the radial velocity equation almostfinal

34
a detailed derivation of The Radial Velocity Equation Kelsey I. Clubb ABSTRACT Of the over 300 extrasolar planets discovered to date, the vast majority have been found using the RADIAL VELOCITY METHOD (also known as DOPPLER SPECTROSCOPY or the DOPPLER METHOD). The purpose of this paper is to derive the theoretical equation that is associated with the variation over time of a star’s velocity along an observer’s line‐of‐sight – a quantity that can be precisely measured with an optical telescope – from first principles. In other words, we will begin with the seemingly simple situation of a planet orbiting a star (often referred to as the “parent star” or, the term that will be used throughout this paper, the “host star”) and then start applying basic principles of physics and utilize mathematical tools in order to analyze and describe the star‐planet system. The end result will be a complete and detailed derivation of the RADIAL VELOCITY EQUATION.

Upload: others

Post on 04-Oct-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Radial Velocity Equation almostfinal

a detailed derivation of

The Radial Velocity Equation

Kelsey I. Clubb

ABSTRACT

Of the over 300 extrasolar planets discovered to date, the vast majority have been

foundusing theRADIALVELOCITYMETHOD (alsoknownasDOPPLERSPECTROSCOPYor the DOPPLER METHOD). The purpose of this paper is to derive the theoreticalequation that is associated with the variation over time of a star’s velocity along an

observer’s line‐of‐sight – a quantity that can be precisely measured with an opticaltelescope–fromfirstprinciples.Inotherwords,wewillbeginwiththeseeminglysimplesituationofaplanetorbitingastar(oftenreferredtoasthe“parentstar”or,theterm

thatwillbeused throughout thispaper, the“hoststar”)and thenstartapplyingbasicprinciplesofphysicsandutilizemathematicaltoolsinordertoanalyzeanddescribethestar‐planet system. The end result will be a complete and detailed derivation of the

RADIALVELOCITYEQUATION.

Page 2: The Radial Velocity Equation almostfinal

2 THERADIALVELOCITYEQUATION

PREFACE “The most incomprehensible thing about the universe is that it is comprehensible”

– Albert Einstein Thediscoveryofextrasolarplanetshasprofoundimplicationsnotonlyforthescientiststhatfindthem,butfortheentirepopulationofEarth.Forthisreason,Ihaveattemptedtomakethisderivationaccessibletothelayperson;however,someknowledgeofadvancedmathematics,physics,andastronomyisneededinordertocompletelyfolloweverystep.Iwouldliketothankmyadviser,DebraFischer,forsuggestingthisderivationasoneofmyfirstintroductionstoextrasolarplanetresearch.Theentireprocesshashelpedmeimmenselytonotonlyunderstandthedelicateintricaciesoftheradialvelocitymethod,butalsotobeabletoseethebiggerpictureofhowresearchmakesuseofallthephysics,astronomy,andmathI’velearned.Thankyou!AsmuchasIwouldlikethisderivationtobewithouterror,nothinginlifeisperfect.Withthatsaid,ifyouhappentocomeacrossanerror,typo,oranythingelsethatneedscorrectionI’dbehappytobenotified.Youcane‐[email protected],comments,orsuggestions.

Kelsey I. Clubb

Department of Physics & Astronomy San Francisco State University San Francisco, CA USA

August 2008

Page 3: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 3

TableofContents

TheOrbitsofaPlanetanditsHostStar ....................................................... 4

AnalyzingTheStar‐PlanetSystem ............................................................... 6

TheCenterofMassFrameofReference...................................................... 7

TheLawsofIsaacNewton........................................................................... 8

TheLawsofJohannesKepler .................................................................... 10

AngularMomentum ................................................................................. 14

TheEquationofanEllipse ......................................................................... 15

PropertiesofanEllipse ............................................................................. 18

DefinitionsofOrbitalParameters.............................................................. 20

RadialVelocity .......................................................................................... 22

RadialVelocitySemi‐Amplitude ................................................................ 25

AppendixA:Proofthatδ = 0..................................................................... 29AppendixB:TheExpressionforz.............................................................. 33ReferenceforCalculatingRVSemi‐Amplitude........................................... 34

Page 4: The Radial Velocity Equation almostfinal

4 THERADIALVELOCITYEQUATION

THE ORBITS OF A PLANET AND ITS HOST STAR

Webeginourderivationwiththesimplesituationofaplanetorbitingitshoststar(showninFigure1).Inactuality,boththestarandplanetorbittheirmutualcenterofmass(henceforthabbreviatedCM),butbecausethestarismuchmoremassivethantheplanet,theCMofthestar‐planetsystemismuchclosertothestar.Infact,theCMisonlyslightlydisplacedfromthecenterofthestar.Nowweneedtosetupacoordinatesystem(showninFigure2)andreviewsomebasicsofvectors.

(a)

(b)

NOTTOSCALE

NOTTOSCALE

Figure1–Aplanetorbitingitshoststar.

Thedashedlinerepresentsthepathoftheplanet’sorbit.

(a)Topviewofthestar‐planetsystem.(b)Sideviewofthestar‐planetsystem.

Page 5: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 5

SomeBasicsofVectors

• Vectorquantities(or“VECTORS”)havebothmagnitudeanddirection,unlikescalarquantities(or“SCALARS”)whichhaveonlymagnitude

• Vectorquantitiesareusuallydenotedbyplacinganarrowabovethesymbolrepresentingthevector(e.g.

F )and/orplacingthesymbolinboldface(e.g.F)

• TheMAGNITUDEOFAVECTORisascalarequaltothelengthofthevector(whichisalwaysapositivenumber)

• Themagnitude(orlength)ofavectorisusuallydenotedbyplacingbarsaroundthevector(e.g.

F )orjustthesymbolrepresentingthevectorinnormalfont(e.g.F)

• AUNITVECTORisavectorwhosemagnitudeisequalto1

• TheDIRECTIONOFAVECTORtellsyouwhichwaythevectorpoints

• Thedirectionofavectorisusuallydenotedbyplacingahatabovethesymbolrepresentingthevector(e.g.

