the r-matrix methodnucleartheory.eps.surrey.ac.uk/talent_6_course/talent... · 2013-08-22 · Ὄ...

52
1. Introduction 2. Scattering theory (elastic scattering) 3. General R-matrix formalism 4. Applications of the « calculable » R matrix (theory) Potential model CDCC calculations The R-matrix Method P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1

Upload: others

Post on 16-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

1. Introduction

2. Scattering theory (elastic scattering)

3. General R-matrix formalism

4. Applications of the « calculable » R matrix (theory)

• Potential model

• CDCC calculations

The R-matrix Method

P. Descouvemont

Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium

1

Page 2: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

“calculable” R-matrix

Cross sections

Phase shifts Collision matrix

R matrix

CDCC Microscopic models

Etc,….

measurements calculations

phenomenological

R matrix

Optical model

1. Introduction

2

Page 3: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

• Introduced by Wigner (Phys. Rev. 70 (1946) 606) to describe resonance data

• Main idea: dividing the space in 2 regions (radius a)

• Internal region: nuclear, wave function defined on a basis

• External region: Coulomb, wave function exact

• Many applications in atomic and nuclear physics (astrophysics)

• Not limited to resonances

• Main reference: A.M. Lane and R.G. Thomas, Rev. Mod. Phys. 30 (1958) 257

• More ‘’modern’’ reference: P. D., D. Baye, Rep. Prog. Phys. 73 (2010) 036301

• Two directions (common origin!)

• Calculable R-matrix: a tool to extend variational calculations to scattering problems

• Phenomenological R-matrix: a parametrization of cross sections

1. Introduction

3

Page 4: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

1. Introduction

Theory: solve the Schrödinger equation

Experiment: analyze cross sections extrapolate data (astrophysics) deduce spectroscopy

R-matrix

Phenomenological

Calculable

4

Page 5: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

1. Introduction

Calculable R-matrix • Goal: to solve a coupled-channel problem for positive energies

−ℏ2

2𝜇

𝑑2

𝑑𝑟2−ℓ ℓ+1

𝑟2𝑢𝑐𝐽𝜋(𝑟) + 𝑉

𝑐,𝑐′𝐽𝜋𝑟 𝑢𝑐′𝐽𝜋

𝑐′(𝑟) = (𝑬 − 𝐸𝑐)𝑢𝑐

𝐽𝜋(𝑟)

c= channel

𝑢𝑐𝐽𝜋(𝑟)= wave function in channel c

• Equation common to many problems (only the potentials 𝑉𝑐,𝑐′𝐽𝜋𝑟 are different)

• Negative energies 𝑬 (bound states): variational methods

• Positive energies 𝑬 (scattering states, resonances): more difficult

Page 6: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

6

1. Introduction

Examples in nuclear physics • CDCC: Continuum Discretized Coupled Channel

Ψ𝐽𝑀𝜋(𝒓, 𝑹) = Φ𝑛𝑗𝑹 ⊗ 𝑌𝐿 Ω𝑟

𝐽𝑀

𝑗𝐿𝑛 𝑢𝑗𝐿𝑛𝐽𝜋 𝑟

Channel c= spin j, excitation level n, angular momentum L

• Microscopic cluster models: all nucleons are included in the wave function • Three-body problems: continuum states important

1st step: Calculation of the coupling potentials 2nd step: Solving the coupled channel equation R-matrix

Limitations • long-range potentials (require many basis states) • high energies (fast variations of the wave function) • number of channels (sometimes several hundreds)

1

2

t

r R

Projectile target

To be determined 2-body wave functions

Page 7: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

7

Alternative: discretization method (FRESCO) R-matrix or discretization method? • Still an open question… • Should provide the same results tests • Obvious advantage of the R-matrix: treatment of closed channels

Threshold 1

Threshold 2

Threshold 3

Threshold 4

E

Channels 1,2,3: open Channel 4: closed

Closed channels: 𝑢𝑐𝐽𝜋 𝑟 → 0,

• Unstable in discretization methods • Automatic in the R-matrix

1. Introduction

𝑢𝑐𝐽𝜋(𝑟)

𝑟

Page 8: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

8

Phenomenological R-matrix

• Calculation of the R-matrix (one channel) 𝑅 𝐸 = 𝛾𝜆2

𝐸𝜆−𝐸𝜆

• 𝛾𝜆2, 𝐸𝜆= parameters to be fitted (for each J value) phase shifts cross sections

Examples: • resonance properties from elastic scattering (13N+p, 11C+p, etc..) • Nuclear astrophysics: cross section extrapolation

