the power spectrum of cosmic ray arrival directionsvulcano, may 24, 2016 markus ahlers (uw-madison)...

26
The Power Spectrum of Cosmic Ray Arrival Directions Markus Ahlers UW-Madison & WIPAC Vulcano Workshop 2016 “Frontier Objects in Astrophysics and Particle Physics” Vulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1

Upload: others

Post on 23-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

The Power Spectrum of Cosmic Ray

Arrival Directions

Markus Ahlers

UW-Madison & WIPAC

Vulcano Workshop 2016

“Frontier Objects in Astrophysics and Particle Physics”

Vulcano, May 24, 2016

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1

Page 2: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Map of CR Arrival Directions

Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies [Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[Tibet AS-γ’05,’06,’15;IceCube’10,’11,’16; HAWC’13,’14]

ECR ≃ 10 TeV, NCR ∼ 3.2 × 1011[IceCube (IC59-IC86-IV)’16]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 2

Page 3: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Map of CR Arrival Directions

Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies [Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[Tibet AS-γ’05,’06,’15;IceCube’10,’11,’16; HAWC’13,’14]

ECR ≃ 1 TeV, NCR ∼ 4.9 × 1010[HAWC’14]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 3

Page 4: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Time-Dependence of Anisotropy

(a) Period 1 (b) Period 2 (c) Period 3 (d) Period 4

(e) Period 5 (f) Period 6 (g) Period 7 (h) Period 8

IceCube Preliminary

(i) Period 9 (j) Period 10 (k) Period 11 (l) Period 12

20

[AMANDA (7 yrs) & IceCube (5 yrs)’13]]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 4

Page 5: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Expected CR Anisotropies

• turbulent motion of charged particles in Galactic

environment described by diffusion

• diffusion tensor K (in general anisotropic):

Kij =BiBj

3ν‖+

δij − BiBj

3ν⊥+

ǫijkBk

3νA

• expected dipole anisotropy is small and depends

on:

• (local) source distribution [Erlykin & Wolfendale’06]

[Blasi & Amato’12; Sveshnikova et al.’13; Pohl & Eichler’13]

• (local) ordered magnetic field B

[e.g. Schwadron et al.’14; Mertsch & Funk’14]

• rigidity dependence of diffusion, K ∝ ρ 0.3−0.6

• relative velocity of the medium [Compton & Getting’35]

observational limitations

rnCR

−KrnCR

density gradient

dipole anisotropy

relative intensity

deficitexcess

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 5

Page 6: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Observational Limitations

Equatorial

60120180300 240

60

30

−30

−60

North

East

South

West

Zenith

anisotropy

-0.0008 0.0008

[MA et al.’16]

• ground-based detectors are calibrated by CR data reduces anisotropies

• true CR dipole defined by amplitude D, and orientation (RA,DEC) = (α,δ)

observable only projected dipole with amplitude D cos δ and orientation (α,0)

further problems by limited field of view (cross-talk with small-scale structure)

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 6

Page 7: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Observed Dipole Amplitude and Phase

naive expectation (∝ E1/3 )

103 104 105 106 107

energy [GeV]

10−4

10−3

10−2

dip

ole

amp

litu

de

naive expectation (Galactic Center)

−250

−200

−150

−100

−50

0

50

dip

ole

ph

ase

[deg

ree]

Baksan’87

Kamiokande’97

Super-K’07

MACRO’03

IceCube’10

IceCube’12

IceCube’15

IceTop’15

KASCADE’15

Tibet’15

Baksan’81

Baksan’09

Mt.Norikura’89

Musala Peak’75

EAS-TOP’95

Tibet’05

Milagro’09

EAS-TOP’96

EAS-TOP’09

ARGO-YBJ’11

ARGO-YBJ’15

IceTop’13

[MA’16]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 7

Page 8: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Local Magnetic Field and Dipole Anisotropy

• strong ordered magnetic fields in the

local environment

diffusion tensor reduces to projector:

Kij →BiBj

3ν‖

• TeV–PeV dipole data consistent with

magnetic field direction inferred by

IBEX data [McComas et al.’09]

• 1–100 TeV phase indicates a local

gradient within longitudes:

120. l . 300

phase flip induces by Vela supernova

remnant? [MA’16]

