the ritus-narozhny conjecture: history and re-summation of ... › npqed-2019 › sites...the...

32
The Ritus-Narozhny conjecture: history and re-summation of QED radiative corrections in a strong constant crossed field Physics Opportunities at a Lepton Collider in the Fully Nonperturbative QED Regime 7-9 August, 2019, SLAC National Accelerator Laboratory, Stanford, USA Alexander Fedotov 1,2) , Arseny Mironov 1) 1) Institute for Laser and Plasma Technologies, National Research Nuclear University MEPhI, Moscow, Russia 2) Laboratory for Quantum Theory of Intense Fields, National Research Tomsk State University, Tomsk, Russia

Upload: others

Post on 31-Jan-2021

10 views

Category:

Documents


0 download

TRANSCRIPT

  • The Ritus-Narozhny conjecture:

    history and re-summation of QED radiative

    corrections in a strong constant crossed field

    Physics Opportunities at a Lepton Collider in the Fully

    Nonperturbative QED Regime

    7-9 August, 2019, SLAC National Accelerator Laboratory, Stanford, USA

    Alexander Fedotov1,2), Arseny Mironov1)

    1)Institute for Laser and Plasma Technologies, National Research Nuclear University MEPhI,

    Moscow, Russia2)Laboratory for Quantum Theory of Intense Fields, National Research Tomsk State University,

    Tomsk, Russia

  • Ritus-Narozhny conjecture in a nutshell

    Ordinary QED: lloop ' ~/mc

    α =e2/4πlloopmc2

    =e2

    4π~c' 1

    137� 1, α(k2) ' α

    1− α3π log(k2

    m2

    ) � 1Strong field QED (SFQED): g =

    e2/4πcτloopmc2

    ' αχ2/3, χ� 1

    {ε,p} {ε,p}

    {ε′,p′}

    {ω = k′,k′}

    E

    E

    EE

    E

    NpQEDαχ2/3 & 1

    χ

    a0

    1 α−3/2

    1α−1/2

    LCFAa0 & 1, χ1/3

    • Ultrarelativistic particle (χ ' e~Eγm2c3

    & 1):

    c√p2‖ + e

    2E2t2 +m2c2 ≈ cp‖ +ce2E2t2

    2p‖

    • Momentum conservation: p‖ = p′‖ + k′ and

    energy mismatch: ∆ε = ε′ + k′ − ε ' e2E2t2

    • Uncertainty principle: ∆ε · t ' ~

    • Time scale: t ' ~γmc2

    χ−2/3 (. 1ω

    =⇒ LCFA),τloop = t/γ 1

  • Literature

    Original papers:

    • N. Narozhny, JETP 28, 371–374 (1969).• V. Ritus, JETP 30, 1181 (1970).• V. Ritus, Ann. Phys. 69, 555 (1972).• D. Morozov and V. Ritus, Nucl. Phys. B 86, 309 (1975).• D. Morozov and N. Narozhny, JETP 45, 23 (1977).• N. Narozhny, Phys. Rev. D 20, 1313 (1979).• N. Narozhny, Phys. Rev. D 21, 1176 (1980).• D. Morozov, N. Narozhnyj, V. Ritus, JETP 53, 1103 (1981).

    Reviews:

    • V.I. Ritus, Journ. Russian Laser Research 6, 584 (1985).• A.M. Fedotov, Journ. of Phys.: Conf. Series 826, 012027 (2017).

    Experimental proposals:

    • T.Blackburn et al, New J. Phys. 21, 053040 (2019).• V. Yakimenko et al, Phys. Rev. Lett. 122, 190404 (2019).• C. Baumann et al, Scientific Reports 9, 9407 (2019). 2

  • Historical review: Ritus (FIAN, 1970)

    ibid, p.6:

    3

  • Historical review: Ritus (FIAN, 1972)

    ibid, p.2:

    4

  • Historical review: Narozhny (Rochester, 1979-1980)