• 12C(a,g)16O, 18F(p,a)15O, 8Li(p,a)5He • beta decay to unbound states (8B a+a, 12N a+a+a)

1. Introduction

Limitations • level density • number of open channels light nuclei low energies (favour angular momenta L=0)

Page 9: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

9

2. Scattering theory

Page 10: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

a. Goal: to solve the Schrödinger equation 𝐻Ψ = 𝐸Ψ for E>0

b. Simplifying assumptions • 2 structureless particles interacting by a potential V(r)

• elastic scattering only, 1 channel • Spins 0

c. Wave function Ψℓ𝑚 𝒓 = Ψℓ𝑚 𝑟, 𝜃, 𝜙 =𝑢ℓ 𝑟

𝑟𝑌ℓ𝑚(𝜃, 𝜙)

𝑌ℓ𝑚(𝜃, 𝜙)=spherical harmonics

𝑢ℓ 𝑟 =radial wave function (to be determined from the Schrödinger equation)

−ℏ2

2𝜇𝑢ℓ"(𝑟) + 𝑉(𝑟)𝑢ℓ 𝑟 = 𝐸𝑢ℓ 𝑟

with the potential V(r) defined as

𝑉 𝑟 = 𝑉𝑁 𝑟 +𝑍1𝑍2𝑒

2

𝑟+ℏ2

2𝜇

ℓ ℓ + 1

𝑟2

10

2. Scattering theory

r

Page 11: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

d. Large distances: 𝑟 → ∞ (VN(r) is negligible) • Coulomb functions 𝐹ℓ 𝑘𝑟, 𝜂 , 𝐺ℓ 𝑘𝑟, 𝜂 • Incoming and outgoing functions: 𝐼ℓ = 𝐺ℓ − 𝑖𝐹ℓ ∼ exp −𝑖𝑘𝑟

𝑂ℓ = 𝐺ℓ + 𝑖𝐹ℓ = 𝐼ℓ∗ ∼ exp 𝑖𝑘𝑟

• Shift and penetration factors at radius a:

𝐿ℓ = 𝑘𝑎𝑂ℓ′(𝑘𝑎)

𝑂ℓ(𝑘𝑎)= 𝑆ℓ + 𝑖𝑃ℓ

𝑆ℓ =shift factor (slowly depends on energy) 𝑃ℓ =penetration factor (fastly depends on energy) Example: a+3He (a=5 fm, Coulomb barrier ~1 MeV)

11

2. Scattering theory

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

0 0.5 1 1.5 2 2.5

Penetration factor Pl

L=0

L=2

L=4

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2

Shift factor Sl

L=0

L=2

L=4

Page 12: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

e. Wave function 𝑢ℓ 𝑟 tends to a linear combination of Coulomb functions:

𝑢ℓ 𝑟 → 𝐼ℓ 𝑟 − 𝑈ℓ𝑂ℓ 𝑟

with 𝑼ℓ=collision matrix=exp 2𝑖𝛿ℓ (also called « S matrix ») 𝜹ℓ=phase shift (real if the potential is real): provides the information about the potential must be calculated for each ℓ

f. Cross sections • elastic only (single-channel)

• definition: 𝑑𝜎

𝑑Ω= 𝑓 𝜃 2, with 𝑓 𝜃 =

1

𝑘 (1 − exp(2𝑖𝛿ℓ))ℓ (2ℓ + 1)𝑃ℓ(cos 𝜃)

converges very slowly (long range of the Coulomb interaction)

separation between nuclear and Coulomb : 𝛿ℓ = 𝛿ℓ𝑁 + 𝜎ℓ

•𝑑𝜎

𝑑Ω= 𝑓𝐶 𝜃 + 𝑓𝑁 𝜃

2

• with 𝑓𝐶 𝜃 = −𝜂

2𝑘 sin2 𝜃/2 exp (−𝑖𝜂 log sin2 𝜃/2 )

=Coulomb amplitude: analytical definition

• 𝑓𝑁 𝜃 =1

𝑘 (1 − exp(2𝑖𝛿ℓ

𝑁))exp (2𝑖𝜎ℓ)ℓ (2ℓ + 1)𝑃ℓ(cos 𝜃)

= nuclear amplitude, converges rapidly 12

2. Scattering theory

Page 13: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

13

2

11

42

2

sin

~|)(|E

fd

dC

C

• 𝑑𝜎𝐶

𝑑Ω =Rutherford cross section

•The total Coulomb cross section is not defined (diverges)

• Coulomb is dominant at small angles used to normalize data

• Increases at low energies

• Minimum at =180o nuclear effect maximum

)()()( NC fff +

•fC(): Coulomb part: exact

•fN(): nuclear part: converges rapidly

1

10

100

1000

10000

100000

1000000

0 30 60 90 120 150 180

(degrees)