ˆ F )

• TheNEGATIVEOFAVECTORisanothervectorthathasthesamemagnitudeastheoriginalvector,butpointsintheoppositedirection(e.g.if

F isavectorwitha

magnitudeequaltoFandadirectionpointingtotheright,then

− F isavectorwitha

magnitudeequaltoFandadirectionpointingtotheleft)

Figure2–Thecoordinatesystemwewillutilizewhenanalyzingthestar‐planetsystem.

(NotethatthelocationoftheCMinthisfigureisexaggeratedinordertomoreeasilyillustratethevectorsthatdependonit)

NOTTOSCALE

distance between the star and planet

r

êr

r1

r2

CM

Page 6: The Radial Velocity Equation almostfinal

6 THERADIALVELOCITYEQUATION

ANALYZING THE STAR-PLANET SYSTEM

UsingFigure2andwhatweknowaboutvectors,wecandefinethefollowing:

ˆ e r ≡unitvectoralongthelineconnectingthestarandplanetthatpointstotheright

r ≡ vectorpointingfromstartoplanet(right)

r 1 ≡vectorpointingfromCMtostar(left)

r 2 ≡ vectorpointingfromCMtoplanet(right)

r ≡ magnitudeof

r =distancebetweenthestarandplanet

r1 ≡magnitudeof

r 1 =distancebetweentheCMandstar

r2 ≡ magnitudeof

r 2 =distancebetweentheCMandplanet

ˆ r ≡directionof

r =

+ ˆ e r

ˆ r 1 ≡directionof

r 1 =

− ˆ e r

ˆ r 2 ≡ directionof

r 2 =

+ ˆ e r Usingthedefinitionsaboveandthefactthatavectorhasbothamagnitudeandadirection,wefind:

r ≡ r ˆ r = r (+ ˆ e r) r 1 ≡ r1 ˆ r 1 = r1 (− ˆ e r ) r 2 ≡ r2 ˆ r 2 = r2 (+ ˆ e r)

Thus,

r = r ˆ e r r 1 = −r1 ˆ e r r 2 = r2 ˆ e r

(Eq1)

UsingFigure2andEq1,wecansee:

r = − r 1 + r 2

= − −r1 ˆ e r( ) + r2 ˆ e r( )= r1 ˆ e r + r2 ˆ e r= r1 + r2( ) ˆ e r

Therefore,themagnitude(orlength)of

r is

r = r1 + r2 and:

r = r 2 − r 1 (Eq2)

Page 7: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 7

THE CENTER OF MASS FRAME OF REFERENCE

Thegeneraltwo‐bodyequationforthecenterofmassis:

R = m1

r 1 + m2 r 2

m1 + m2

wherem1≡massofthefirstbody(which,inthisderivation,isthestar)

m2≡massofthesecondbody(which,inthisderivation,istheplanet)

R ≡vectorpointingfromspecifiedorigintoCM

r 1 ≡vectorpointingfromspecifiedorigintofirstbody

r 2 ≡ vectorpointingfromspecifiedorigintosecondbody Inthecenterofmassreferenceframe,thelocationoftheCMisdesignatedasthelocationoftheoriginandthefollowingsubstitutionsthenfollow:

R = 0

r 1 =vectorpointingfromCMtofirstbody

r 2 =vectorpointingfromCMtosecondbodyThegeneralequationthenbecomes:

0 =m1 r 1 + m2

r 2m1 + m2

0 = m1 r 1 + m2

r 2 Therefore,

m1 r 1 = −m2

r 2 (Eq3)Usingtheexpressionsfor

r 1 and

r 2 inEq1andsubstitutingthemintoEq3,wefind:

m1 r 1 = −m2

r 2m1(−r1 ˆ e r ) = −m2(r2 ˆ e r )−m1r1 ˆ e r = −m2r2 ˆ e r

Therefore,

m1r1 = m2r2 (Eq4)

Page 8: The Radial Velocity Equation almostfinal

8 THERADIALVELOCITYEQUATION

THE LAWS OF ISAAC NEWTON

Newton’sLawofUniversalGravitationtellsusthestarexertsagravitationalforceontheplanetandtheplanetexertsagravitationalforceonthestar.Bothforcesareequalinmagnitude,oppositeindirection,andactalongthelineconnectingthestarandplanet(showninFigure3).

Notethat,inFigure3:

F 12 ≡ Forceonobject1(thestar)exertedbyobject2(theplanet)

F 21 ≡Forceonobject2(theplanet)exertedbyobject1(thestar)

Themagnitudeofanygravitationalforcebetweentwoobjectsisdirectlyproportionaltotheproductofthemassesofeachobjectandinverselyproportionaltothedistancebetweenthemsquared:

Fg =G m1m2

r2

TheconstantofproportionalityiscalledNewton’sgravitationalconstant:

G = 6.67 ×10−11 m3

kg s2

F 12 and

F 21thushavethesamemagnitude

Fg andonlydifferindirection:

F 12 = G m1m2

r2 + ˆ e r( ) F 21 = G m1m2

r2 − ˆ e r( )

Therefore,

F 12 = G m1m2

r2ˆ e r (EQ5)

F 21 = −G m1m2

r2ˆ e r (EQ6)

Page 9: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 9

Now,Newton’s2ndLawtellsus:

F = m a ∑

Foreachbody,theonlyforceexertedonitisthegravitationalforce,so:

forbody1(thestar) : F = F 12∑

Thus,

(Eq7)

And,

forbody2(theplanet) : F = F 21∑

Thus,

(Eq8)

Usingtheexpressionsfor

F 12 and

F 21inEq5andEq6andrewriting

a as

d2 r dt 2

,Eq7andEq8become:

G m1m2

r2ˆ e r = m1

d2 r 1dt 2

(Eq9)

and

−G m1m2

r2ˆ e r = m2

d2 r 2dt 2

(Eq10)

SubtractingEq9fromEq10gives:

−Gm1

r2ˆ e r

Gm2

r2ˆ e r

=

d2 r 2dt 2

d2 r 1dt 2

−G m1 + m2( )

r2ˆ e r =

d2

dt 2 r 2 − r 1( )