    5

  • Summary of radiative corrections in CCF: polarization operator

    Diagram Asymptotics (χ � 1) Reference1 loop

    αχ2/3 Narozhny, 1969

    2 loops

    α2χ2/3 logχ Morozov&Narozhny, 1977

    3 loops

    α3χ2/3 logχ Narozhny, 1979

    α3χ2/3 logχ Narozhny, 1979

    α3χ log2 χ Narozhny, 1980

    6

  • Summary of known radiative corrections in CCF: mass operator

    Diagram Asymptotics (χ � 1) Reference1 loop

    αχ2/3 Ritus, 1970

    2 loops

    α2χ logχ Ritus, 1972

    α2χ2/3 logχ Morozov&Ritus, 1975

    3 loops

    α3χ2/3 log2 χ Narozhny, 1979

    α3χ4/3 Narozhny, 1979

    α3χ log2 χ Narozhny, 1980

    α3χ5/3 Narozhny, 19807

  • 1-loop polarization operator in CCF

    After renormalization (Narozhny 1969; Ritus 1972):

    =(Z−1 − 1

    ) (l2gµν − lµlν

    )+

    2∑i=1

    πi(l2, χl)ε

    (i)µ (l)ε

    (i)ν (l)

    where:

    ε(1)µ (l) =eFµν l

    ν

    m3χl, ε(2)µ (l) =

    eεµνλκFλκlν

    2m3χl,

    Z−1 − 1 = 4απ

    ∫ ∞4

    dv

    v5/2√v − 4

    [f1(z)− log

    (1− 1

    v

    l2

    m2

    )]

    π1,2(l2, χl) =

    4αχ2/3l m

    2

    ∫ ∞4

    dv

    v13/6v−1+2√v − 4f

    ′(z),

    f(z) = i

    ∫ ∞0

    dσ e−izσ−iσ3/3, f1(z) =

    ∫ ∞z

    dz

    (f(z)− 1

    z

    )z =

    (v

    χl

    )2/3(1− l

    2

    vm2

    )8

  • Graphical representation and high-χ asymptotics

    Z−1−1 ' − α3π

    log(χ

    2/3l

    ), π1,2(0, χl � 1) '

    [1

    1.5

    ]·0.175(1−i

    √3)αχ

    2/3l m

    2

    100 101 102 103 104χl

    10−4

    10−2

    100

    |Reπ

    1,2(

    0,χl)|/m

    2

    |Re π1|0.18αχ

    2/3l

    |Re π2|0.26αχ

    2/3l

    0 5 10 15 20 25−2

    0

    2

    ×10−3

    100 101 102 103 104χl

    10−6

    10−5

    10−4

    10−3

    Z−

    1−

    1

    |Re (Z−1 − 1)||Im (Z−1 − 1)|

    100 101 102 103 104χl

    10−4

    10−2

    100

    |Imπ

    1,2(

    0,χl)|/m

    2

    |Im π1|0.30αχ

    2/3l

    |Im π2|0.46αχ

    2/3l

    0 5 10 15 20 25

    −2

    −1

    0×10−2

    −2 −1 0 1 2λ ×104

    −1

    0

    1

    2

    π1(λ,χl

    =10

    4 )/m

    2

    Re π1Im π1

    9

  • Dressed photon propagator Dcµν(l) (Narozhny 1969)

    = + + + . . .

    Dcµν(l) = D0(l2, χl)gµν +

    2∑i=1

    Di(l2, χl)ε

    (i)µ (l)ε

    (i)ν (l),

    where

    ε(1)µ (l) =eFµν l

    ν

    m3χl, ε(2)µ (l) =

    eεµνλκFλκlν

    2m3χl,

    D0(l2, χl) =

    −iZl2 + i0

    ,

    D1,2(l2, χl) =

    iZ2π1,2(l2 + i0) (l2 − Zπ1,2)

    =−iZl2 + i0

    − −iZl2 − Zπ1,2

    • The only effect of Z(l2, χl) is passing to a running coupling α 7→α(l2, χl) = Z(l

    2, χl)α (in what follows we always assume Z ≈ 1)• Effective photon mass m21,2 = Zπ1,2(l2, χl)

    10

  • Similarity to the case of strong B-field

    Let B � Bc = m2/e, then momentum of virtual e− on LLL:

    p⊥ ∼√eB � m

    Since motion on LLL is transverse to the field:

    χ(eff)B ∼

    B

    Bc

    p⊥m∼ eBm2

    √eB

    m=

    (eB

    m2

    )3/2Hence

    α(χ

    (eff)B

    )2/3m2 ' αeB

    C.f. [e.g. A. E. Shabad, Tr. Fiz. Inst. Akad. Nauk SSSR 192, 5 (1988)]:

    π(2)B (k

    2 � eB) = 2απeB︸ ︷︷ ︸

    from LLL

    3πk2 log

    (eB

    m2

    )︸ ︷︷ ︸

    from HLLs

    Nice though not precisely the same (not CCF!). Hopefully more info

    about this case in the talk by Igor Shovkovy!