2

1

4 sin

2. Scattering theory

Page 14: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

14

Cross section: 𝑑𝜎

𝑑Ω= 𝑓 𝜃 2 = 𝑓𝐶 𝜃 + 𝑓𝑁 𝜃 2

• Coulomb amplitude strongly depends on the angle 𝑑𝜎𝑑Ω

𝑑𝜎𝐶𝑑Ω

6Li+58Ni system

• 𝐸𝑐𝑚 =58

64𝐸𝑙𝑎𝑏

• Coulomb barrier

𝐸𝐵 ∼3 ∗ 28 ∗ 1.44

7∼ 17 MeV

• Below the barrier: 𝜎 ∼ 𝜎𝐶

• Above 𝐸𝐵 : 𝜎 is different from 𝜎𝐶

2. Scattering theory

Page 15: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

g. Extensions to Multichannel calculations:

o 𝑈 = exp 2𝑖𝛿 → matrix 𝑈𝑖𝑗 = 𝜂𝑖𝑗exp (2𝑖𝛿𝑖𝑗) with 𝜂𝑖𝑗 < 1

o 𝑓𝑁 𝜃 → 𝑓𝑁,𝑖𝑗 𝜃

o𝑑𝜎

𝑑Ω→𝑑𝜎

𝑑Ω 𝑖𝑗= 𝑓𝑁,𝑖𝑗 𝜃

2: no Coulomb interference if 𝑖 ≠ 𝑗 !

• One channel: phase shift d U=exp(2id) • Multichannel: collision matrix Uij, (symmetric , unitary) with i,j=channels • Good quantum numbers J=total spin p=total parity • Channel i characterized by I=I1 I2 =channel spin

J=I l l =angular momentum

15

2. Scattering theory

Angular-momentum couplings |𝐼1− 𝐼2| ≤ 𝐼 ≤ 𝐼1+ 𝐼2 |

ℓ − 𝐼| ≤ 𝐽 ≤ ℓ + 𝐼

𝜋 = 𝜋1 ∗ 𝜋2 ∗ −1ℓ

𝐼1, 𝜋1 𝐼2, 𝜋2 ℓ

Good quantum numbers : 𝐽, 𝜋

Page 16: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

16

Example of quantum numbers

J I l size

1/2+ 1/2 0, 1 1

1/2- 1/2 0, 1 1

3/2+ 1/2 1, 2 1

3/2- 1/2 1, 2 1

X

X

X

X

J I l size

0+ 1

2

1

2

1

0- 1

2

1

2

1

1+ 1

2

0, 1, 2

1, 2, 3

3

1- 1

2

0, 1, 2

1, 2, 3

3

a+3He a=0+, 3He=1/2+

p+7Be 7Be=3/2-, p=1/2+

X

X

X

X

X X

X X

2. Scattering theory

Page 17: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

17

)(cos)))(exp(()(|)(| d

l

l

l Pilik

ffd

d1212

2

1 with ,2 +

Cross sections

Multichannel

With: K1,K2=spin orientations in the entrance channel

K’1,K’2=spin orientations in the exit channel

''

''

,,,,

|)(|

2121

2121

2

KKKKKKKK

fd

d

One channel:

),(....)( '

, '',

'',,'' 0 2121

p

pl

J IllI

J

IllIKKKKYUf

Collision matrix

• generalization of d: Uijhijexp(2idij)

• determines the cross section

2. Scattering theory

Page 18: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

18

3. The R-matrix method: general formalism

Page 19: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

a. Introduction – framework • Presented for 2 structureless particles

one channel

• N basis functions 𝜙𝑖 𝑟 : variational calculations: 𝑢 𝑟 = 𝑐𝑖𝜙𝑖(𝑟)𝑁𝑖=1

tend to zero at large distances valid at short distances only • Definition of 2 regions: radius a (channel radius)

a

internal region: 𝑟 ≤ 𝑎

𝑢𝑖𝑛𝑡(𝑟) = 𝑐𝑖𝜙𝑖(𝑟)

𝑁

𝑖=1

external region: 𝑟 ≥ 𝑎 𝑢𝑒𝑥𝑡(𝑟) = 𝐼ℓ 𝑟 − 𝑈ℓ𝑂ℓ(𝑟)

• Schrödinger equation + Matching at 𝑟 = 𝑎 collision matrix U (~phase shift) and coefficients 𝑐𝑖 (wave function) !! Channel radius a is not a parameter!! 19