F 12 = m1

a 1

F 21 = m2

a 2

Gm2

r2ˆ e r =

d2 r 1dt 2

−Gm1

r2ˆ e r =

d2 r 2dt 2

Page 10: The Radial Velocity Equation almostfinal

10 THERADIALVELOCITYEQUATION

Now,let’smakethefollowingdefinition:

(Eq11)

UsingEq11andEq2,wehave:

−GMr2

ˆ e r =d2

dt 2 r ( )

Using

d2 r dt 2 ≡

˙ ̇ r and

r ≡ r ˆ e r ⇒ ˆ e r = r r,wehave:

(Eq12)

(Eq13)

THE LAWS OF JOHANNES KEPLER

Asthestarandplanetorbittheirmutualcenterofmass,thedistancebetweenthem,r,changes.AccordingtoKepler’s1stLaw(andextendingthetreatmenttoextrasolarplanets),planetsrevolvearoundtheirhoststarinanellipticalorbitwiththestaratonefocusoftheellipse(showninFigure4).

M ≡ m1+m2

˙ ̇ r = − GMr2

ˆ e r

˙ ̇ r = − GMr3 r

r

θ

Figure4–Astheplanetorbitsitshoststar,thedistancebetweenthestarandplanetchanges.(Nottoscale!)

Page 11: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 11

Itisusefultoexpressrinpolarcoordinatesand,thus,asafunctionofθ.Recallthat

r = r ˆ e r .Now,takethederivativeof

r withrespecttotime:

(Eq14)

ˆ e r isthedirectionofthevectorpointingfromthestartotheplanetanditshouldbeunderstoodthatthisdirectionchangeswithtime.Inordertocalculatethederivativeof

ˆ e r withrespecttotime,wemustfirstexpress

ˆ e r intermsofCartesiancoordinates(thederivationofthisexpressioncanbelookedupelsewhere):

ˆ e r = cosθ ˆ x + sin θ ˆ y Now,wecaneasilydeterminethederivativeof

ˆ e r withrespecttotime:

ddt

ˆ e r( ) =ddt

cos θ ˆ x + sinθ ˆ y ( )

= cosθ ddt

ˆ x ( ) + ˆ x ddt

cosθ( ) + sinθ ddt

ˆ y ( ) + ˆ y ddt

sin θ( )

= 0 + ˆ x ddt

cos θ( ) + 0 + ˆ y ddt

sinθ( )

Wewereabletodothelaststepbecause

ˆ x and

ˆ y areindependentoftime(and,thus,takingthederivativeofeitherwithrespecttotimegiveszero).However,θdoesdependontime,sowemusttakethisintoaccountwhentakingthetimederivativeofsinθandcosθ:

ddt

ˆ e r( ) = ˆ x ddt

cos θ( ) + ˆ y ddt

sinθ( )

= ˆ x −sin θ ˙ θ ( ) + ˆ y cosθ ˙ θ ( )= − ˙ θ sinθ ˆ x + ˙ θ cos θ ˆ y

= ˙ θ −sin θ ˆ x + cosθ ˆ y ( )

TheexpressioninparenthesesisEqualto

ˆ e θ expressedintermsofCartesiancoordinates(thederivationofthisexpressioncanbelookedupinthesame“elsewhere”).Inotherwords:

ˆ e θ = −sinθ ˆ x + cos θ ˆ y Andso,

(Eq15)

ddt r ( ) =

ddt

r ˆ e r( ) = r ddt

ˆ e r( ) + ˆ e rddt

r( )

ddt

ˆ e r( ) = ˙ θ ˆ e θ

Page 12: The Radial Velocity Equation almostfinal

12 THERADIALVELOCITYEQUATION

SubstitutingEq15intoEq14gives:

ddt r ( ) = r ˙ θ ˆ e θ( ) + ˆ e r ˙ r

Using

d r dt≡ ˙ r ,wehave:

(Eq16)

Now,takethederivativeof

˙ r withrespecttotime:

ddt ˙ r ( ) =

ddt

˙ r ˆ e r + r ˙ θ ˆ e θ( )

= ˙ r ddt

ˆ e r( ) + ˆ e rddt

˙ r ( ) + r ddt

˙ θ ˆ e θ( ) + ˙ θ ˆ e θddt

r( )

= ˙ r ˙ θ ˆ e θ( ) + ˆ e r ˙ ̇ r ( ) + r ˙ θ ddt

ˆ e θ( ) + ˆ e θddt

˙ θ ( )

+ ˙ θ ˆ e θ ˙ r

(Eq17)

Now,wemusttakethederivativeof

ˆ e θ withrespecttotime:

ddt

ˆ e θ( ) =ddt

−sin θ ˆ x + cosθ ˆ y ( )

= −sinθ ddt

ˆ x ( ) + ˆ x ddt

−sin θ( ) + cos θ ddt

ˆ y ( ) + ˆ y ddt

cos θ( )

= 0 + ˆ x −cos θ ˙ θ ( ) + 0 + ˆ y −sinθ ˙ θ ( )= − ˙ θ cosθ ˆ x − ˙ θ sin θ ˆ y

= − ˙ θ cos θ ˆ x + sinθ ˆ y ( )= − ˙ θ ˆ e r( )

Andso,

(Eq18)

SubstitutingEq18intoEq17gives:

ddt ˙ r ( ) = ˙ r ˙ θ ˆ e θ + ˙ ̇ r ˆ e r + r ˙ θ − ˙ θ ˆ e r( ) + r ˙ ̇ θ ˆ e θ + ˙ r ˙ θ ˆ e θ

= 2 ˙ r ˙ θ ˆ e θ + ˙ ̇ r ˆ e r − r ˙ θ 2 ˆ e r + r ˙ ̇ θ ˆ e θ= ˙ ̇ r − r ˙ θ 2( ) ˆ e r + r ˙ ̇ θ + 2 ˙ r ˙ θ ( ) ˆ e θ

˙ r = ˙ r ˆ e r + r ˙ θ ˆ e θ

ddt ˙ r ( ) = ˙ r ˙ θ ˆ e θ + ˙ ̇ r ˆ e r + r ˙ θ

ddt

ˆ e θ( ) + r ˙ ̇ θ ˆ e θ + ˙ r ˙ θ ˆ e θ

ddt

ˆ e θ( ) = − ˙ θ ˆ e r

Page 13: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 13

Therefore,

(Eq19)