    11

  • Goal of this work

    l

    qp p′ = Γν Γµ

    l

    qp p′

    In the Ritus Ep-representation [(i/∂ + e /A−m)Ep(x) = 0]:

    −iM(p′, p) = (−ie)2∫

    d4l

    (2π)4d4q

    (2π)4Γµ(l; p′, q)

    i(q̂ +m)

    q2 −m2 + i0Γν(−l; q, p)Dcµν(l)

    • Dressed vertex:Γµ(l; p, q) =

    ∫d4xe−ilxEp(x)γ

    µEq(x),

    • Scattering amplitude [ūp′,sM(p′, p)|p2=m2up,s = (2π)4δ(4)(p−p′)M(χ)]:

    M(χ) = M0(χ) + δM(χ), δM=

    2∑i=1

    δMi

    • Residual renormalization: M 7→M(ren) = M−M|F=012

  • Part M0(χ)↔ D0 (c.f. Eq. (23) in Ritus, 1972)

    M0(χ) =αm4

    (2π)2

    ∫ +∞−∞

    du

    (1 + u)2

    ∫ +∞−∞

    ∫ +∞−∞

    µ+ i0D0(m

    2λ, χl)

    ×{

    (2 + λ) Ai1(t) + 2u2 + 2u+ 2

    1 + u

    (χu

    )2/3Ai′(t)

    }• Notations: λ = l2/m2, µ = (q2 −m2)/m2, u = χl/χq• Divergent, renormalization:

    Ai1(t) 7→ Ai(ren)1 (t) = −i∫ ∞−∞

    2πσe−itσ

    (e−iσ

    3/3−1)

    • M(ren)0 (χ� 1) ' 0.843(1− i√

    3)αχ2/3m2 [Eq. (72) in Ritus, 1072]:

    100 101 102 103 104χ

    10−4

    10−2

    100

    M0/m

    2

    |ReM0|0.84αχ2/3

    |ImM0|1.46αχ2/3

    0 5 10 15 20 25−0.1

    0.0

    0.1

    13

  • Part δM(χ)↔ D1,2

    δM1,2(χ) = −αm4

    (2π)2

    ∫ +∞−∞

    du

    (1 + u)2

    ∫ +∞−∞

    ∫ +∞−∞

    µ+ i0D1,2(m

    2λ, χl)

    ×{[

    1 + λu2 + 2u+ 2

    2u2

    ]Ai1(t) +

    (u2 + 2u+ 2

    1 + u± 1)(χ

    u

    )2/3Ai′(t)

    }Finite, no renormalization needed!

    14

  • Part δM(χ)↔ D1,2

    δM1,2(χ) = −αm4

    (2π)2

    ∫ +∞−∞

    du

    (1 + u)2

    ∫ +∞−∞

    ∫ +∞−∞

    µ+ i0D1,2(m

    2λ, χl)

    ×{[

    1 + λu2 + 2u+ 2

    2u2

    ]Ai1(t) +

    (u2 + 2u+ 2

    1 + u± 1)(χ

    u

    )2/3Ai′(t)

    }Finite, no renormalization needed! C.f. Eq.(42) in Narozhny, 1980:

    1 we omit them too

    2 T (χ) = −M(χ)/(2p0)3 extra factor (typo)

    4 opposite metrics conventions

    5 actually vanish (see below)

    6 Φ(t) = πAi (t)

    7 we do not use such perturbative expansion!14

  • Next step: integration over µ and λ

    δM1,2(χ) = −iαm2

    (2π)2

    +∞∫−∞

    du

    (1 + u)2

    +∞∫−∞

    dλπ1,2/m2

    (λ+ i0) (λ− π1,2/m2)