3. The R-matrix method: general formalism

Page 20: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

b. Procedure Step 1: Compute the matrix elements of the Hamiltonian over the internal region

𝐻𝑖𝑗 =< 𝜙𝑖 𝐻 𝜙𝑗 >𝑖𝑛𝑡= 𝜙𝑖 𝑟 (𝑇 + 𝑉)𝜙𝑗 𝑟 𝑑𝑟𝑎

0

𝑁𝑖𝑗 =< 𝜙𝑖|𝜙𝑗 >𝑖𝑛𝑡= 𝜙𝑖 𝑟 𝜙𝑗 𝑟 𝑑𝑟𝑎

0

Problem: the kinetic energy is not hermitian over a finite interval [0,a]

𝜙𝑖 𝑟𝑑2

𝑑𝑟2𝜙𝑗 𝑟 𝑑𝑟 ≠ 𝜙𝑗 𝑟

𝑑2

𝑑𝑟2𝜙𝑖 𝑟 𝑑𝑟

𝑎

0

𝑎

0

Bloch operator

ℒ(𝐿) =ℏ2

2𝜇𝑎𝛿 𝑟 − 𝑎

𝑑

𝑑𝑟−𝐿

𝑟𝑟

𝐿=arbitrary constant (𝐿 = 0 in most cases)

20

3. The R-matrix method: general formalism

Page 21: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

21

role of the surface operator ℒ(𝐿) =ℏ2

2𝜇𝑎𝛿 𝑟 − 𝑎

𝑑

𝑑𝑟−𝐿

𝑟𝑟

1. makes T + ℒ(𝐿) hermitian

< 𝜙𝑖 𝑇 + ℒ(𝐿) 𝜙𝑗 >𝑖𝑛𝑡=< 𝜙𝑗 𝑇 + ℒ(𝐿) 𝜙𝑖 >𝑖𝑛𝑡

2. The Schrödinger equation

𝐻 − 𝐸 𝑢ℓ = 0

is replaced by the Bloch-Schrödinger equation

𝐻 − 𝐸 + ℒ(𝐿) 𝑢𝑖𝑛𝑡 = ℒ 𝐿 𝑢𝑖𝑛𝑡 = ℒ 𝐿 𝑢𝑒𝑥𝑡

Equivalent to 2 equations: 𝐻 − 𝐸 𝑢𝑖𝑛𝑡=0

𝑢𝑖𝑛𝑡′ 𝑎 = 𝑢𝑒𝑥𝑡

′ 𝑎

the Bloch operator ensures 𝑢𝑖𝑛𝑡′ 𝑎 = 𝑢𝑒𝑥𝑡

′ 𝑎 (for the exact solution)

« Old » use of the R-matrix theory • No Bloch operator • Basis states such that 𝜙𝑖′ 𝑎 = 0

Hermiticity OK but the total wave function has always a derivative =0

3. The R-matrix method: general formalism

Page 22: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

22

Determination of the scattering matrix

• We use 𝐻 − 𝐸 + ℒ(𝐿) 𝑢ℓ = ℒ 𝐿 𝑢ℓ (1)

𝑢𝑖𝑛𝑡(𝑟) = 𝑐𝑖𝜙𝑖(𝑟)𝑁𝑖=1 (2)

𝑢𝑒𝑥𝑡(𝑟) = 𝐴(𝐼ℓ 𝑘𝑟 − 𝑈ℓ𝑂ℓ(𝑘𝑟)) (3) 𝑢𝑖𝑛𝑡 𝑎 = 𝑢𝑒𝑥𝑡(𝑎) (4)

With (1),(2),(3) 𝑐𝑖 < 𝜙𝑗𝑁𝑖=1 𝐻 − 𝐸 + ℒ 𝐿 𝜙𝑖 >𝑖𝑛𝑡=< 𝜙𝑗 𝑟 ℒ 𝐿 𝑢𝑒𝑥𝑡 >

matrix 𝐷𝑖𝑗 after inversion, provides coefficients 𝑐𝑖

with (4) 𝑐𝑖𝜙𝑖 𝑎 =𝑁𝑖=1 𝐴(𝐼ℓ 𝑘𝑎 − 𝑈ℓ𝑂ℓ(𝑘𝑎))

From these 2 equations, one gets the collision matrix (=scattering matrix)

𝑈 𝐸 =𝐼 𝑘𝑎

𝑂 𝑘𝑎

1−𝐿∗𝑅 𝐸

1−𝐿𝑅 𝐸

with 𝑅 𝐸 =ℏ2𝑎

2𝜇 𝜙𝑖 𝑎𝑖𝑗 (𝐷−1)𝑖𝑗𝜙𝑗 𝑎 (R-matrix:1x1 for single-channel calculations)