SubstitutingEq19intoEq12gives:

˙ ̇ r − r ˙ θ 2( ) ˆ e r + r ˙ ̇ θ + 2 ˙ r ˙ θ ( ) ˆ e θ = −GMr2

ˆ e r

Theonlywayfortheaboveequationtobetrueisif:

(Eq20)

and,

(Eq21)

ToextractanimportantpieceofinformationfromEq21,recallthis:

ddt

r2 ˙ θ ( ) = r2 ddt

˙ θ ( ) + ˙ θ ddt

r2( )= r2 ˙ ̇ θ + ˙ θ 2r˙ r ( )= r2 ˙ ̇ θ + 2r˙ r ˙ θ

= r r ˙ ̇ θ + 2˙ r ˙ θ ( )

So,theleft‐handsideofEq21isalsoequalto

1rddt

r2 ˙ θ ( ) andthus,

1rddt

r2 ˙ θ ( ) = 0

fromwhich,follows:

(Eq22)

Thequantity

r2 ˙ θ doesnotchangewithtime,sothequantityissaidtobeconserved.Infact,

r2 ˙ θ isawell‐knownquantity,asweshallnowsee.

r ˙ ̇ θ + 2 ˙ r ˙ θ = 0

˙ ̇ r = ˙ ̇ r − r ˙ θ 2( ) ˆ e r + r ˙ ̇ θ + 2 ˙ r ˙ θ ( ) ˆ e θ

˙ ̇ r − r ˙ θ 2 = −GMr 2

ddt

r 2 ˙ θ ( ) = 0

Page 14: The Radial Velocity Equation almostfinal

14 THERADIALVELOCITYEQUATION

ANGULAR MOMENTUM

Recallthegeneralequationfortotalangularmomentum:

L = r × p

where : L = total angular momentum r = displacement vector p = total linear momentum = m v

Foraplanetorbitingitshoststar,

r and

v arealwaysperpendicular(showninFigure5).

So,

r × p = r ×m v = m r × v ( ) = m rv sin 90°( )[ ] = m rv 1( )[ ] = mrv andthus,

L ≡ L = mvr

Now,

LmisdefinedtobetheSPECIFICANGULARMOMENTUMandisdenotedbythesymbolh.

Using

v =ω r and

ω ≡dθdt

= ˙ θ ,sothat

v = ˙ θ r,wehave

h ≡ Lm

=mvrm

= vr = ˙ θ r( )r = r2 ˙ θ ,therefore,

(Eq23)

Andso,Eq21tellsusthatthespecificangularmomentumforoursituationisaconservedquantity.

h = r2 ˙ θ

Figure5–Astheplanetorbitsitshoststar,itspositionvector

r andvelocityvector

v arealwaysperpendicular.(Nottoscale!)

r

v

Page 15: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 15

THE EQUATION OF AN ELLIPSE

NowwearereadytoutilizeEq20forthepurposeoffindingrasafunctionofθ.First,abrieftrick.Let’sexpress

r ˙ θ 2 intermsofh:

h = r2 ˙ θ ⇒ h2 = r4 ˙ θ 2 = r3 r ˙ θ 2( ) ⇒ r ˙ θ 2 =h2

r3

SubstitutingthisresultintoEq20gives:

˙ ̇ r − h2

r3 = −GMr2

Or,solvingfor

˙ ̇ r :

(Eq24)

Next,wemustremovethetimedependenceofr.Todothis,weinvokeasubstitution:

u ≡ 1r

⇒ r =1u

= u−1

Takingthederivativeofrwithrespecttotimegives:

ddt

r( ) =ddt

u−1( ) = −u−2 dudt

Using

dudt

=dudθ

dθdt

=dudθ

˙ θ ,theaboveequationbecomes:

ddt

r( ) = − u−2( ) dudθ˙ θ = − r2( ) dudθ

˙ θ = − r2 ˙ θ ( ) dudθ = − h( ) dudθ

Therefore,

(Eq25)

Takingthederivativeof

˙ r withrespecttotime(andrememberingthathisindependentoftime)gives:

ddt

˙ r ( ) =ddt

− h dudθ

= − h d

dtdudθ

˙ ̇ r = h2

r 3 −GMr 2

˙ r = − h dudθ

Page 16: The Radial Velocity Equation almostfinal

16 THERADIALVELOCITYEQUATION

Using

ddt

dudθ

=

ddθ

dθdt

dudθ

=d2udθ 2

dθdt

=d2udθ 2

˙ θ ,wefind:

ddt

˙ r ( ) = − h d2udθ 2

˙ θ

Therefore,

(Eq26)

SubstitutingEq26intoEq24gives:

− h ˙ θ d2udθ 2 =

h2

r3 −GMr2

Replacingrwith

1u,usingEq23,andsolvingfor

d2udθ 2

gives:

d2udθ 2 = −

1h ˙ θ

h2u3 −GMu2( )

= −h( ) u3

˙ θ +GMu2

h( ) ˙ θ

= −r2 ˙ θ ( ) u3

˙ θ +GMu2

r2 ˙ θ ( ) ˙ θ

= − r2( ) u3 +GMr2 ˙ θ 2

u2( )

= −1u2

u3 +

GMr2 ˙ θ 2

1r2

= − u +GMr4 ˙ θ 2( )

= − u +GMh2( )

Therefore,

(Eq27)

Eq27isadifferentialequationwiththefollowingsolution:

˙ ̇ r = − h ˙ θ d2udθ 2

d2udθ 2 = −u +

GMh2

Page 17: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 17

(Eq28)

where : A ≡ constantδ ≡ phase shift

both will be determinedby initial conditions

Changingvariablesbacktor,Eq28becomes:

1r θ( )

= A cos θ −δ( ) +GMh2

So,

(Eq29)

Multiplyingtheright‐handsideofEq29by

h2

h2gives:

r θ( ) =h2

h2A cos θ −δ( ) +GM

Dividingtheright‐handsideoftheaboveequationbyGMgives:

(Eq30)

Thegeneralequationforanellipseis:

(Eq31)

where : a ≡ semi -major axis of the ellipse

e ≡ eccentricity of the ellipse

ComparingEq30toEq31,wecanimmediatelysee:

(Eq32)

u θ( ) = A cos θ −δ( ) +GMh2

r θ( ) =1

A cos θ −δ( ) +GMh2

r θ( ) =

h2

GMh2A cos θ −δ( )

GM+1

r θ( ) =a 1− e2( )1+ e cosθ

e =h2AGM

Page 18: The Radial Velocity Equation almostfinal

18 THERADIALVELOCITYEQUATION

Or,

h2

GM=eAandthus,

a 1− e2( ) =h2

GM=eA.Sothat,

(Eq33)

Therefore,theunknownconstantAinEq28intermsofknownvariablesis:

(Eq34)

and,

δ = 0 (aproofofthisisprovidedinAppendixA).

PROPERTIES OF AN ELLIPSE

Inasense,wehavethusfaranalyzedthestar‐planetsysteminonedimension(whenwecomputedthegravitationalforces)andintwodimensions(whenwedeterminedanexpressionforrasafunctionofθ)andournexttaskistodevelopthetoolsneededtofullyunderstandthissysteminthreedimensions.First,let’sreviewsomeimportantpropertiesofanellipse:Themajoraxisofanellipseisthestraightlinethatrunsbetweenthefocioftheellipseandextendstotheedgesoftheellipse(showninFigure6).One‐halfofthemajoraxis(aptlynamedthe“SEMI‐MAJORAXIS”)hasalengthdefinedtobeequaltoa,therefore,thelengthofthemajoraxisisequalto2a.

a =e

A 1− e2( )

A =GMeh2

Figure6–Themajoraxisofanellipse.

Focus Focus

length=2a

Page 19: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 19

Theminoraxisofanellipseisthestraightlinethatliesperpendiculartothemajoraxisandpassesthroughthemidpointofthemajoraxis(showninFigure7).One‐halfoftheminoraxis(aptlynamedthe“SEMI‐MINORAXIS”)hasalengthdefinedtobeequaltob,therefore,thelengthoftheminoraxisisequalto2b.

PERIASTRONisdefinedtobethepositioninaplanet’sorbitarounditshoststarinwhichthedistancebetweenthestarandplanetisaminimumfortheorbit.Similarly,APASTRONisdefinedasthepositioninaplanet’sorbitarounditshoststarinwhichthedistancebetweenthestarandplanetisamaximumfortheorbit(showninFigure8).

Figure7–Theminoraxisofanellipse.

Focus Focus

length=2b

Figure8–Thepositionsofperiastronandapastroninaplanet’sorbitarounditshoststar.(Nottoscale!)

apastron

periastron

Page 20: The Radial Velocity Equation almostfinal

20 THERADIALVELOCITYEQUATION

TheECCENTRICITYofanellipse,orhowelongatedtheellipseis,isdenotedbythesymboleandisdefinedintermsofthesemi‐majorandsemi‐minoraxes:

(Eq35)

Inthespecialcaseinwhich

a = b, e =1−1= 0andtheshapeofaplanet’sorbitarounditshoststarwouldbeaperfectcircle.Finally,theareaofanellipseisdefinedtobe:

(Eq36)

Noticethatforacircle

a = bandtheareaisequaltoπa2orπb2asonewouldexpect!

DEFINITIONS OF ORBITAL PARAMETERS

Now,let’sdefinetwoterms(showninFigure9):LINE‐OF‐SIGHT≡thestraightlineconnectinganobserverandtheobjectbeingorbited(inourcase,

wewilltakethistobethestar)PLANE‐OF‐SKY≡thetwodimensionalplanethatliesperpendiculartotheline‐of‐sightandpasses

throughtheobjectbeingorbited

e2 ≡ 1− b2

a2

Area = πab

line‐of‐sight

plane‐of‐sky(seen“edge‐on”)

plane‐of‐sky(seen“face‐on”)

Figure9–Anobserver’sline‐of‐sightandtheplane‐of‐skyseenboth“edge‐on”and“face‐on.”(Nottoscale!)

Page 21: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 21

Wearenowreadytoanalyzethestar‐planetsysteminthreedimensions(showninFigure10):

TherearetwoseparateplanesinFigure10:theplane‐of‐sky(alreadydefined)andthePLANE‐OF‐ORBIT(thetwodimensionalplaneinwhichtheplanetorbitsitshoststar).Theplane‐of‐orbitistiltedwithrespecttotheplane‐of‐skybyacertainangle.WecallthistilttheORBITALINCLINATIONanddenotetheanglebythesymboli.Therearetwopointsintheplanet’sorbitthatpassthroughtheplane‐of‐sky.OneiscalledtheASCENDINGNODE(thepointatwhichtheplanetpassesfrom“below”theplane‐of‐skyto“above”theplane‐of‐sky)andtheotheriscalledtheDESCENDINGNODE(thepointatwhichtheplanetpassesfrom“above”theplane‐of‐skyto“below”it).ThelineconnectingthesetwopointsiscalledtheLINEOFNODES.Theangleθistheanglebetweentheperiastronandthepositionoftheplanet.It’sreferredtoastheTRUEANOMALYanditchangeswithtime.ThisisthesameθthatisfoundinFigure4,Eq28,&Eq31.Theangleωistheanglebetweenthelineofnodesandperiastron.It’sreferredtoastheARGUMENTOFPERIASTRONanditdoesnotchangewithtime.Bothθandωlieintheplane‐of‐orbit.

Figure10–Illustrationoforbitalparametersforthestar‐planetsystem.