    +∞∫−∞

    µ+ i0

    ×{[

    1 + λu2 + 2u+ 2

    2u2

    ]Ai1(t) +

    (u2 + 2u+ 2

    1 + u± 1)(χ

    u

    )2/3Ai′(t)

    }t =

    (u

    χ

    )2/3(1 +

    1 + u

    u2λ+

    1 + u

    ), χl =

    χu

    1 + u,

    Ai1(t) = −i∫ ∞−∞

    1

    (σ − i0)e−iσ3/3−itσ, Ai′(t) = −i

    ∫ ∞−∞

    2πσe−iσ

    3/3−itσ

    Master integral over µ:∫ +∞−∞

    dµe−iµz

    µ+ i0= −2πiθ(z)

    [if z is complex then θ(z) 7→ θ (Re(z))]. Note that∫ +∞−∞

    dµµ e−iµz

    µ+ i0= 2πδ(z) ∝ δ(σ)

    can be neglected (hence we drop such terms). 15

  • Continuation: integration over λ

    Integration over λ is more tricky. We have:

    π(λ) =

    ∫ ∞0

    dξ π̃(ξ) eiξλ, ξeff ' χ−2/3l

    Consider the master integral:

    J1(z) =

    ∫ +∞−∞

    dλπ(λ)e−iλz

    λ− π(λ) =∫ +∞−∞

    dλ e−iλz∞∑n=0

    (π(λ)

    λ+ i0

    )n+1

    =

    ∞∑n=0

    (n+1∏a=1

    ∫ ∞0

    dξaπ̃(ξa)

    )∫ +∞−∞

    (λ+ i0)n+1exp

    [i

    (n+1∑a=1

    ξa − z)λ

    ]

    = −2πi∞∑n=0

    (−i)nn!

    (n+1∏a=1

    ∫ ∞0

    dξaπ̃(ξa)

    )(z −

    n+1∑a=1

    ξa

    )nθ

    (z −

    n+1∑a=1

    ξa

    )Note that neff ∼ z, hencen+1∑a=1

    ξa ∼ neff · ξeff 'z

    χ2/3l

    � z =⇒ J1(z) ≈ −2πi θ(z − ξeff)π(0)e−iπ(0)z

    16

  • Validation of the idea by numerical calculation

    Resulting approximation:

    J1(z) =

    +∞∫−∞

    dλπ(λ, χl)e

    −iλz

    λ− π(λ, χl)≈

    − 2πi θ(z − χ−2/3l

    )π(0, χl)e

    −iπ(0,χl)z

    Similarly:

    J2(z) =

    +∞∫−∞

    λ+ i0

    π(λ, χl)e−iλz

    λ− π(λ, χl)≈

    − 2πi θ(z − χ−2/3l

    )(e−iπ(0,χl)z − 1

    ) 100 101 102 103zχ

    2/3l

    10−3

    10−2

    |J1(z)|/χ

    2/3

    l

    Exact Approx.

    −1 0 1 2 3 40

    1

    2×10−2

    PQED regime:

    σeff ' 1, ueff ' 1, χl ∼ χ =⇒ zeff '(u

    χ

    )2/31 + u

    u2σ ∼ χ−2/3l

    NPQED regime: zeff ∼1

    π(0, χl)' 1αχ

    2/3l

    � χ−2/3l17

  • Overlap of occurred θ-functions

    Re u2/3 (1+u)σu

    > 0

    Re1+u

    3 σu2/3

    > 1

    -6 -4 -2 0 2 4 6

    -6

    -4

    -2

    0

    2

    4

    6

    u

    σ

    Overlap: u > 0, σ > σ0(u) =

    (u2

    1 + u

    )1/318

  • Midway result and plan for further steps

    δM(χ) =

    2∑i=1

    δMi(χ), πi(0, χl) = αm2Πi(χl), Πi(χl � 1) = Kiχ2/3l

    δM1,2(χ) =αm2

    ∫ ∞0

    du

    (1 + u)2

    ∫ ∞σ0(u)

    dσ e−iσ3/3−iσ(u/χ)2/3

    ×{[

    1

    σ+ σ

    (χu

    )2/3(u2 + 2u+ 21 + u

    ± 1)](

    e−igσϕ1,2(u) − 1)

    +g

    (χu

    )2/3 2 + 2u+ u21 + u

    ϕ1,2(u)e−igσϕ1,2(u)

    },

    where ϕi(u) =(1 + u)Πi(χl)

    (χu)4/3, χl =

    χu

    1 + uand g = αχ2/3.