𝐿 = 𝑘𝑎𝑂′ 𝑘𝑎

𝑂 𝑘𝑎= 𝑆 𝐸 + 𝑖𝑃 𝐸 (𝐿 is complex)

3. The R-matrix method: general formalism

Page 23: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

23

Factorization of U

𝑈 𝐸 =𝐼 𝑘𝑎

𝑂 𝑘𝑎

1−𝐿∗𝑅 𝐸

1−𝐿𝑅 𝐸= exp 2𝑖𝛿 = exp 2𝑖𝛿𝐻𝑆 exp(2𝑖𝛿𝑅)

• Hard-sphere phase shift: exp 2𝑖𝛿𝐻𝑆 =𝐼 𝑘𝑎

𝑂 𝑘𝑎 → 𝛿𝐻𝑆 = −atan

𝐹 𝑘𝑎

𝐺 𝑘𝑎

• R-matrix phase shift: exp(2𝑖𝛿𝑅) =1−𝐿∗𝑅 𝐸

1−𝐿𝑅 𝐸=1−𝑆𝑅+𝑖𝑃𝑅

1−𝑆𝑅−𝑖𝑃𝑅→ 𝛿𝑅 = atan

𝑃𝑅

1−𝑆𝑅

• 𝛿𝐻𝑆 and 𝛿𝑅 depend on a but the sum should not depend on a

• Real potentials : 𝑅 and 𝛿 are real and 𝑈 𝐸 = 1 • Complex potentials: 𝑅 and 𝛿 are complex and 𝑈 𝐸 < 1 (sign of imaginary part)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.5 1 1.5 2 2.5

Hard-sphere phase shift

L=0

L=2

L=4

3. The R-matrix method: general formalism

Page 24: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

•Coulomb functions 𝐹ℓ 𝑘𝑟, 𝜂 , 𝐺ℓ 𝑘𝑟, 𝜂 •Incoming and outgoing functions: 𝐼ℓ = 𝐺ℓ − 𝑖𝐹ℓ ∼ exp −𝑖𝑘𝑟 𝑂ℓ = 𝐺ℓ + 𝑖𝐹ℓ = 𝐼ℓ

∗ ∼ exp 𝑖𝑘𝑟 •Shift and penetration factors at radius a:

𝐿ℓ = 𝑘𝑎𝑂ℓ′(𝑘𝑎)

𝑂ℓ(𝑘𝑎)= 𝑆ℓ + 𝑖𝑃ℓ

𝑆ℓ =shift factor (slowly depends on energy) 𝑃ℓ =penetration factor (fastly depends on energy) Example: a+3He (a=5 fm, Coulomb barrier ~1 MeV)

24 1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

0 0.5 1 1.5 2 2.5

Penetration factor Pl

L=0

L=2

L=4

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2

Shift factor Sl

L=0

L=2

L=4

3. The R-matrix method: general formalism

Page 25: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

25

4. Applications of the calculable R-matrix

Page 26: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Application to the potential model

• Solutions of −ℏ2

2𝜇𝑢ℓ′′ + 𝑉𝑁 𝑟 +

𝑍1𝑍2𝑒2

𝑟+ℏ2

2𝜇

ℓ ℓ+1

𝑟2𝑢ℓ = 𝐸𝑢ℓ

• Simple integrals for R-matrix calculations • Exact solution available

a+a phase shifts: •Nuclear potential : 𝑉𝑁(𝑟) = −126exp (−(𝑟/2.13)2) (Buck et al., Nucl. Phys. A275 (1977) 246) •Basis functions: 𝜙𝑖(𝑟) = 𝑟

𝑙 ∗ exp (−(𝑟/𝑎𝑖)2)

with ai=x0*a0(i-1) (geometric progression)

typically x0=0.6 fm, a0=1.4

-20

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8

r (fm)

V (

Me

V)

nuclear

Coulomb

Total VN(a)=0

a > 6 fm 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

r

u(r

)

Basis functions

4. Applications of the calculable R-matrix

26

Page 27: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

27

-20

-15

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8

r (fm)

V (

Me

V)

nuclear

Coulomb

Total

Example: a+a

0+ E=0.09 MeV G=6 eV

4+ E~11 MeV G~3.5 MeV

2+ E~3 MeV G~1.5 MeV

-50

0

50

100

150

200

0 5 10 15

Ecm (MeV)

de

lta

(d

eg

res)

l=0

l=2

l=4

Experimental spectrum of 8Be

Experimental phase shifts

Potential: VN(r)=-122.3*exp(-(r/2.13)2)

a+a

VB~1 MeV

4. Applications of the calculable R-matrix

Page 28: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Input data

• Potential

• Set of N basis functions (here gaussians with different widths)