315

135

0

90

180

27

0

loca

l mag

netic

field

Gal

acti

cC

ente

r

Com

pto

n-G

etti

ng

−1 0 1

reconstructed δ ⋆0h [10−3]

−3

−2

−1

0

1

reco

nst

ruct

edδ⋆ 6h

[10−

3]

1.1

1.4

1.6

1.8

2.1

2.4

2.8

3.1

3.2

0.0 0.2

0.4

0.6

0.91.1

1.5

1.2

1.7

2.0

2.5

3.0

2.0

2.6

2.7

IceCube

IceTop

ARGO-YBJ

Tibet-ASγ

EAS-TOP

[MA’16]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 8

Page 9: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Local Magnetic Field and Dipole Anisotropy

• strong ordered magnetic fields in the

local environment

diffusion tensor reduces to projector:

Kij →BiBj

3ν‖

• TeV–PeV dipole data consistent with

magnetic field direction inferred by

IBEX data [McComas et al.’09]

• 1–100 TeV phase indicates a local

gradient within longitudes:

120. l . 300

phase flip induces by Vela supernova

remnant? [MA’16]

135

225

180

Vela

SNR

−6 −4 −2 0 2

predicted δ ⋆0h [10−3]

−8

−6

−4

−2

0

2

pre

dic

ted

δ⋆ 6h

[10−

3]

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

projected

not projected

1 10 102 103

energy [TeV]

0.1

1

10

amplitude [10−3]

[MA’16]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 9

Page 10: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Suggested Origin of Small-Scale Anisotropy

• CR acceleration in nearby SNRs [Salvati & Sacco’08]

• local magnetic field structure with energy-dependent magnetic mirror leakage

[Drury & Aharonian’08]

• preferred CR transport directions [Malkov, Diamond, Drury & Sagdeev’10]

• magnetic reconnections in the heliotail [Lazarian & Desiati’10]

• non-isotropic particle transport in the heliosheath [Desiati & Lazarian’11]

• heliospheric electric field structure [Drury’13]

• magnetized outflow from old SNRs [Biermann, Becker, Seo & Mandelartz’12]

• strangelet production in molecular clouds or neutron stars

[Kotera, Perez-Garcia & Silk ’13]

• interplay between regular and turbulent magnetic fields

[Battaner, Castellano & Masip’14; Mertsch & Funk’14; Schwadron et al.’14; MA’16]

small-scale anisotropies from local magnetic field mapping of a global dipole

[Giacinti & Sigl’12; MA’14; MA & Mertsch’15]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 10

Page 11: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Analogy to Gravitational Lensing

CMB temperature fluctuations Cosmic Ray Gradient

Local M

agnetic Tu

rbulen

ceLar

ge S

cale

Str

uct

ure

small scale temperature fluctuations small scale anisotropies

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 11

Page 12: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Gedankenexperiment

• Idea: local realization of magnetic turbulence introduces small-scale structure

[Giacinti & Sigl’11]

• Particle transport in (static) magnetic fields is governed by Liouville’s equation of

the CR’s phase-space distribution f :

d

dtf (t, x, p) = 0

• “trivial” solution:

f (0, 0, p) = f (−T, x(−T), p(−T))

• Gedankenexperiment:

Assume that at look-back time −T initial condition is homogenous, but not

isotropic:

f (0, 0, p) = f (p(−T))

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 12

Page 13: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Angular Power Spectrum

• Every smooth function g(θ, φ) on a sphere can be decomposed in terms of

spherical harmonics Yℓm:

g(θ, φ) =∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓmYmℓ (θ, φ) ↔ aℓm =

∫dΩ(Ym

ℓ )∗(θ, φ)g(θ, φ)

• angular power spectrum:

Cℓ =1

2ℓ+ 1

ℓ∑

m=−ℓ

|aℓm|2

• related to the two-point auto-correlation function: (n1/2 : unit vectors, n1 · n2 = cos η)

ξ(η) =1

8π2

∫dn1

∫dn2δ(n1n2 − cos η)g(n1)g(n2) =

1

(2ℓ+ 1)CℓPℓ(cos η)

Note that individual Cℓ’s are independent of coordinate system (assuming full

sky coverage).

