the radio afterglow produced by the giant flare from the magnetar sgr 1806-20 greg taylor...

41
The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 QuickTime™ and a TIFF (Uncompressed) decomp are needed to see this p QuickTime™ and a TIFF (Uncompressed) decompre are needed to see this pic Greg Taylor (NRAO/KIPAC) with: with: J. Granot, B. M. Gaensler, C. Kouveliotou, J. Granot, B. M. Gaensler, C. Kouveliotou, J. D. Gelfand J. D. Gelfand, D. Eichler, E. Ramirez-Ruiz, R. A. M. J. Wijers, Y. E. D. Eichler, E. Ramirez-Ruiz, R. A. M. J. Wijers, Y. E. Lyubarsky, R. W. Hunstead, Lyubarsky, R. W. Hunstead, D . . Campbell-Wilson, A. J. van der Host, M. A. McLaughlin, R. P. Fender, M. A. Campbell-Wilson, A. J. van der Host, M. A. McLaughlin, R. P. Fender, M. A. Garrett, K. J. Newton-McGee, Garrett, K. J. Newton-McGee, D. M. Palmer, N. Gehrels, D. M. Palmer, N. Gehrels, UCSC/SCIPP - 4/26/2005

Upload: skylar-kimbel

Post on 15-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Greg Taylor (NRAO/KIPAC)

with: with: J. Granot, B. M. Gaensler, C. Kouveliotou, J. D. GelfandJ. Granot, B. M. Gaensler, C. Kouveliotou, J. D. Gelfand ,, D. Eichler, E. Ramirez-Ruiz, R. A. M. J. Wijers, Y. E. Lyubarsky, R. W. Hunstead,D. Eichler, E. Ramirez-Ruiz, R. A. M. J. Wijers, Y. E. Lyubarsky, R. W. Hunstead,

DD. . Campbell-Wilson, A. J. van der Host, M. A. McLaughlin, R. P. Fender, M. A. Garrett, K. J. Newton-McGee, Campbell-Wilson, A. J. van der Host, M. A. McLaughlin, R. P. Fender, M. A. Garrett, K. J. Newton-McGee, D. M. Palmer, N. Gehrels,D. M. Palmer, N. Gehrels,

UCSC/SCIPP - 4/26/2005

Page 2: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

OutlineOutline

• The Mystery of Gamma Ray Bursts (GRBs)

• Short overview of soft gamma repeaters (SGRs)

• The 2004 Dec. 27 Giant Flare from SGR 1806-20

• The Radio Afterglow produced by the giant flare

(astro-ph/0504363)

• A dynamical model for the radio observations

• Implications for short gamma-ray bursts

Page 3: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Vela satellite

An early gamma ray-burst

Page 4: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

A Gamma Ray Burst Sampler

Page 5: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,
Page 6: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Bursts of all sorts

(Woods & Thompson

2004)

Page 7: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Radio Light Curves from long GRBs

Page 8: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

GRB 970508

• First VLBI detection of a GRB Afterglow • absolute position to < 1 mas• Size < 10**19 cm• Distance > 3 kpc

Page 9: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

R ~ (E/n)**1/8

Relativistic Expansion v ~ 0.96c

E ~ 10**53 ergs (isotropic equivalent)

astro-ph/0412483

Page 10: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Long GRBs clearly connected to Supernovae

Hjorth et al 2003

Page 11: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

SGR Light Curves & Durations:

(Woods & Thompson 2004)

t ~ 0.2 s

Page 12: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

From Pulsed quiescent X-ray emission:

Woods & Thompson 2004

Page 13: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

The Magnetar Model for SGRs

• Lquiescent ~ a few 1035 erg/s

• The energy release in a single giant flare is of the order of the total rotational energy ~1044.5

erg

• another energy source is required• Main competing model for the energy source:

accretion - does not work well (no binary companion or quiescent IR emission)

• The measurement of the period and its time derivative was considered a confirmation of the magnetar model: B ~ 1015 G ~ 1048

erg

Page 14: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Adapted from Duncan and Thompson1992

Page 15: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Giant Flares from SGRs

• Initial spike: t ~ 0.3 s , Eiso ~ a few1044 erg– hard spectrum

– ~ ms rise time

• Pulsating tail– Lasts a few min.

– Modulated at the

NS rotation period

– Softer spectrum

• Only 2 previous events ever recorded: in 1979 (SGR 0526-66 in LMC) & 1998 (SGR 1900-14)

The 1998 August 27 giant flare from SGR

1900+14

Page 16: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

SGR 1806-20on 2004 Dec 27

Page 17: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Rise time: < 1 ms, te-folding ~ 0.3 ms

The rise is resolved for

the first time

Swift

(Palmer et al. 2005)

Page 18: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Sudden Ionospheric Disturbance (SID)Sudden Ionospheric Disturbance (SID)

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Cambell et al. 2005Washington, USA to Alberta, CA

Page 19: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

The 2004 Dec. 27 Giant Flare

RHESSI

Swift

• was ~ 5o from the sun

• It’s distance ≈ 15 kpc

• Eiso ~ (2-9)1046 erg

• Eiso,spike / Eiso,tail ~ 300

(Palmer et al. 2005)

(Hurley et al.2005)

Page 20: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

If the source emission is unchanging, there is no need to collect all of the incoming rays at one time.