• Channel radius a

Requirements

• a large enough : VN(a)~0

• N large enough (to reproduce the internal wave functions)

• N as small as possible (computer time)

compromise

4. Applications of the calculable R-matrix

28

Page 29: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Procedure: Must be repeated for each ℓ

1) Compute matrix elements of the potential (simple numerical integrals)

2) 𝐷𝑖𝑗 =< 𝜙𝑖 𝐻 − 𝐸 + ℒ 𝐿 𝜙𝑗 >𝑖𝑛𝑡= 𝜙𝑖 𝑟 𝑇 + ℒ 𝐿 + 𝑉 − 𝐸 𝜙𝑗 𝑟 𝑟2𝑑𝑟

𝑎

0

3) Compute the R matrix

𝑅 𝐸 =ℏ2𝑎

2𝜇 𝜙𝑖 𝑎𝑖𝑗 (𝐷−1)𝑖𝑗𝜙𝑗 𝑎

4) Compute the collision matrix U

𝑈 𝐸 =𝐼 𝑘𝑎

𝑂 𝑘𝑎

1 − 𝐿∗𝑅 𝐸

1 − 𝐿𝑅 𝐸

Tests

• Stability of the phase shift with the channel radius a

• Continuity of the derivative of the wave function

4. Applications of the calculable R-matrix

29

Page 30: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25

del exact

n=20

n=15

n=10

n=9

a=10 fm

-400

-350

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25

del exact

n=15

n=10

n=8

n=7

a=7 fm

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25

del exact

n=7

n=10

n=6

n=15

a=4 fm

• a=10 fm too large (needs too many basis functions)

• a=4 fm too small (nuclear not negligible)

• a=7 fm is a good compromise

a+a Elastic phase shifts ℓ = 0

4. Applications of the calculable R-matrix

30

Page 31: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12

exact w f

internal

external

n=15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

ng=7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8

ng=15

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12

exact w f

internal

external

n=7

-400

-350

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20 25

del exact

n=15

n=10

n=8

n=7

a=7 fm

4. Applications of the calculable R-matrix

Wave functions at 5 MeV, a= 7 fm

31

Page 32: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Other example : sine functions 𝑢𝑖ℓ 𝑟 = sin

𝜋𝑟

𝑎(𝑖 −

1

2)

• Matrix elements very simple

• Derivative 𝑢𝑖′ 𝑎 = 0

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12

a=7 fm

-300

-250

-200

-150

-100

-50

0

0 5 10 15 20

del exact

ng=15

ng=25

ng=35

ng=10

Not a good basis (no flexibility)

4. Applications of the calculable R-matrix

In ref. P. D., D. Baye, Rep. Prog. Phys. 73 (2010) 036301: Lagrange meshes (simple matrix elements) 32

Page 33: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

33

Example of resonant reaction: 12C+p

• potential : V=-70.5*exp(-(r/2.70)2)

• Basis functions: 𝜙𝑖 𝑟 = 𝑟ℓ exp − 𝑟/𝑎𝑖

2

Resonance l=0 E=0.42 MeV G=32 keV

-20

-15

-10

-5

0

5

10

15

20

0 2 4 6 8

r (fm)

V (

Me

V)

nuclear

Coulomb

Total

V=-70.50*exp(-(r/2.7)2)

4. Applications of the calculable R-matrix

Page 34: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

34

-20

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5 3

E (MeV)

de

lta

(d

eg

.)

exact

ng=10

ng=8

ng=7

Phase shifts a=7 fm

Wave functions

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15

r (fm)

exact w f

internal

external

ng=7

E=0.8 MeV

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15

r (fm)

exact w f

internal

external

ng=10

E=0.8 MeV

4. Applications of the calculable R-matrix

Page 35: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

35

Application of the R-matrix to bound states

Positive energies: 𝑑2

𝑑𝑟2−ℓ ℓ+1

𝑟2− 2𝜂𝑘

𝑟+ 𝑘2 𝑢ℓ = 0 Coulomb functions 𝐹ℓ 𝑘𝑟 , 𝐺ℓ(𝑘𝑟)

Negative energies: 𝑑2

𝑑𝑟2−ℓ ℓ+1

𝑟2− 2𝜂𝑘

𝑟− 𝑘2 𝑢ℓ = 0 Whittaker functions 𝑊−𝜂,ℓ+1/2(2𝑘𝑟)