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 13

Page 14: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Gedankenexperiment (continued)

• Initial configuration has power spectrum Cℓ.

• For small correlation angles η flow remains

correlated even beyond scattering sphere.

• Correlation function for η = 0:

ξ(0) =1

∫dp1 f

2(p1(−T))

scattering length

p1

p2

p2(-T)

p1(-T)

• On average, the rotation in an isotropic random rotation in the turbulent magnetic

field leaves an isotropic distribution on a sphere invariant:

〈ξ(0)〉 =1

∫dp1 f

2(p1)

The weighted sum of 〈Cℓ〉’s remains constant:

1

ℓ≥0

(2ℓ+ 1)Cℓ =1

ℓ≥0

(2ℓ+ 1) 〈Cℓ(T)〉

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 14

Page 15: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Evolution Model

• Diffusion theory motivates that each 〈Cℓ〉 decays exponentially with an effective

relaxation rate [Yosida’49]

νℓ ∝ L2 ∝ ℓ(ℓ+ 1)

• A linear 〈Cℓ〉 evolution equation with generation rates νℓ→ℓ′ requires:

∂t〈Cℓ〉 = −νℓ〈Cℓ〉+∑

ℓ′≥0

νℓ′→ℓ

2ℓ′ + 1

2ℓ+ 1〈Cℓ′〉 with νℓ =

ℓ′≥0

νℓ→ℓ′

• For νℓ ≃ νℓ→ℓ+1 and Cℓ = 0 for l ≥ 2 this has the analytic solution:

〈Cℓ〉(T) ≃3C1

2ℓ+ 1

ℓ−1∏

m=1

νm

n

ℓ∏

p=1( 6=n)

e−Tνn

νp − νn

• For νℓ ≃ ℓ(ℓ+ 1)ν we arrive at a finite asymptotic ratio:

limT→∞

〈Cℓ〉(T)

〈C1〉(T)≃

18

(2ℓ+ 1)(ℓ+ 2)(ℓ+ 1)

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 15

Page 16: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Comparison with CR Data

5 10 15 20 25 30multipole moment ℓ

10−12

10−11

10−10

10−9

10−8

10−7

10−6

pow

ersp

ectr

um

Cℓ

Ahlers 2013

HAWC 2014

IceCube 2013

[MA’14; updated with HAWC data]

limT→∞

〈Cℓ〉(T)

〈C1〉(T)≃

18

(2ℓ+ 1)(ℓ+ 2)(ℓ+ 1)

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 16

Page 17: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Simulation via Backtracking• Consider a local (quasi-)stationary solution of the diffusion approximation:

4π〈 f 〉 ≃ n + r∇n − 3 p K∇n︸ ︷︷ ︸1st linear correction

• backtracking over long time-scales T and evaluating in mean field

4πfi ≃ 4π δf (−T, ri(−T), pi(−T))︸ ︷︷ ︸deviation from 〈 f〉

+n + [ri(−T)− 3pi(−T)K]∇n

• Ensemble-averaged Cℓ’s (ℓ ≥ 1): [MA & Mertsch’15]

〈Cℓ〉

4π≃

∫dp1

∫dp2

4πPℓ(p1p2) lim

T→∞〈r1i(−T)r2j(−T)〉︸ ︷︷ ︸

relative diffusion

∂in∂jn

n2

• Sum of 〈Cℓ〉 related to diffusion tensor:

1

ℓ≥0

(2ℓ+ 1)〈Cℓ〉 ≃ 2TKsij

∂in∂jn

n2

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 17

Page 18: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Simulation via Backtracking

• CR arrival direction determined by backtracking of CRs towards a homogeneous

initial dipole anisotropy (ballistic laminar turbulent)

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 -0.10 -0.05 0.00 0.05 0.10 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 -1.0 -0.5 0.0 0.5 1.0

• Kolmogorov turbulence with energy density comparable to B0

• two cases: dipole vector aligned with or perpendicular to B0

• asymptotically limited by simulation noise:

N ≃4π

Npix

2TKsij

∂in∂jn

n2

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 18

Page 19: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Comparison to CR Data