Page 22: The Radial Velocity Equation almostfinal

22 THERADIALVELOCITYEQUATION

RADIAL VELOCITY

Ifwedesignatetheplane‐of‐skytobethex-yplane,thenthedirectiontotheobserveralongtheline‐of‐sightisthez‐direction.Intermsofθ,ω,andi,zcanbeexpressedas:

z = r sin θ +ω( ) sin i (AppendixBexplainshowthisisdetermined.)Rememberthatthisentirederivationisdevotedtofindinganexpressionfortheradialvelocity(denotedbyvr)andthattheradialvelocityisdefinedtobethevelocityalongtheobserver’slineofsight.Thus,sincezisthedirectionalongtheobserver’slineofsight,thederivativeofzwithrespecttotimeshallprovideuswiththeexpressionforradialvelocity!Recallingthatθandrchangewithtime,however,ωandidonot,wefind:

vr ≡ ˙ z = ddt

z( ) =ddt

r sin θ +ω( ) sin i( )

= r ddt

sin θ +ω( ) sin i( ) + sin θ +ω( ) sin i ddt

r( )

= r sin θ +ω( ) ddt

sin i( ) + sin i ddt

sin θ +ω( ){ }

+ sin θ +ω( ) sin i ˙ r

= r sin θ +ω( ) cos i didt

+ sin i cos θ +ω( ) ddt

θ +ω( )

+ ˙ r sin θ +ω( ) sin i

= r 0 + sin i cos θ +ω( ) ˙ θ [ ] + ˙ r sin θ +ω( ) sin i

Therefore,

(Eq37)

Now,wemustfindexpressionsfor

˙ r and

˙ θ inordertoridEq37ofthesetwoquantities.Tofind

˙ r ,wetakethederivativeofEq31withrespecttotime(aandearetime‐independent):

˙ r ≡ ddt

r( ) =ddt

a 1− e2( )1+ e cos θ

=1+ e cos θ[ ] d

dta 1− e2( )[ ] − a 1− e2( )[ ] d

dt1+ e cosθ[ ]

1+ e cosθ[ ]2

vr = r ˙ θ cos θ +ω( ) + ˙ r sin θ +ω( )[ ] sin i

Page 23: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 23

=0 − a 1− e2( )[ ] − e ˙ θ sinθ[ ]

1+ e cos θ[ ]2

=a 1− e2( )

1+ e cosθe ˙ θ sin θ

1+ e cosθ

Thus,

(Eq38)

Tofind

˙ θ ,wemakeuseofKepler’s2ndLaw:

(Eq39)

whereAistheareaoftheellipse.Integratingtheleft‐handsideofEq39overoneperiod(thetimeittakestheplanettomakeonecompleterevolutionarounditshoststar)yields:

(Eq40)

wherePistheperiod.Weknowtheareaofanellipseis

A = πab (fromEq36),buttogettheareaintermsofaandeonly,weneedtosolveEq35intermsofb:

e2 ≡1− b2

a2⇒

b2

a2=1− e2 ⇒ b2 = a2 1− e2( )

Andso,

b = a 1− e2 andputtingthisintotheequationfortheareaofanellipsegives:

A = πab = πa a 1− e2( )

Therefore,

(Eq41)

SubstitutingEq41intoEq40gives:

πa2 1− e2

P=

12r2 ˙ θ

Insteadofsolvingtheaboveequationfor

˙ θ ,wewillsolveitfor

r ˙ θ sincethisquantityisfoundinEq37,whichwearetryingtosimplify:

(Eq42)

˙ r = r e ˙ θ sinθ1+ e cosθ

dAdt

=12r 2 ˙ θ

AP

=12r 2 ˙ θ

A = πa2 1− e2

r ˙ θ =2πa2 1− e2

r P

Page 24: The Radial Velocity Equation almostfinal

24 THERADIALVELOCITYEQUATION

Now,wehavefoundexpressionsfor

˙ r (Eq38)and

r ˙ θ (Eq42),buttheexpressionfor

˙ r hasan

r ˙ θ initandtheexpressionfor

r ˙ θ hasanrinit.So,let’sridtheseexpressionsofanyror

˙ θ dependence:

r ˙ θ =2πa2 1− e2

r P

=1r

2πa2 1− e2

P

=1+ e cos θa 1− e2( )

2πa2 1− e2

P

Thus,

(Eq43)

And,

˙ r = r e ˙ θ sinθ1+ e cos θ

= r ˙ θ e sinθ

1+ e cos θ

=2πa 1+ e cosθ( )

P 1− e2

e sin θ1+ e cosθ

Thus,

(Eq44)

SubstitutingEq43andEq44intoEq37gives:

Vr = r ˙ θ cos θ +ω( ) + ˙ r sin θ +ω( )[ ] sin i

=2πa 1+ e cosθ( ) cos θ +ω( )

P 1− e2+

2πa e sin θ sin θ +ω( )P 1− e2

sin i

(Eq45)

Next,weneedtosimplifyEq45byutilizingthefollowingtwotrigonometricidentities:

cos θ +ω( ) = cos θ cosω − sin θ sinωsin θ +ω( ) = sin θ cosω + cosθ sinω

r ˙ θ =2πa 1+ e cosθ( )

P 1− e2

˙ r = 2πa e sinθP 1− e2

Vr =2πa sin iP 1− e2

cos θ +ω( ) + e cosθ cos θ +ω( ) + e sin θ sin θ +ω( )[ ]

Page 25: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 25

TheexpressionwithinthebracketsinEq45becomes:

[ ] = cosθ cosω − sinθ sinω + e cos θ cos θ cosω − sin θ sinω( ) + e sin θ sin θ cosω + cosθ sinω( )= cosθ cosω − sinθ sinω + e cosω cos2 θ − e cos θ sinθ sinω + e cosω sin2 θ + e cos θ sin θ sinω

= cosθ cosω − sinθ sinω + e cosω cos2 θ + sin2 θ( )= cosθ cosω − sinθ sinω + e cosω

Weusedthetrigonometricidentity

cos2θ + sin2θ =1inthelaststepandwecannowrevert

cosθ cosω − sinθ sinω backto

cos θ +ω( ) foramorecompactexpression:

(Eq46)

Finally,wehavederivedtheequationforradialvelocity!Thus,theradialvelocityofthehoststar(withrespecttothecenterofmass)is:

(Eq47)

andtheradialvelocityoftheorbitingplanet(withrespecttothecenterofmass)is:

(Eq48)

RADIAL VELOCITY SEMI-AMPLITUDE

Wehaveonemorequantitytoprovideanameandsymbolfor:

