392398.

    Yao P. J., Petralia R. S., Bushlin I., Wang Y. and Furukawa K. (2005)Synaptic distribution of the endocytic accessory proteins AP180and CALM. J. Comp. Neurol. 481, 5869.

    Yates J. R. III, Gilchrist A., Howell K. E. and Bergeron J. J. (2005)Proteomics of organelles and large cellular structures. Nat. Rev.Mol. Cell. Biol. 6, 702714.

    Yuan A., Rao M. V., Sasaki T. et al. (2006) Alpha-internexin is struc-turally and functionally associated with the neurolament tripletproteins in the mature CNS. J. Neurosci. 26, 10 00610 019.

    Zerial M. and McBride H. (2001) Rab proteins as membrane organizers.Nat. Rev. Mol. Cell. Biol. 2, 107117.

    ZhangN., Li N. and Li L. (2004) Liquid chromatographyMALDIMS/MSfor membrane proteome analysis. J. Proteome Res. 3, 719727.

    1462 J. Burre and W. Volknandt

    Journal Compilation 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 14481462 2007 The Authors