5 10 15 20

multipole moment ℓ

10−4

10−3

10−2

0.1

1re

lati

ve

pow

ersp

ectr

um

Cℓ/

C1

IceCube noise level

HAWC noise level

Ahlers & Mertsch (2015)

σ2= 1, rL/Lc = 0.1, λmin/Lc = 0.01, λmax/Lc = 100, ΩT = 100

model (p = 2/3)

model (p = 1/2)

model (p = 1/3)

simulation (B0 ‖ ∇n)

simulation (B0 ⊥ ∇n)

IceCube (rescaled)

HAWC (rescaled)

[MA & Mertsch’15]

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 19

Page 20: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Local Description: Relative Scattering

• evolution of Cℓ’s: [MA & Mertsch’15]

∂t〈Cℓ〉 = −1

∫dp1

∫dp2Pℓ(p1p2)〈(p1∇f1 + iωLf1) f2〉

• large-scale dipole anisotropy gives an effective “source term”:

−1

∫dp1

∫dp2Pℓ(p1p2)〈(p1∇f1) f2〉 → Q1δℓ1

• BGK-like Ansatz for scattering term (〈iωLf 〉 → − ν2

L2〈f 〉) [Bhatnagaer, Gross & Krook’54]

−1

∫dp1

∫dp2Pℓ(p1p2)〈(iωLf1) f2〉 →

1

∫dp1

∫dp2Pℓ(p1p2)ν(p1p2)L

2〈f1f2〉

• Note that ν(1) = 0 for vanishing regular magnetic field.

ν(x) ≃ ν0(1 − x)p

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 20

Page 21: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Summary

• Large- and small-scale anisotropy can be understood in the context of standard

diffusion theory.

• Local magnetic turbulence is a source of small-scale anisotropies.

• Analogous to induced high-ℓ multipoles in CMB temperature power spectrum

from gravitational lensing in small scale structure.

• Ensemble-averaged Cℓ’s (ℓ ≥ 1) related to relative diffusion:

〈Cℓ〉

4π≃

∫dp1

∫dp2

4πPℓ(p1p2) lim

T→∞〈r1i(−T)r2j(−T)〉

∂in∂jn

n2

• Microscopic description of 〈Cℓ〉 evolution via modified BGK-like Ansatz.

• Open issues: damping effects for CR rigidity distributions, partial sky coverage of

experiments, angular resolution, . . .

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 21

Page 22: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Thank you for your attention!

Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 22

Page 23: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Appendix

Appendix

Page 24: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Simulated Turbulence

• 3D-isotropic turbulence: [Giacalone & Jokipii’99]

δB(x) =N∑

n=1

A(kn)(an cosαn + bn sinαn) cos(knx + βn)

• αn and βn are random phases in [0, 2π), unit vectors an ∝ kn × ez and bn ∝ kn × an

• with amplitude

A2(kn) =

2σ2B20G(kn)∑N

n=1G(kn)

with G(kn) = 4πk2n

kn∆lnk

1 + (knLc)γ

• Kolmogorov-type turbulence: γ = 11/3

• N = 160 wavevectors kn with |kn| = kmine(n−1)∆lnk and ∆lnk = ln(kmax/kmin)/N

• λmin = 0.01Lc and λmax = 100Lc [Fraschetti & Giacalone’12]

• rigidity: rL = 0.1Lc

• turbulence level: σ2 = B20/〈δB2〉 = 1

Appendix

Page 25: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Powerspectrum of CR Arrival Directions Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies

[Tibet AS-γ’05,’06; Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[IceCube’10,’11; HAWC’13,’14]

[IceCube [arXiv:1603.01227]]

Appendix

Page 26: The Power Spectrum of Cosmic Ray Arrival DirectionsVulcano, May 24, 2016 Markus Ahlers (UW-Madison) The Power Spectrum of CR Arrival Directions May 24, 2016 slide 1. Map of CR Arrival

Powerspectrum of CR Arrival Directions Cosmic ray anisotropies up to the level of one-per-mille have been observed at

various energies

[Tibet AS-γ’05,’06; Super-Kamiokande’07; Milagro’08; ARGO-YBJ’09,’13;EAS-TOP’09]

[IceCube’10,’11; HAWC’13,’14]

[HAWC [arXiv:1408.4805]; note: low−ℓ power under-estimated]

Appendix