(Eq49)

Theradialvelocitysemi‐amplitudeofthehoststaris:

(Eq50)

andtheradialvelocitysemi‐amplitudeoftheorbitingplanetis:

(Eq51)

Vr =2πa sin iP 1− e2

cos θ +ω( ) + e cosω[ ]

K ≡ radialvelocitysemi ‐ amplitude =2πa sin iP 1− e2

Vr (star ) =2πa1 sin iP 1− e2

cos θ +ω( ) + e cosω[ ]

Vr (planet ) =2πa2 sin iP 1− e2

cos θ +ω( ) + e cosω[ ]

K1 ≡ radialvelocitysemi ‐amplitude of host star =2πa1 sin iP 1− e2

K2 ≡ radialvelocitysemi ‐amplitude of orbiting planet =2πa2 sin iP 1− e2

Page 26: The Radial Velocity Equation almostfinal

26 THERADIALVELOCITYEQUATION

Theradialvelocitymethodofdetectingextrasolarplanetsinvolvestakingprecisemeasurementsofastar’sradialvelocitywithanopticaltelescope.Eachmeasurementisassociatedwithaspecifictimeandaplotcanbecreatedshowingthestar’sradialvelocityasafunctionoftime.Ifapreviouslyundiscoveredplanetexistsinorbitaroundtheobservedstar,thedataintheplotwillshowarepeatedtrendandacurvecanbefittothedataconnectingeachoftheindividualradialvelocitydatapoints(showninFigure11).

Figure11–Plotofradialvelocityvs.timeforthehoststarindicatinghowtheperiod,P,andradialvelocitysemi‐amplitude,K,canbedeterminedfromthedata.(ImageCredit:PlanetarySystemsandtheOriginsofLife,CambridgeUniversityPress,2007)

Theradialvelocitysemi‐amplitudeofthehoststarcanthenbedeterminedfromtheplot.Itisequaltohalfofthetotalamplitudeofthefittedcurve(asseeninFigure11).Notethattheperiod,whichisthetotalamountoftimeelapsedbetweentwoconsecutivepeaksofthefittedcurve(andisthesameforboththehoststarandorbitingplanet),canbedeterminedfromtheplotaswell(asseeninFigure11).Ifpreferred,thedependenceona1inthequantityK1canberemoved.Thiswillbeournexttask.Kepler’s3rdLawrelatesthesemi‐majoraxisofaplanet’sorbittotheperiodofitsorbitasfollows:

(Eq52)

SolvingEq52fora2gives:

a23 =

G m1 + m2( ) P 2

4π 2

P 2 =4π 2

G m1 + m2( )a23

Page 27: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 27

Therefore,

(Eq53)

Nowweneedtoreferallthewaybacktopage7andEq4.Withour“new”knowledgeofellipses,wecannowrecognizethatther1inEq4,whichisthemagnitudeofthevectorpointingfromtheCMtothestar,issimplythesemi‐majoraxisofthestar’sorbitaroundthemutualCM,a1.Withthesamereasoning,ther2inEq4,whichisthemagnitudeofthevectorpointingfromtheCMtotheplanet,isthesemi‐majoraxisoftheplanet’sorbitaroundthemutualCM,a2.Therefore,

m1a1 = m2a2 or,solvingfora1:

(Eq54)

SubstitutingEq54intoEq50gives:

(Eq55)

SubstitutingEq53intoEq55gives:

(Eq56)

TheprocessofsimplifyingEq56goessomethinglikethis:

K1 =m2

m1sin i1− e2

8π 3G m1 + m2( ) P 2

4π 2P 3

13

=m2

m1sin i1− e2

2πG m1 + m2( )P

13

=2πGP

13 m2

m1m1 + m2( )

13sin i1− e2

a1 =m2

m1a2

a2 =G m1+m2( ) P2

4π 2

13

K1 =2π sin iP 1− e2

m2

m1a2

K1 =2π sin iP 1− e2

m2

m1

G m1+m2( ) P2

4π 2

13

Page 28: The Radial Velocity Equation almostfinal

28 THERADIALVELOCITYEQUATION

Thisisthepointatwhichweutilizethefactthat

m1 >> m2 andsoouranswerisnotsignificantlyaffectedifweusethefollowingapproximation:

m1 + m2 ≈ m1Nowwecancontinueoursimplification:

K1 =2πGP

13 m2

m1m1( )

13sin i1− e2

=2πGP

13 m1( )

13

m1m2 sin i1− e2

=2πGP

13m1( )−

23m2 sin i1− e2

Therefore,initsmostcommonform,theequationfortheradialvelocitysemi‐amplitudeofthestaris:

(Eq57)

K1 =2πGP

13 m2 sin im1

2 / 311− e2

Page 29: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 29

APPENDIX A: PROOF THAT δ = 0

Toprovideproofthat

δ = 0 inEq28,wewillanalyzethespecialcaseinwhichtheplanetislocatedatPERIASTRON(thepositioninaplanet’sorbitarounditshoststarinwhichthedistancebetweenthestarandplanetisaminimumfortheorbit).Thepositionofperiastronisusefulfortworeasons:(1)weknowthevalueofθisequaltozeroforthispositioninaplanet’sorbitarounditshoststarand(2)weknowtheexpressionforr(θ),thedistancebetweentheplanetanditshoststar.Thefirstreasoncanbeunderstoodbyre‐examiningFigure10orre‐readingthedefinitionoftheTRUEANOMALY.Thesecondreasonfollowsfromthefactthat,foranyellipse,thedistancebetweenthecenteroftheellipseandeitherfocusoftheellipse(oneofwhichisalsothepositionofthehoststar)isequaltoae(showninFigure12).Forexample,inthespecialcaseofacircularorbite=0andthe“ellipse”(orcircle,whichisaspecialtypeofellipse)hasonlyonefocus(thelocationofwhichisthepositionofthehoststar).Thissinglefocusislocatedatthecenteroftheellipse,therefore,thedistancebetweenthefocusandthecenteroftheellipseiszerowhichagreeswithae=a(0) =0(showninFigure13).