One could imagine sequentially combining pairs of signals. If we breakthe aperture into N sub-apertures, there will be N(N1)/2 pairs to combine.

This approach is the basis of aperture synthesis.

Aperture Synthesis – Basic Concept

Page 21: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

The VLA27 antennas each 25 m in diameter

Synthesised aperature after 45 minutes.

Page 22: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Raphaeli 2001

B ~ 0.3 G

Page 23: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Source Size, Shape & Polarization:

From Gaensler et al. 2005 (accepted to Nature)

Page 24: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

From Cameron et al. 2005

Radio Afterglow has a Steep Spectrum ~ -0.6 at t+7 days down to 220 MHz

Flux > 1 Jy at early times and low frequencies.

Page 25: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

400 km

1 “LWA Station” = 256 antennas Full LWA: 50 stations spread across NM

100 m

State of N

ew M

exicoSpecial Advertising Supplement: The Long Wavelength Array

Y

VLA

Exploring the Transient Universe from 20 - 80 MHz

Page 26: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Growth of the Radio Afterglow VLA8.5 GHz

Size att+7 days1016 cm

Velocity tot + 30 days~ 0.8 c

Decrease in vexp

Page 27: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Proper motion of the Flux Centroid:

VLA 8.5 GHz

Page 28: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Image Evolution

VLA8.5 GHz

Page 29: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Theoretical Interpretation:Theoretical Interpretation:• The supersonic motion of the SGR in the ISM

creates a bow shock & a thin shell of shocked

wind and shocked ISM, surrounding a cavity

Simulation

(Bucciantini 2002)

Observations (Gaensler et al. 2003)

Page 30: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

• The outflowing material that was ejected from

the magnetar during the giant flare collides with

the bow shock shell and “lights up”

• The merged shocked shell continues to coast

outward & the shock accelerated electrons cool

adiabatically: reproduces the observed fast

decay and constant expansion velocity ~ 0.3c

• A shock is driven into the ISM that eventually

slows down the shell causing a bump in the

light curve which naturally peaks at the time tdec

when significant deceleration occurs

Page 31: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Log

(R)

Log(t)

tcol~ 5 days tdec~ 33 days

R t0.4

R t

What wemissed

Page 32: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,
Page 33: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,
Page 34: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

The observed Linear Polarization:VLA8.5 GHz

Page 35: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Image Evolution

VLA8.5 GHz

Observed Polarization Angle

Page 36: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Polarization of Synchrotron EmissionPolarization of Synchrotron Emission

• linear polarization perpendicular to the projection of B on the plane of the sky

B

e

Plane of the sky

Projection of the magneticfield on plane of the sky

The direction of the polarization

kB

P

Cone of Cone of angleangle 1/ 1/ee

Page 37: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

P = 0P = 0

P = PP = Pmaxmax

Shock Produced Magnetic Field:• A magnetic field that is produced at a relativistic collisionless shock, due to

the two-stream instability, is expected to be tangled within the plane of the shock (Medvedev & Loeb 1999)

Magnetic field tangled within a (shock) plane

Photon emitted normal to plane

nnph ph == nnshsh

Photon emitted along the plane

nnph ph nnshsh

P = PP = Pmaxmaxsinsin22/(1+cos/(1+cos22))(Laing 1980)P

P

Page 38: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Elongated emission region gives rise to net polarization

Net Pol.

Page 39: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Energetics from R(tdec) & tdec:

• M ~ (4/3)R3 ~ 1026 (nISM / 1 cm-3) gr

• E ~ Mv2 ~ 1046 (nISM / 1 cm-3) erg

Page 40: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Implications for Short GRBs• BATSE detection rate ~ 150 yr-1

• Rate of Giant Flares in our galaxy ~ 0.03 yr-1

• Giant Flares can be detected to 40 Mpc

• Assume SGRs proportional to star formation

• Local (z=0) SFR ~ 0.013 Msun yr-1 Mpc-3

• Milky Way SFR ~ 1.3 Msun yr-1

• Expected Giant Flares within 40 Mpc ~ 80 yr-1

• But where is Virgo concentration?

Page 41: The Radio Afterglow produced by the Giant Flare from the Magnetar SGR 1806-20 Greg Taylor (NRAO/KIPAC) with: J. Granot, B. M. Gaensler, C. Kouveliotou,

Conclusions:• The radio afterglow of the SGR 1806-20

giant flare is a unique opportunity to study a nearby relativistic outflow.

• Giant flares from extragalactic SGRs might explain short duration GRBs.

• After 35 years we have a fair start on understanding the origin of GRBs.

• Low frequency observations of the transient universe could dramatically improve our understanding and may open up entirely new puzzles.