    • For u� 1 we have χl ≈ uχ; if also χl � 1 then ϕi(u) ≈ Ki/χ2/3l .

    • Let us split: δMi = δM(I)i + δM(II)i + δM

    (III)i according to different

    effective ranges of u and σ

    • It is convenient to swap integration order:∫du dσ 7→

    ∫dσ du in

    δM(I,II)i

    19

  • Calculation of δM(I)i

    Here σeff ' 1 and ueff ' 1, hence χl ∼ χ� 1 and gσϕi(u) ∼ αKi � 1.

    δM(I)i =

    αm2

    ∫ ∞0

    σe−iσ

    3/3

    ∫ σ3/20

    du

    (1 + u)2

    (e−igσϕi(u) − 1

    )≈ −iα

    2χ2/3m2

    ∫ ∞0

    dσ e−iσ3/3

    ∫ σ3/20

    duϕi(u)

    (1 + u)2= −C1Kiα2m2,

    C1 =i

    ∫ ∞0

    dσ e−iσ3/3

    ∫ σ3/20

    du

    u2/3(1 + u)5/3= 0.242 + 0.310i

    δM(I) =

    2∑i=1

    δM(I)i = (−0.341 + 0.0478i)α2m2 = O

    (α2)

    This correction is subleading (actually perturbative) and can be neglected

    20

  • Calculation of δM(II)i

    Here σeff ' 1, ueff ' α3/2 � 1 (hence the upper limit in the integral overu can be set to infinity) and χl ≈ uχ ' g3/2 � 1.Thus zeff '

    (uχ

    )2/31+uu2 σ ' (αg)−1 � χ

    −2/3l ∼ g−1.

    δM(II)1,2 ≈

    (2± 1)αχ2/3m22π

    ∫ ∞0

    dσ σe−iσ3/3

    ∫ ∞0

    du

    u2/3

    (e−iασK1,2/u

    2/3 − 1)

    = −e−iπ6 (2± 1) · 356

    2√π

    Γ

    (5

    6

    )√K1,2 α

    3/2χ2/3m2

    where we used ∫ ∞0

    du

    u2/3

    (e−iζ/u

    2/3 − 1)

    = −3√iπζ,∫ ∞

    0

    dσ σ3/2e−iσ3/3 = e−

    5iπ12 3−

    16 Γ

    (5

    6

    )

    δM(II) =

    2∑i=1

    δM(II)i = (−0.995 + 1.72i)α3/2χ2/3m2

    21

  • Calculation of δM(III)i

    Here σeff ' 1/g � 1, (χl)eff ' 1 and ueff ' 1/χ� 1.Thus zeff '

    (uχ

    )2/31+uu2 σ ' α−1 � χ

    −2/3l ∼ 1.

    Using abbreviations πi(0, χl) = αm2Πi(χl) and E1(ζ) =

    ∫∞1dt e−ζt/t we

    have:

    δM(III)i =

    α2m2χ

    ∫ ∞0

    dχlχ2l

    Πi(χl)

    ∫ ∞(χlχ )

    2/3

    σe−igσΠi(χl)/χ

    4/3l = C2,iα

    2χm2,

    C2,i =1

    ∫ ∞0

    dχlχ2l

    Πi(χl) E1

    (iαΠi(χl)/χ

    2/3l

    )=

    {−0.0395− 0.472i−0.0634− 0.703i

    δM(III) =

    2∑i=1

    δM(III)i = −(0.103 + 1.18i)α2χm2

    22

  • Justification by numerical calculation

    10−3

    10−1

    101

    |δM(I

    I)|/m

    2

    |Re δM(II)||Im δM(II)|0.995 · α3/2χ2/31.72 · α3/2χ2/3

    103 104 105 106 107 108χ

    10−1

    101

    103

    |δM(I

    II) |/m

    2

    |Re δM(III)||Im δM(III)|0.103 · α2χ1.18 · α2χ

    23

  • Calculation of δM: Summary

    Mass radiative correction: M(χ) = M(ren)0 +δM, δM≈ δM(II)+δM(III)