Theexpressionforr(θ),thedistancebetweentheplanetanditshoststar,isequaltothedistancebetweentheplanetandthecenteroftheellipse(which,inthiscase,isthelengthofthesemi‐majoraxis,a)minusthedistancebetweenthestarandthecenteroftheellipse,ae(showninFigure14).Thus,theexpressionforr(θ),thedistancebetweentheplanetanditshoststar,equals:

r θ( ) = a − ae

or,aftersimplifying:

(EqA.1)

r θ( ) = a 1− e( )

Figure12–Thedistancebetweenthecenterofanellipseandeitherofitsfociisequaltotheproductofthelengthofthesemi‐majoraxisandtheeccentricityoftheellipse.

Figure13–Thebluedotrepresentsboththecenterofthecircle(aspecialtypeofellipse)andthesinglefocusoftheellipse.Inthisspecialcase,theproductaeisequaltozero.

ae ae

centerofellipse

Focus Focus

Page 30: The Radial Velocity Equation almostfinal

30 THERADIALVELOCITYEQUATION

ThetaskathandistosolveEq29forδ.WecansubstituteEqA.1fortheleft‐handsideofEq29anduse

θ=0.WecanalsorearrangeEq34as

GMh2

=Ae.Theresultofthesesubstitutionsis:

r θ( ) =1

A cos θ −δ( ) +GMh2

a 1− e( ) =1

A cos 0 −δ( ) +Ae

A cos −δ( ) +Ae

=1

a 1− e( )

A cos −δ( ) =1

a 1− e( )−Ae

(EqA.2)

Figure14–Thedistancebetweentheplanetanditshoststar(r(θ),representedbytheblackarrow)isequaltothedistancebetweentheplanetandthecenteroftheellipse(a,representedbythepurplearrow,whichisalsothesemi‐

majoraxis;notethatthisarrowisnotdrawnattheexactlocationofthesemi‐majoraxisotherwiseitwouldoverlapwiththeotherarrows)minusthedistancebetweenthestarandthecenteroftheellipse(ae,representedbytheredarrow).

apastron

periastron

a

ae r(θ)

centerofellipse

cos −δ( ) =1

Aa 1− e( )−1e

Page 31: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 31

NowrearrangingEq33as

A =e

a 1− e2( )andsubstitutingthisintoEqA.2,wefind:

cos −δ( ) =1

Aa 1− e( )−1e

=1

ea 1− e2( )

a 1− e( )[ ]−1e

=1

e 1− e( )1− e2( )

−1e

=1− e2

e 1− e( )−1e

=1e1− e2

1− e−1

=1e1− e2

1− e−1− e1− e

=1e1− e2 − (1− e)

1− e

=1e1− e2 −1+ e1− e

=1ee − e2

1− e

=1ee (1− e)1− e

=1ee( )

Page 32: The Radial Velocity Equation almostfinal

32 THERADIALVELOCITYEQUATION

Thus,

cos − δ( ) =1Thecosineisanevenfunction,sowecanexploitthefollowingpropertyofevenfunctions:

foranyanglea:

cos a( ) = cos −a( ) Andso,

cos − δ( ) = cos δ( ) =1Thus,

cos δ( ) =1 ⇒ δ = cos−1 1( ) = 0 Therefore,

δ = 0.

Page 33: The Radial Velocity Equation almostfinal

THERADIALVELOCITYEQUATION 33

APPENDIX B: THE EXPRESSION FOR z

Itmightbeabitdifficulttounderstandwheretheequationforzcomesfrom,soI’veincludedamoredetailedillustrationoftheanglesandlengthsinquestion(showninFigure15).

Partoftheplanet’sorbitarounditshoststarhasbeenmadeboldinthediagram.Wewillassumethistobeastraightlengthandrefertoitas(bold length)inthefollowingequations.Notethattheactualvalueforthelengthisnotneeded.ωistheanglebetweentheline‐of‐nodes(y‐axisinFigure15)andperiastron.θistheanglebetweenperiastronandtheplanet’spositionvector,

r (themagnitudeofwhichisr,thedistancebetweentheplanetanditshoststar).Theanglebetweenthey‐axisandtheplanet’spositionvectoris

θ +ω (I’llleaveittothereadertomakecertainhe/sheunderstandswhythisisthecase;butifyouaren’tcertain,myhintistotrymakingupnumbersforθandωormovingtheplanettoanotherpositioninitsorbit).Wenowhavethenecessaryinformationand,withtheaidoftrigonometry,wefind:

sin θ +ω( ) =bold length( )

r⇒ bold length( ) = r sin θ +ω( )

sin i =z

bold length( )⇒ z = bold length( ) sin i ∴ z = r sin θ +ω( ) sin i

Figure15–Adiagramspecificallycreatedtoshowtheimportantlengthsandanglesneededfordetermininganexpressionforz.

Page 34: The Radial Velocity Equation almostfinal

34 THERADIALVELOCITYEQUATION

REFERENCE FOR CALCULATING RV SEMI-AMPLITUDE

Ifyouknowthenumericalvalueforeachofthefollowingparametersforaplanetanditshoststar,

P(theplanetorhoststar’sorbitalperiodindaysoryears)

Mplanet sin i (theplanet’sminimummassintermsofthemassofEarthorJupiter)

Mstar (themassofthehoststarintermsofthemassoftheSun)

e(theeccentricityoftheplanet’sorbitarounditshoststar–rangesfrom0‐1)thenenteringtheappropriatevalueintooneofthefollowingfourequationswillgiveyouthenumericalvalueofthestar’sradialvelocitysemi‐amplitude:

Kstar = 0.6395 m s−1 1 dayP

13 Mplanet sin i

MEarth

MSun

Mstar

2 / 311− e2

Kstar = 0.0895 m s−1 1 yrP

13 Mplanet sin i

MEarth

MSun

Mstar

2 / 311− e2

Kstar = 203.255 m s−1 1 dayP

13 Mplanet sin i

MJupiter

MSun

Mstar

2 / 311− e2

Kstar = 28.435 m s−1 1 yrP

13 Mplanet sin i

MJupiter

MSun

Mstar

2 / 311− e2