Asymptotic behaviour:

hh

hp

hp

x

xxW

xxxG

xxxF

)exp()2(

)2log2

cos()(

)2log2

sin()(

2/1,

+

4. Applications of the calculable R-matrix

Page 36: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

36

• R matrix equations for bound states We use 𝐻 − 𝐸 + ℒ(𝐿) 𝑢𝑖𝑛𝑡 = ℒ 𝐿 𝑢𝑒𝑥𝑡 (1)

𝑢𝑖𝑛𝑡(𝑟) = 𝑐𝑖𝜙𝑖(𝑟)𝑁𝑖=1 (2)

𝑢𝑒𝑥𝑡 𝑟 = 𝐶 𝑊−𝜂,ℓ+1/2(2𝑘𝑟) (3)

With C=ANC (Asymptotic Normalization Constant): important in “external” processes • Using (2) in (1) and the continuity equation:

𝑐𝑖 < 𝜙𝑗

𝑁

𝑖=1

𝐻 − 𝐸 + ℒ 𝐿 𝜙𝑖 >𝑖𝑛𝑡=< 𝜙𝑗 𝑟 ℒ 𝐿 𝑢𝑒𝑥𝑡 > = 0

if 𝐿 = 2𝑘𝑎 𝑊′(2𝑘𝑎)/𝑊 𝑘𝑎 • Standard diagonalization problem • But: L depends on the energy, which is not known iterative procedure

First iteration: L=0

4. Applications of the calculable R-matrix

Page 37: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

37

Application to the ground state of 13N=12C+p

Resonance l=0: E>0

Bound state l=1: E<0

• Potential : V=-55.3*exp(-(r/2.70)2)

• Basis functions: 𝜙𝑖 𝑟 = 𝑟ℓ exp − 𝑟/𝑎𝑖

2 (as before)

Negative energy: -1.94 MeV

4. Applications of the calculable R-matrix

Page 38: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

38

Iteration 𝑁 = 6 𝑁 = 10

1 -1.500 -2.190

2 -1.498 -1.937

3 -1.498 -1.942

-1.942

Final -1.498 -1.942

Exact -1.942

Left derivative -1.644 -0.405

Right derivative -0.379 -0.406

Calculation with a=7 fm

•𝑁 = 6 (poor results)

•𝑁 = 10 (good results)

4. Applications of the calculable R-matrix

Page 39: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

39

Wave functions (a=7 fm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

r (fm)

exact w f

internal

external

ng=6

0.00001

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

r (fm)

exact w f

internal

external

ng=6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12

r (fm)

exact w f

internal

external

ng=10

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12

r (fm)

exact w f

internal

externalng=10

4. Applications of the calculable R-matrix

Page 40: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Other applications of the “calculable” R matrix

• Microscopic cluster models (next week): include the structure of the nuclei use a nucleon-nucleon interaction

•CDCC calculations: T. Druet, D. Baye, P.D. J.-M. Sparenberg, Nucl. Phys. A 845 (2010) 88 Reactions with 2-body projectiles (ex: d+58Ni) or 3-body projectiles (6He) set of coupled equations

•Three-body continuum states: P.D., E. Tursunov, D. Baye, NPA765 (2006) 370 hyperspherical formalism (ex: a+n+n) set of coupled equations

4. Applications of the calculable R-matrix

40

Page 41: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Applicationto the CDCC method

H YJMp = E YJMp for E>0

with correct asymptotic conditions ( collision matrix)

1

2

target

R r

Two steps: 1. Diagonalize H0 basis for the projectile

2. Expand the total wave function over this basis system of coupled differential equations

Vt1, Vt2= optical potentials typically: Woods-Saxon

41

projectile

4. Applications of the calculable R-matrix

Page 42: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

First step: diagonalization of the projectile hamiltonian H0

Two options for positive energies: 1. Expand Fjm on a basis (traditionally: gaussians, here: Lagrange functions)

Pseudo-state (PS) method Fjm is square-integrable Example: deuteron=p+n

PS:E>0

Ground state: E<0

42

2. The projectile wave functions are described by « bins »

4. Applications of the calculable R-matrix

Page 43: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

2nd step: expand the total wave function

Angular functions

2-body wave functions

To be determined

Expand the potential in multipoles (numerical integration over the angle)

Insert both expansions in the Schrödinger associated with H

43

1

2

t

R,L r,l

projectile: spin j

target

Page 44: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Finally: system of coupled equations provides radial functions uJp(R)

With potentials obtained from

+ factors (6j, Clebsch-Gordan,…)

Common procedure for CDCC

• Two-body states Fj(r) Lagrange functions for the projectile (coordinate r)