    Lowest-order PQED

    correction M(ren)0

    0.843(1− i√

    3)αχ2/3m2

    NPQED correction

    due to photon

    emission δM(II)(−0.995 + 1.72i)α3/2χ2/3m2

    NPQED correction

    due to trident pair

    production∗ δM(III)−(0.103 + 1.18i)α2χm2

    ∗ Cf. 2-loop PQED result [Eq.(76) in Ritus 1972]:

    δM(2−loop) = −[0.208 + (0.133 lnχ− 0.725)i]α2χm2

    24

  • More on physical meaning of δM (II)

    C.f. ’nutshell’ picture on slide 1:

    • Ultrarelativistic electron in a strong transverse field: ε ≈ p‖ + e2E2t2

    2p‖• Momentum conservation: p‖ = p′‖ + k′• Energy mismatch for massless photon (notation: u = k′‖/p′‖):

    ∆ε(0) ≈ ε′ + ω − ε = e2E2t2

    2p′‖− e

    2E2t2

    2p‖=e2E2t2k′‖

    2p‖p′‖=e2E2t2u

    2mγ

    • Energy due to photon mass m2eff ' αχ2/3l m

    2 [χl ' uχ1+u , k′‖ =p‖u1+u ]:

    ∆ε(ph) ≈ m2eff

    2k′‖' αχ

    2/3m2

    2mγ

    (1 + u

    u

    )1/3• ∆ε = ∆ε(0) + ∆ε(ph) = min (assuming u� 1):

    u '(αχ2/3m2

    e2E2t2

    )3/4, ∆ε '

    √eEtm

    γ

    (αχ2/3

    )3/425

  • • Uncertainty principle ∆ε · t ' 1 (recall χ ' eEγm2 ):

    t ' γmχ2/3

    √α, u ' α3/2 � 1

    Modification due to photon effective mass!

    • Proper time loop scale τloop = t/γ and

    e2/4πτloopm

    ' α3/2χ2/3

    • Alternatively (z = (u/χ)2/3 � 1):

    dW(CCF)rad (u)

    du= − αm

    γ(1 + u)2

    {Ai1(z) +

    2

    z

    [1 +

    u2

    2(1 + u)

    ]Ai′(z)

    },∫ α3/2

    0

    dW(CCF)rad (u)

    dudu ' αχ

    2/3m

    γ

    ∫ α3/20

    du

    u2/3' α

    3/2χ2/3m

    γ

    26

  • χ-dependence

    0

    2000

    4000

    6000

    Re

    (M)/m

    2

    M0 + δM(II) M0 + δM(II) + δM(III) M0

    0.0 0.2 0.4 0.6 0.8 1.0

    χ ×109

    0

    20000

    40000

    60000

    −Im

    (M)/m

    2

    1200 1350 15000.7

    0.8

    1200 1350 15001.2

    1.3

    1.4

    27

  • Conclusion

    • NOVELTY: first truly NPQED calculation (re-summed bubble-typecorrections to on-shell mass operator).

    • TECHNICAL INNOVATIONS:• correct account for renormalization in NPQED expression;• reasonable approximation for an integral over photon virtuality λ in

    NPQED regime;

    • identification of terms differently localized in the integration region +hint for their physical interpretation.

    • OBSERVATIONS:• g = αχ2/3 ' 1: effect is small (reduction by . 3% w.r.t. 1-loop)• g = αχ2/3 � 1:

    • electron mass essentially reduces (may even vanish at χ ' 109);• trident pair production dominates over photon emission.

    28

  • Prospects for further studies

    • further justification by direct numerical evaluation of∫du dλ [

    ∫dσ];

    • detailed study of lowest-order correction to add into PIC-QED codes;• diagrams with higher multiplicity in virtual channel

    are of great potential interest!

    • vertex issue [Morozov et al, 1981 vs Gusynin, Miransky, and Shovkovy,PRL 83, 1291 (1999)]:

    = O(αχ2/3

    )or O(1)?

    29

  • Questions?

    29