• Determination of the potentials Vcc’(R) Lagrange functions for the p-t (coordinate R)

• Solution of the scattering system R matrix

Alternative method: Numerov algorithm (FRESCO) 44

Channel c= l,j projectile quantum numbers i: excitation level of the projectile [physical state (E<0) or PS (E>0)] L : orbital angular momentum between projectile and target Number of c values: typically ~100-200

4. Applications of the calculable R-matrix

Page 45: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

45

The Lagrange-mesh method (D. Baye, Phys. Stat. Sol. 243 (2006) 1095)

• Gauss approximation:

o N= order of the Gauss approximation

o xk=roots of an orthogonal polynomial, lk=weights

o If interval [0,a]: Legendre polynomials [0,]: Laguerre polynomials

• Lagrange functions for [0,1]: fi(x)~PN(2x-1)/(x-xi)

o xi are roots of PN(2xi-1)=0

o with the Lagrange property:

• Matrix elements with Lagrange functions: Gauss approximation is used

no integral needed very simple!

4. Applications of the calculable R-matrix

Page 46: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

46

Application to CDCC T. Druet, D. Baye, P.D. J.-M. Sparenberg, Nucl. Phys. A 845 (2010) 88

o 2-body states defined in a Lagrange basis With coefficients ck determined from the 2-body Schrödinger equation

o Coupling potentials for CDCC: obtained from previous functions no integral, simple calculation of the coupling potentials can be easily extended to non-local potentials

4. Applications of the calculable R-matrix

Page 47: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

47

Matrix elements

• In general: integral over R (from R=0 to R=a) Lagrange mesh: value of the potential at the mesh points very fast

• From matrix C R matrix

Collision matrix U phase shifts, cross sections

• Typical sizes: ~100-200 channels c, N~30-40

• Test: collision matrix U does not depend on N, a

• Choice of a: compromize (a too small: R-matrix not valid, a too large: N large)

• Some remarks

Fast (no integral), accurate

The basis is defined by N and a only : no further parameter (≠ for gaussians)

Legendre functions: more zeros near R=0, and R=a not optimal

Page 48: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Test case: d+58Ni at Elab=80 MeV

• Standard benchmark in the literature

• p+n: gaussian potential (reproduces Ed=-2.22 MeV)

• p+58Ni, n+58Ni: optical potentials

• Elastic scattering and breakup

-100

-80

-60

-40

-20

00 5 10 15 20

Vcc

(M

eV

)

R (fm)

Ground state (l=0)

1st pseudostate (l=2)

long range for PS radius a≥ 15 fm

deuteron basis: l=0,2,4,6

d+58Ni potentials (nuclear)

48

4. Applications of the calculable R-matrix

Page 49: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

49

0 20 40 60 80 100 120

/

R

(deg.)

lmax=4

lmax=0

d+58Ni, Elab=80 MeV

101

100

10-1

10-2

10-3

no breakup (only deuteron gs)

Convergence with the p+n angular momentum

importance of p+n breakup channels

4. Applications of the calculable R-matrix

Page 50: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

50

Convergence with R-matrix parameters

channel radius a (N=30)

Number of basis (Lagrange) functions N (a=15 fm)

4. Applications of the calculable R-matrix

Page 51: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

Propagation techniques Computer time: 2 main parts

• Matrix elements: very fast with Lagrange functions • Inversion of (complex) matrix C R-matrix (long times for large matrices)

For reactions involving halo nuclei:

• Long range of the potentials (Coulomb)

• Radius a must be large • Many basis functions (N large)

Propagation techniques (well known in atomic physics) Ref.: Baluja et al. Comp. Phys. Comm. 27 (1982) 299

51

Can be large (large quadrupole moments of PS)

4. Applications of the calculable R-matrix

Page 52: The R-matrix Methodnucleartheory.eps.surrey.ac.uk/Talent_6_Course/TALENT... · 2013-08-22 · Ὄ ,𝜙)=spherical harmonics 𝑢ℓ𝑟=radial wave function (to be determined from

52

Without propagation

• Matrix elements integrated over [0,a] • Inversion of a matrix of dimension N x Nc

With propagation

• The interval [0,a] is split in NS subintervals

• In each subinterval N’~N/NS:

• Interval 1: determine R(a1) • Interval 2 : R(a2) from R(a1) (inversion of a matrix with size N’ x Nc) • Interval NS: R(a) from R(aNS-1)

NS smaller calculations: Lagrange functions well adapted to matrix elements over [ai,ai+1]

N functions

N’ functions

R=0 R=a

R=0 R=a1 R=a2 R=a